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The Visualization of Three Dimensional Brain Tumors’ Growth on
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Abstract: The main aim of this study is to visualize the brain tumors’ growth in three-dimensional and
umplement the algorithm on distributed parallel computer systems. The Partial Differential Equations (PDE) to
solve the mathematical problem will be discussed in this study. The growth of the brain tumor through
angiogenic process is described ag parabolic model in partial differential equations. The discretization of the
three-dimensional parabolic equations for the brain tumor’s growth mathematical model using a numerical finite-
difference method will be mmplemented from the earlier study of two dimensional model and thus a parallelization
of algorithm simulation to computational resources based on high-performance computing systems will be used
to generate the growth of the brain tumor in three dimensional. The study also includes an observation of the
behaviour of the cells graphically and Parallel Virtual Machie (PVM) 1s used to communicate the platforms
mvolved i the computational clusters. A comparison of sequential and parallel algorithm will be discussed and
this study will address the major issues of the parallel computers performance in terms of efficiency,
effectiveness, speedup and temporality.
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INTRODUCTION

A brain tumor 1s a growth of abnormal cells or normal
cells n an mappropnate place mn the brain. A pnimary brain
tumeor 1s one that starts m the brain, rather than cancer in
another part of the body that has spread to the brain.
Primary tumors can be grouped nto non-cancerous
(benign) and cancerous (malignant).

Malignant brain tumors are commonly called brain
cancer and they are usually invasive and life-threatening.
Brain tumors also may be metastatic or secondary brain
tumors. These tumors are formed from cancer cells that
begin growing elsewhere in the body and travel to the
brain, usually through the bloodstream. Metastatic brain
tumors are always cancerous and commonly come from
cancers of the lung or breast or from melanomas. They are
more common than primary brain tumors.

The correlation between lateral ventricles
deformations and tumor existence has been found useful
in the brain MRI, in brain tumor detection and prediction.
A new method has been proposed by Xiao et al. (2007) to
analyze the deformation of ventricles, to retrieve the
lateral ventricles deformation data for further statistical

analysis and processing. In that method, the boundaries

of the lateral ventricles are segmented firstly, pixels on the
boundary are sampled and a nonlinear interpolation
method based on Thin Plate Spline (TPS) 1s accomplished
to create a more perfect template image for each specific
case, followed by the application and performance
evaluation between TPS with Radial Basis Function
Neural Networks (RBF-NN) and Radon Transform (RT) on
the extracted Skeleton of the boundary of the ventricles
for locating the optimal orientation of the image through
iterative mmage rotation. The reoriented ventricles are
analyzed based on the displacement values obtained from
the TPS of the sampled template and the diagnostic lateral
ventricle. Their experimental results suggest that their
method is effective and relevant in prediction of the
location of tumor.

This study is to visualize or capture the growth of
brain tumor in three-dimensional space and to develop or
identify the three-dimensional brain tumor growth. The
aim is to identify the discretization of the mathematical
models which will be converted to standard form and to
implement the algorithm to perform the iterative methods
from the discretization of the mathematical model. One of
the significant objectives of this study is to identify the
right parallel algorithm or parallel programs for our three-
dimensional brain tumor growth model.
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The most malignant form of brain cancer is
glioblastoma (Andrew et al., 2007), which is responsible
for 23% of primary brain tumors and has extremely poor
outcome. They conducted experiments on the patterns of
growth and dispersion of UR7 glioblastoma tumor
spheroids m a three-dimensional collagen gel to gain
insight into glioblastoma invasion. They developed a
contimuum mathematical model of the dispersion
behaviors with the aim of identifying and characterizing
discrete cellular mechamsms underlying invasive cell
motility.

The pemmes equation 1s the most widely used
(Permes, 1948), among the various models proposed to
the study of heat transfer in living tissues. The
understanding of thermal life phenomena and temperature
behavior n hving tissues 1s required (Gautherie, 1980;
Chato, 1989), in the contemporary clinical treatments and
medicines such as cryosurgery, Cancer hyperthermia,
cryopreservation and thermal disease diagnostics, etc.
Liu (2001) presented an analytical explanation of the 3D
Pennes equation using multidimensional green function.
While this solution may be helpful in some exceptional
cases, the difficulty of multidimensional heat transfer
problems in many practical circumstances suggests the
application of numerical techniques.

Numerical methods: The methods under consideration
for this study are the fimte-difference methods for three-
dimensional parabolic equations for brain tumor growth.
We will also use the method of discretization under the
basis of Partial Differential Equations from Numerical
methods (Tan Liang and Ang Keng, 2005). The
discretization will produce a finite-dimensional equation
which will later be converted to matrices form. The
matrices will be solved using iterative methods, namely
Gauss Seidel method by both sequential and parallel
algorithms. Besides, a distributed parallel computing
systermn with the commumnication platform of Parallel Virtual
Machine (PVM) and C programming with TLinux
environment are applied.

Mathematical model: By using fimte difference method,
certain assumptions and using lattice scheme, we’ll obtain
the three dimensional parabolic equation of the tumor
growth as:

%l =-V.Wu+vV.(Qvu)+I'-Lu

where, in three dimensions, W = (P, R, 3).

The model represented in the study is an extension to
the model by Angelis and Preziosi (2000) from W = (P, R)
(two dimensions)to W = (P, R, 8) (three dimensions).

506

Table 1: Evidence based on medicine

Terms Yes No
Keep secret from family 50 50
Member of family that have similar illness 10 90
Other than hospital treatment 60 40
Age =40 70 30
Farnily support 80 20
Get consultation from expertise 80 20
Changing of emotion 70 30
Changing of personality 60 40
Changing of speech 70 30
Changing of hearing 60 40
Changing of daily routine 60 40
Changing of diet 60 40

Table 2: Ewvidence based medicine (Real data versus hospital data versus
mathematics simulation)

Detect.
Parameters Level Spheroid lesion Diagnosis Death
Radius (mm) Test 0.5 5.0 18.5 25.0
Math 0.5 5.0 18.5 25.0
Hosp 0.5 4.18 18.0 24.0
Vohime-doubling  Test 6 45 70 105
time (days) Math ¢ 38 70 105
Hosp 6 40 70 105
Velocity (v) Math 007 0.1289 0.2629 0.2371
(mm day™") Hosp 0011 011829 0.11829 0.11829
Growth rates (p)  Math  0.007 0.00015  0.0004 0.0003
(1/day) Hosp 0.00833  0.00278 0.00278 0.001136
Cell No. Data  10° 10° 10% 101
Math  1.62x10°  3.95x10° 4.19x10"" 1.07x10"

Some sort of evidences based on medicine is shown
in Table 1. The comparison of Real Hospital Data (Hosp)
versus Real Data from Joumnals (Test) Vs Mathematic
Simulation results (Math) have shown m Table 2. The
reasons, to persuasive momitoring software to predict
tumeor growth are:

33.3%
disease
22.2% patients used prediction software to detect
tumor growth while

11.1% used other electronic devices

patients do not tell anybody about the

PARALLEL COMPUTING SYSTEM

The defimtion of distributed memory 1s referred to the
multiple processors operate independently but each has
own private memory, data 15 shared across a
communications networked using message passing
paradigm. The world’s largest supercomputers are used
almost exclusively to run applications that are parallelized
using Message Passing (Fig. 1).

Why parallel computing?

Emergence of computational science: Science mncludes
mass number of researches involves analysis that 1s only
restricted model problems and simple geometries. With
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Fig. 1: (a) Parallel computing system and (b) Part of a parallel computing platform
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Fig. 2: Time depending growing tumor

parallel computing, the experiments which are rather

expensive, dangerous, difficult to reproduce and

sometimes impossible can be attained.

Sequential computing is slow: To get faster the system
has to get smaller. However, there are many physical and
mathematical limitations to be
Ultimately, parallel computing system 1s faster by
definition since the No. of processors for a single CPU 1s
increased.

This study predicts basically the growth of the tumor,
N;(t) found in the node (1, j, k) in at time t, where, two
mechanisms which govern the movement of the cells
exists (Fig. 2).

taken into account.

A diffusive-like
Brownian motion with probability which depends on
the direction of the movement. In the study it’s
mdicated for instance (since in three dimensions)
with Q.. the transition probability density per unit
time that a cell diffuses from (31, j, k,) to (1+1, ], k)

. phenomenon governed by a
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A transport-like phenomenon, which generates a drift
of cells with a probability which again depends on
the direction of motion. Since in three dimensions the
motions involve are such that:

Piijx Transition probability density per umit time
that a cell 1s transported along x from (3, J, k) to
G+, 3.k

Transition probability density per unit time
that a cell is transported along v from (i, j, k) to
(1, 5.+, k)

Transition probability density per unit time
that a cell 1s transported along z from (3, J, k) to
(i, j. k1)

Rijjng

S1,J,J,k+1

Angelis and Peziosi (2000) assumed that the drift
velocity has positive compenents. Since the three
dimension model mvolves 3 nodes, 1, | and k, one has to
follow the following scheme:

Number of cells in (i, j, k) at time t+dt = (No. of cells
present in (1, j, k) at time t)+(No. of cells drifting in along
x from (1-1, },k), along y from (1, j-1,k) and along z from
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(4, j, k-1))-(No. of cells drifting away along x to (it+l, j, k),
along y from (i, j+1, k) and along z from (4, j, k+1 ))+(No. of
cells diffusing from neighbour-ing nodes)-(No. of cells
diffusing away to neighbour-ing nodes)+(Generation of
new cells )—(Death of cells). This leads to the following

finite difference equations:

Nj,J’k(t + At = N,,,,k('l) + At

-P‘_l,‘,J,kNH,J,k(t) + RLJ_LLkN‘,J_Lk(t) + sm,k_l Ni,],k—l (tH-
PN =R N (O-S, 0N, (B
QN (O Qo i N O Qo N (B F
QN 0+ QW N 0+ Q0 N (D
_(Qx,rl,j,k T Qe T Qe T Qe T Qs T Qi_j_k’kﬂ)
N T L N (0

We applied a few assumptions to the scheme formed
above then later we’ll obtain the three dimensional brain
tumor growth equation as:

u_ aPu) A(Rw)  A(Su) Qi Q.
o X ay oz oxt ox o
2 2
R LT L

y' aydy dZ a0z

We applied the explicit method finite-difference
scheme to perform discretization of the model and obtain
the discretized model as:

N, (L+At) -
AL

K K K K
[P1J 1N 1k - PJ N; i3 v+ [RJ_1N1 Li-Lk - Ri N;,k (t)]

Nty

k k
i1,k - (Qf—l + Q1j+1)qu ()
+Q,j+1N,+1 s k(t)] + [QJ;IN, Lj-1 k(t) - (er + Qj+1)N,Jk (t)

k-1 k+l

Q“‘N,,M(t)HQJ N +Q N,

+[S N‘,kl(t) S,’ ,Jk(t)]+[Q,_1

+Qlj Nx,],k+1(t)] + rxjk - Li]kNijk (t)

THREE DIMENSIONAL PARABOLIC EQUATIONS

There are two systems considered for a three
dimensional parabolic equations, which are Cartesian
coordinates and cylindrical polar coordinates.

However, m this study we are only interested to fine
the approximations using the Cartesian coordinates
systems.

Generally, one can write the weighted finite difference
approximations to the three dimensional parabolic
equations as:

Yu e a1

ox? oyt ' (Ax)
+1 -6} + Sy +87 )u‘,J,k(p)

(687 +8," +8, ;%7 |

1
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(p) +u ® 4 O((AX)2 n (Ay)2 (Az)z)

() (e
+u & +u1,]+1,k ? +ll1’ i,jk+1

i.j-1k

For our Bram tumor’s three-dimensional parabolic
equation, the mathematical simulations in C programming
for the weighted finite difference approximations to the
problem is developed as follows:

lelaran1=0;
round=2;
dt=1.5;
count=0;

for (t=1;jt<=round;jt++) /*start jt loop */

dt=dt+1.5;
count=0;
jl=tol;

for(jk = 0; (ijk < TIMESTEP)andand(jl==tol) ;
TIMESTEP*/
{

k) start

lelaran1++;
count++;

for(i=start;i<=end;i++)
for(j=1;j<=m;j++)
for(k=1;k<=h;k++)

Hi(i++Kea=1) Mganjil*/

Tiinewli[jl(k] = THlIL]MH-dt* - @I KRD[k]
+S[GE]+QLi- L[k Qi+ [k
QUG- LK+ QL] [+ 1[k]+
QM- 1]+ QU]+ I+ LKD) *
Ti G+ PLi-1 G E]QL-1G] kD
Tjil-1GIK QUi TGIK] *Lili+ ][] (k] +
RNG-1] QUG- 1RD* Tili]
G-UIk+QUIG+ K] *Tjil [+ Lk]+
(SIGT0k-1]+ QUG- * L[] k- 11+
QUG+ TH O Gl GID;

13

if(left!=0) {
pvim_initsend( PymDataDefault );
if(start%62=—1)
pvim_pkdouble( and Tjjnew[start][1][1],m*(mmadd+2)/2, 2);
if(start%e2=—=0)
pvim_pkdouble] andTjjnew] start][1][0],m*(madd+2)/2, 2);
pvim_send(lett, 10 );
)

if (right 1=0) {
pvim_recv(right,10);
if((end+1)%2—1)
pvin_upkdouble( andTjjnew[end+1][1][1],m*¢madd+2)/2, 2);
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if{(end+1)%62=—=0)
pvm_upkdouble( andTiinew[end+1[1][0].m* Gmadd-+2)/2, 2); @
pvim_initsend({ PvmDataDefault ); ForP,R, S, Q. L
if(end%2—1) o R Q
pvm_pkdouble( andTjjinew[end][1][1],m*(madd+2)/2, 2 ); Bound it
if(end%s2—0) | oundary conditions |
pvm_pkdouble( andTjjinew[end][1][0],m*(madd+2)/2, 2 ); |
pvm_send(right, 20 ); Initial values —> N[0] [0] [0] = 900
} I
ifleft!'=0m { Gauss Seidel method
pvm_recvileft,20);
if{(start-1)%62=1)
pvm_upkdouble( &Tjjnew[start-1][1][1], m*
(madd+2)/2,2),
if{(start-1)%62=—=0)
pvin_upkdouble( and Tjjnew[start-1][1][0],m*
(madd+2)/2, 2,
}
o)
SEQUENTIAL ALGORITHM ANALYSIS N
Based on the computation of present sequential »
programming, below 1s the time execution for 1 CPU

using time h, No. of iteration and the convergence

(stopping criteria) in LINUX environment (Fig. 3). Fig. 3: The time execution for CPUJ. No. of CPU=1. Time
Flow chart of the parallel programnming on distributed execution (sec) = 85.713708, No. of iteration = 200
computing platform shown in Fig. 4. and Convergence (stopping criteria) = 2.3911e-2
| Input of initial data, assign memory space| | Setting the parametrs of computational process|

Gred the ids
Spawn the slave tasks

Receive data from master

Copy the initial data into working array |

Iteration
< No. of data?,

No
Perform the calculation

| Communication between processorsl

Time step
-1>i
l No
_.l Receive result, update solution | _,I Do calculation for the iterative |
Iteration
sutficient?
Ni

)
Produce output

Send the initial data to the slave and include
the neighbor info for exchanging boundry data

No. of
processor >1

|
“ e

No

Send result to master

I

End slave

Fig. 4: Flow chart of the parallel programming on distributed computing platform (Parallel algorithm analysis )
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THE VISUALIZATION OF THE BRAIN TUMOR
GROWTH

The growth rates increase in the first 24 days
consistently. After 24 days, the tumor cells become highly
active in evolution. The tumor cell will grow more than
1000 cells after 30 days (Fig. 5).

By data expermment, the values used in solving the

mathematical problem are:
«  Drift coefficients of PR and Sare 10™°, 10~ and 1077,
respectively, while the diffusion coefficient, Q is 107
For each of the proliferation coefficient, I' and death
coefficient, L the values which have been taken are
10~ and 107

t (Time)

1200

ﬁ 24 days
1100
£ ST 18 days
5
5 1000 _
z o 12 days
900 6 days
800 V] L’ y)
4 8’ 1 18 24 y
No. of round
Fig. 5. Growth rate of brain tumor cells day by day

Libebwars Targsrabas [1]

A heat capacity of 3000 T kg™ °C and a density of
920 kg m— were used for both normal and cancerous
tissue. The metabolic heat generation was 450 W m " and
blood perfusion rate for normal tissue was considered to
be 0.00018 mL/sec/mL and i the case of cancerous tissue,
values of 29,000 W m ™ and 0.009 mL/sec/mL were usedto
account for the higher blood perfusion rates and
metabolic heat generation, respectively. An effective
thermal conductivity of 0.42 W m™, as estimated by
Gautherie (1980) was used for both normal and cancerous
tissue.

With COMSOL Multiphysics, we performed Finite
Element Method simulations, a heat transfer coefficient of
5 W m ™ K was used as a convective boundary condition
at the skin surface to account for natural convection

RESULTS AND DISCUSSION

The 3D problem has been solved with numerical
discretization scheme in this study (Fig. 6). The distinctive
values for tissue properties and other parameters are
applied as given by Gautherie (1980). The internal tissue
temperature usually tends to stable within a short
distance, as established in many studies (Gautherie, 1980).
The distance between the head core and skin surface will
exceed this depth for some particular issues, such as
deeper heating, or more intense sources of heat. New
bounded core 18 large enough in this case to abandon the
pressure of the surface heating should be mntegrated mto
the estimate.

TEINEFH

LRI LEEH

Fig. 6: (a) 3D model of the Mesh of brain tumor and (b) 3D sub-domain model of bramn tumor visualization by heat

detection
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Table 3: Time execution, speedup, efficiency, effectiveness and temporal performances against different number of processors

No. of Time Temporal

processor execution (sec) Speedup Efficiency Eftectiveness performance
1 0.0119850 1.000000 37.45312500 83.43763037 83.43763037
4 0.0025290 4.739027 20.77109875 468.46846580 395.41320680
8 0.0012420 50.649758 11.83382000 1008.36900000 805.15297910
12 0.0001712 70.005840 9.20621975 3076.42510000 5841.12149500
16 0.0001570 76.337580 8.18475670 2369.45610000 6369.42675200
20 0.0000160 83.062500 7.02568890 2298.36000000 6250.00000000

PERFORMANCE STUDY OF THE PARALLEL
PROGRAMMING

The results provide engineers with information, data
and techniques for fundamental design and analysis. And
those will be benefited who needed for highly
computational power with powerful performance and
high-speed networks. A nice speedup can be obtained for
all applications with 20 processors. The reductions in
execution time often become smaller when a large number
of processors are used This phenomenon as stated in
Amdahl’s law, indicates that the number of processors
increases, the communication cost (e.g., the latency for
massage passing) and the cost for global operations will
eventually become dominant over local computation cost
after a certain stage. With the efficiencies of the parallel
strategies 1t can able to process a large matrix such as
above 100x100x100 grid for 3D.

The output based on the analysis from Table 3, the
performance measurements of parallel computing were
analyzed from the aspect of time execution, speedup,
efficiency, effectiveness and temporal performance.

Tt shows that the time execution is decreasing when
the number of processors increases. This iz due to the
task from the master had been divided into small parts to
the slave. The more processors used mean the more
slaves the master can divide its task.

From the speedup analysis in Table 3, when more
processors are used, the faster the calculation 13 being
executed.

From the efficiency analysis in Table 3, since the
speedup are mcreasing when the number of processors
increase, the efficiency will decrease because the task
being done involve some problems with task distributing.

From the effectiveness analysis in Table 3, the
effectiveness is increasing until the number of processors
reaches 12 processors when it decreases as number of
processors goes beyond 12 processors. This might due to
some error communication within the processors.

From the temporal performance analysis in Table 3, as
overall

the number of processors increase, the

performance of the parallel programming merease as well

and also due to the fact that the temporal performance 15
inversely proportional to time execution.

CONCLUSIONS

The main aim of this study 1s being able to visualize
the brain tumor growth in three-dimensional space. We
had identified the three-dimensional parabolic equation
described the brain tumor cells rate on the growth, in time,
t and space, x, y and z the physical state of the system.
The parabolic equations is derived using the numerical
finite difference method and a weighted approximations
equations has been formed to obtam the values of the
volume of the tumor, N;;,. To solve the equations, we will
use the iterative methods namely Gauss-Seidel method
and to do that we had developed the sequential C
programming. The Red Black Gauss Seidel GSRB 1s found
suitable for parallel implementation on the parallel virtual
machine (Norma and Ping, 2006). Thus a scheme of GSRB
also will be implemented in order to solve the equations.

The parallel computing with PVM system is a well
suite performance tools i solving the grand challenge of
mathematical problem (Norma and Ping, 2006). Therefore
in this research, we will construct the parallel
programming for the equations and analyze it in terms of
its speed up, efficiencies, effectiveness and the temporal
performance (Michael Quinn, 1994).

Suggestions would be to use other iterative methods
such as Successive Over-Relaxation method (SOR),
Alternative Group Explicit (AGE), Iterative Alternating
Decomposition Explicit (IADE) method and make
comparisons for the accuracy of the data and pre-
conditioner method to increase the accuracy and
convergence. Besides that other suggestions would be to
compare the data with the real data from medical
institutions to check the validity of the visualizations
obtained in this research. Other than that, suggestions
would be to develop a compilation of comparisons and
analysis of the bramn tumor growth in all three dimensions.
This could include the performance of the PVM as well
and the speed of convergence system 1s different range of
values are obtained.
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