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Abstract 
 

This study focuses on the parametric methods: maximum likelihood (ML), inference 

function of margins (IFM), and adaptive maximization by parts (AMBP) in estimating 

copula dependence parameter. Their performance is compared through 

simulation and empirical studies. For the empirical study, 44 years of daily rainfall 

data of Station Kuala Krai and Station Ulu Sekor were used. The correlation of the 

two stations is statistically significant at 0.4137. The results from the simulation study 

show that when the sample size is small (n <1000) for correlation level less than 0.80, 

IFM has the best performance. While, when the sample size is large (n ≥ 1000) for any 

correlation level, AMBP has the best performance. The results from the empirical 

study also show that AMBP has the best performance when the sample size is large. 

Thus, in order to estimate a precise Copula dependence parameter, it can be 

concluded that for parametric approaches, IFM is preferred for small sample size 

and has correlation level less than 0.80 and AMBP is preferred for larger sample size 

and for any correlation level. The results obtained in this study highlight the 

importance of estimating the dependence structure of the hydrological data. By 

using the fitted copula, the Malaysian Meteorological Department will be able to 

generate hydrological events for a system performance analysis such as flood and 

drought control system.  

 

Keywords: Bivariate copula, maximum likelihood, Inference function of margins, 

adaptive maximization by parts, rainfall 

 

 

Abstrak 
 

Kajian ini memberi tumpuan kepada kaedah parametrik: kebolehjadian maksimum 

(ML), fungsi taksiran marginal (IFM), dan penyesuaian pengoptimuman bahagian 

demi bahagian (AMBP) dalam menganggarkan parameter bersandar Copula. 

Prestasi mereka telah dibandingkan melalui kajian simulasi dan kajian empirikal. 

Untuk kajian empirikal, data hujan harian selama 44 tahun di Stesen Kuala Krai dan 

Stesen Ulu Sekor digunakan. Hubungan kedua-dua stesen adalah signifikan secara 

statistik pada 0.4137. Hasil daripada kajian simulasi menunjukkan bahawa apabila 

saiz sampel kecil (n <1000) untuk tahap korelasi kurang dari 0.80, IFM mempunyai 

prestasi terbaik. Manakala, apabila saiz sampelnya besar (n ≥ 1000) untuk mana-

mana tahap korelasi, AMBP mempunyai prestasi terbaik. Hasil daripada kajian 

empirikal juga menunjukkan bahawa AMBP mempunyai prestasi terbaik apabila 

saiz sampelnya besar. Oleh itu, untuk menganggarkan parameter bersandar 

Copula yang tepat, dapat disimpulkan bahawa untuk pendekatan parametrik, IFM 

adalah kaedah yang bagus untuk saiz sampel yang kecil dan mempunyao korelasi 

kurang dari 0.80 dan AMBP untuk saiz sampel yang lebih besar untuk mana-mana 

tahap korelasi. Keputusan yang diperolehi dalam kajian ini menunjukkan 

pentingnya menganggar struktur ketersandaran data hidrologi. Dengan 

menggunakan taburan Copula yang terpilih, Jabatan Meteorologi Malaysia boleh 
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1.0  INTRODUCTION 
 
Copula method was introduced by Sklar [1]. A copula 

function is a joint distribution function of a 

combination of two or more uniform marginal 

distributions. This method can overcome the 

limitations of the traditional approach because it 

allows us to specify any distribution function to the 

marginal distributions and then choose any copula to 

construct the dependence structure of the variables. 

In the work of Zhang and Singh [2], they have proved 

that the copula method is able to derive bivariate joint 

distributions of rainfall variables that have different 

marginal distributions and without assuming the 

variables to be normal or independent. Yee et al. [3] 

stated that many different copula families that are 

able to cover a wide scope of dependence structures 

have been proposed and developed, for example, 

Archimedean, Gaussian, and Student’s t copula 

families.  

To determine a specified copula structure that is 

fitted with the marginal variables, the parameter of 

the copula function need to be estimated first. There 

are many parameter estimation methods that have 

been proposed and developed for estimating the 

dependence parameter of the copula. These 

methods are classified into three categories, 

parametric approaches, semiparametric 

approaches, and nonparametric approaches. Some 

comparison studies such as Kim et al. [4], Kim et al. [5], 

Kojadinovic and Yan [6], Lawless et al. [7] and Nagler 

et al. [8] were done to compare the performance of 

all the copula parameter estimations methods. A 

study by Taheri et al. [9] has applied parametric, 

semiparametric and nonparametric methods, for 

estimating the dependence parameter θ and other 

related parameters for bivariate situations in presence 

of outliers. 

In parametric approaches, the marginal 

distributions are assumed to follow a parametric 

distribution. The parameters of interest are marginal 

parameters and copula dependence parameter. 

Parametric methods are popular because they 

estimate the estimator precisely. Parametric 

approaches allow the estimation process assuming 

parametric distributions for both the copula and the 

marginal. There are three estimation methods that 

have been reviewed under this approach. The 

methods are maximum likelihood (ML) estimation, 

inference function of margins (IFM) and maximization 

by parts (MBP). 

Maximum likelihood (ML) estimation is a direct 

maximization method to estimate the marginal and 

copula parameters simultaneously. This direct 

maximization method is a common method to 

estimate the copula estimator. The ML estimator is also 

the most efficient estimator for the copula 

dependence parameter, 𝜃. This is because this 

method is asymptotically normal and consistent under 

the common regularity conditions. However, in real 

application, it is difficult to maximize the log-likelihood 

function with respect to the marginal parameters, 𝛼, 𝛽 

and dependence parameter, 𝜃 simultaneously. 

Therefore, a numerical iterative method such as 

Newton-Raphson is used to find the ML estimator. For 

the bivariate copula function which has a simple 

dependence structure, ML estimation is possible to be 

applied. However, when there is a high dimensional 

parameter, the optimization algorithm for the iterative 

method becomes computationally difficult and 

intensive. Dupuis [10] and Zhang et al. [11] agree with 

this limitation of the ML estimation. 

Joe and Xu [12] suggested an estimation method 

called inference function of margins (IFM). The 

estimation of the marginal parameters and copula 

parameter is done separately by this IFM method. It is 

also asymptotically normal and consistent under the 

common regularity conditions. Thus, it makes the IFM 

estimator, 𝜃𝐼𝐹𝑀 efficient similarly similarly to the ML 

estimator, 𝜃𝑀𝐿𝐸. Joe [13] said that this IFM method 

makes a huge contribution to the computational 

practicality since this estimation method can be 

applied when the ML estimation method is 

computationally too difficult. They also said that the 

main purpose of the proposed IFM method is only for 

the computational implementation, not for the 

theoretical analysis.  

The main advantage of this IFM method is it is 

computationally efficient than ML estimation because 

it does not estimate the marginal and dependence 

parameters simultaneously. The estimator of the IFM 

method is efficient if the bivariate random variables 

have no dependency or the dependency level is low. 

IFM estimator can be efficient similarly to the ML 

estimator because both methods estimate both 

marginal and copula parameters. However, 

according to Zhang et al. [11] and Song et al. [14], IFM 

estimator can be less efficient compared to ML 

estimator because IFM estimates marginal and 

menjana peristiwa hidrologi untuk membuat analisis prestasi sistem seperti sistem 

kawalan banjir dan kemarau. 

 

Kata kunci: Copula bivariat, Kebolehjadian Maksimum, Fungsi Taksiran Marginal, 

penyesuaian pengoptimuman bahagian demi bahagian, hujan 
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copula parameters separately. Meanwhile ML 

estimates marginal and copula parameters 

simultaneously. The first step in the IFM method only 

considers marginal parameters but disregards the 

dependence level that may exist between the 

marginal random variables. 

To overcome the loss of the copula estimator 

efficiency in the first step of IFM method, Song et al. 

[14] recommended and examined a simple new 

algorithm that maximizes the full log-likelihood 

function of copula by parts iteratively. This method is 

called as maximization by parts (MBP). This new 

algorithm iteratively solves a score equation to 

estimate the parameters. Song et al. [14] 

decomposed the full log-likelihood equation of 

copula into two parts or two models. Where the first 

part is called the working model in which the model 

consists of only the marginal parameters. While the 

second part consists of both marginal and copula 

parameters and this part is called the error model. 

Consequently, the decomposition makes the 

marginal log-likelihood model as the working and the 

copula log-likelihood model as the error model.  The 

iterative MBP algorithm proposed by Song et al. [14] is 

based on bivariate Gaussian copula.   

Silvennoinen and Teräsvirta [15] also said that MBP 

method reduces the computational problem as 

instead of maximizing the whole log-likelihood at 

once, MBP method divides the maximization problem 

into parts. However, Frazier and Renault [16] said that 

the limitation of this method is that it is too time-

consuming and will be difficult when the variables 

have high correlation values and larger sample sizes. 

To overcome the limitation of MBP method by Song et 

al. [14], Zhang et al. [11] proposed an adaptive 

maximization by parts (AMBP) algorithm based on 

Meta t distributions to improve the MBP method by 

Song et al. [14].  

Though, in the hydrological analysis, Kendall’s tau 

method which is classified under semiparametric 

approach is the most popular method that have been 

used for estimating the bivariate copula parameter as 

can be seen in studies by Zhang and Singh [2], Ariff et 

al. [17], Requena et al. [18] and Yusof et al. [19]. This is 

because it has a closed form of one-to-one 

relationship between rank correlation, tau (τ) and the 

copula parameter, θ which has made the estimation 

process become easier. Vandenberghe et al. [20] 

and Chen et al. [21] also preferred to use Kendall’s tau 

method than ML estimation because it is easier to 

estimate the copula parameter based on Kendall’s 

tau rank correlation coefficient rather than finding the 

fitted marginal distributions and maximizing a log-

likelihood function that leads to a complicated 

algorithm. Still, parametric approaches estimates are 

more precise than semi-parametric approaches. This 

is because the parametric approaches consider the 

marginal parameters but semiparametric approaches 

ignore the marginal parameters. According to Kim et 

al. [4], Kojadinovic and Yan [6], a precise copula 

parameter can be estimated if the marginal 

parameters are considered. In addition, the most 

common parametric approach used in the 

hydrological analysis are Maximum likelihood (ML) 

estimation and Inference Function of Margins (IFM). 

However, studies that implement adaptive 

maximization by parts (AMBP) are atypical to find in 

hydrologic application literature. 

Therefore, this study focuses on the application of 

parametric approaches: maximum likelihood (ML) 

estimation, inference function of margins (IFM) and 

adaptive maximization by parts (AMBP) in estimating 

the copula dependence parameter. The estimation 

performance of the three parametric estimation 

methods is compared in the simulation and empirical 

studies. This paper is organized as follows. Section 2 

gives the scope of the study. Section 3 describes the 

methodology and the procedures involve in the 

simulation and empirical studies. Section 4 presents 

and explains the results of the simulation and empirical 

studies. Lastly, Section 5 gives the conclusions of this 

study.  

 

 

2.0  METHODOLOGY 
 

2.1  Scopes of the Study 

 

In the simulation study, simulation data were 

generated from Clayton copula [22] as the true 

copula with four different values of true copula 

parameter dependence that corresponds to the 

Kendall’s tau values at τ = 0.20, 0.50, 0.60, and 0.80. 

The sample sizes of the generated data are set at n = 

50, 100, 1000, and 5000. 500 repetitions of data 

generation and estimation process are done for each 

combination of different sample size, n and copula 

dependence level, θ. 

While, for the empirical study, rainfall data are used 

as the empirical data. The rainfall data are selected 

from two Kelantan rain gauge stations which are 

located in the north-east of Peninsular Malaysia. The 

selected rain gauge stations are Station Kuala Krai, 

5522047 (Station A) and Station Ulu Sekor, 5520001 

(Station B). The location of these two stations are 

shown in Figure 1. Forty-four years (1970-2014) of daily 

rainfall data from both stations were obtained from 

the Malaysian Meteorological Department and 

Drainage and Irrigation Department. 
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Figure 1 The location of Station A and B with their respective 

neighbouring rain gauge stations 

 

 

2.2  Copula 

 

Let two variables X and Y be the random variables 

that have marginal cumulative distribution function 

(CDF), 𝐹𝑋(𝑥; 𝛼) and 𝐹𝑌(𝑦; 𝛽) respectively with 𝛼 and 

𝛽 as the marginal parameters for random variables X 

and Y respectively. Then, the joint CDF of random 

variables X and Y can be expressed in copula function 

as follows: 

 
𝐶(𝑢, 𝑣;  𝛼, 𝛽, 𝜃) = 𝐶𝜃[𝐹𝑋(𝑥 ; 𝛼) , 𝐹𝑌(𝑦 ; 𝛽); 𝜃]  
𝐶(𝑢, 𝑣;  𝛼, 𝛽, 𝜃) = 𝐻(𝑥, 𝑦 ;  𝛼, 𝛽, 𝜃) (1) 

 

where 𝑣 and 𝑢 are the CDF of  Y and X respectively. 

Consequently, the joint probability density function 

of copula is  

 

 
ℎ(𝑥, 𝑦; 𝛼, 𝛽, 𝜃)  

=
𝜕2

𝜕𝑥𝜕𝑦
𝐻(𝑥, 𝑦 ;  𝛼, 𝛽, 𝜃)  

=  𝑐[𝐹𝑋(𝑥 ; 𝛼) , 𝐹𝑌(𝑦 ; 𝛽); 𝜃] ∙   𝑓𝑋(𝑥 ; 𝛼)  ∙  𝑓𝑌(𝑦 ; 𝛽) (2) 

 

where 

 
𝑐[𝐹𝑋(𝑥 ; 𝛼) , 𝐹𝑌(𝑦 ; 𝛽); 𝜃] =  𝑐(𝑢, 𝑣; 𝜃)  

  

𝑐[𝐹𝑋(𝑥 ; 𝛼) , 𝐹𝑌(𝑦 ; 𝛽); 𝜃] =  
𝜕2

𝜕𝑢𝜕𝑣
𝐶(𝑢, 𝑣; 𝜃) 

 

(3) 

 

is the PDF of the copula function and  𝑓𝑋(𝑥 ; 𝛼)  and 

𝑓𝑌(𝑦 ; 𝛽) are the PDF of random variables of X and Y 

respectively.  

Further, the detailed steps to get the estimator of 

dependence parameter, 𝜃 by maximum likelihood 

(ML) estimation, inference function of margins (IFM) 

and adaptive maximization by parts (AMBP) are 

explained in the following sections. 

 

2.3  Maximum Likelihood Estimation 

 

Maximum likelihood (ML) estimation is a direct 

maximization method to estimate the marginal and 

copula parameters simultaneously by maximizing the 

log-likelihood of the copula joint PDF 

 

The steps involved in the ML estimation are described 

as follows: 

 

Step 1: Find the likelihood function of equation (2). The 

likelihood form of the likelihood function with the 

random variables {(𝑥𝑖)}𝑖=1
𝑛  and {(𝑦𝑖)}𝑖=1

𝑛 is written as 

follows: 

 
𝐿 (𝛼, 𝛽, 𝜃)  

=  ∏ 𝑐[𝐹𝑋(𝑥𝑖; 𝛼), 𝐹𝑌(𝑦𝑖; 𝛽); 𝜃]   ∙ 𝑓𝑋(𝑥𝑖; 𝛼) ∙ 𝑓𝑌(𝑦𝑖; 𝛽)

𝑛

𝑖=1

 (4) 

 

Step 2: Find the log-likelihood function of equation (4).  

The log-likelihood form is  

 
ln 𝐿 (𝛼, 𝛽, 𝜃)  

=  ∑ ln 𝑐[𝐹𝑋(𝑥𝑖; 𝛼), 𝐹𝑌(𝑦𝑖; 𝛽); 𝜃]

𝑛

𝑖=1

+ [ ∑ ln 𝑓𝑋(𝑥𝑖; 𝛼)

𝑛

𝑖=1

  

      + ∑ ln 𝑓𝑌(𝑦𝑖; 𝛽)

𝑛

𝑖=1

] (5) 

 

Step 3: Maximize the full copula log-likelihood function 

(Eq. 5) with an expression as below 

 

�̂�, �̂�, 𝜃 =  argmax  (ln 𝐿 (𝛼, 𝛽, 𝜃)) (6) 

 

To maximize the log-likelihood function (Eq. 5), this 

study used optimization algorithm (the iterative 

method) since it is difficult and complicated to solve 

the nonlinear simultaneous equation manually. 

 

2.4  Inference Function of Margins 

 

To implement this method, the log-likelihood function 

(Eq. 5) is separated into two parts, a marginal and 

copula log-likelihood model. The log-likelihood 

function (Eq. 5) is also written as 

 
ℓ(𝛼, 𝛽, 𝜃) =   ℓ𝑚(𝛼, 𝛽)  +   ℓ𝑐(𝛼, 𝛽, 𝜃) (7) 

 

where 

ℓ𝑚(𝛼, 𝛽) =  (∑ ln 𝑓𝑋(𝑥𝑖 ; 𝛼)

𝑛

𝑖=1

+ ∑ ln 𝑓𝑌(𝑦𝑖; 𝛽)

𝑛

𝑖=1

) (8) 

 

ℓ𝑚(𝛼, 𝛽) is the log-likelihood of marginal density 

functions for random variables 𝑋 and 𝑌 or can be 

called as the marginal log-likelihood model.  
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ℓ𝑐(𝛼, 𝛽, 𝜃) =  ∑ ln 𝑐[𝐹𝑋(𝑥𝑖; 𝛼), 𝐹𝑌(𝑦𝑖; 𝛽); 𝜃]

𝑛

𝑖=1

 (9) 

 

ℓ𝑐(𝛼, 𝛽, 𝜃) is the log-likelihood of the copula density 

function or can be called as the copula log-likelihood 

model. 

The steps of IFM that were used in this study are 

presented as below. 

 

Step 1: The log-likelihood of the marginal distribution 

function (Eq. 8) is maximized to estimate the estimators 

of 𝛼 and 𝛽. 

 

�̂�, �̂� =  argmax  (ℓ𝑚(𝛼, 𝛽)) (10) 

 

Step 2: 𝛼 and 𝛽 in the log-likelihood copula model, 

ℓ𝑐(𝛼, 𝛽, 𝜃) are replaced with �̂� and �̂�.  Then, ℓ𝑐(�̂�, �̂�, 𝜃) 

is maximized to estimate the dependence 

estimator, 𝜃. 
 

𝜃 =  argmax  (ℓ𝑐(�̂�, �̂�, 𝜃)) (11) 

 

2.5  Adaptive Maximization by Parts 

 

For this research, the adaptive maximization by parts 

(AMBP) proposed by Zhang et al. [4] was applied to 

estimate the copula dependence estimator.   

 

Step 1: Estimate the initial parameters 
(𝛼1, 𝛽1, 𝜃1) using the IFM method. 

 
𝛼1, 𝛽1 =  argmax  (ℓ𝑚(𝛼, 𝛽)) (12) 

 
𝜃1 =  argmax  (ℓ𝑐(𝛼1, 𝛽1, 𝜃)) (13) 

 

Step k:  
𝛼𝑘  , 𝛽𝑘 =  argmax  (ℓ(𝛼, 𝛽, 𝜃𝑘−1)) (14) 

 
𝜃𝑘 =  argmax  (ℓ𝑐(𝛼𝑘 , 𝛽𝑘 , 𝜃)) (15) 

 

For k = 2, 3, 4, … 

 

As shown in Equation 12, the IFM estimators 

(�̂�, �̂�, 𝜃 )𝐼𝐹𝑀 is taken as the initial values of the 

parameters (𝛼1, 𝛽1, 𝜃1) in Step 1 for the AMBP steps. 

While, for the Step k, the  𝜃 in ℓ(𝛼, 𝛽, 𝜃) is replaced with 

𝜃𝑘−1 and then the log-likelihood equation (14) is 

maximized with respect to the marginal parameters 

𝛼, 𝛽  to estimate the next (𝛼𝑘, 𝛽𝑘). After that, same as 

Step 2 in the IFM method, 𝛼 and 𝛽 in the copula log-

likelihood model, ℓ𝑐(𝛼, 𝛽, 𝜃) are replaced with 

estimators of 𝛼𝑘  and 𝛽𝑘 to estimate the next 𝜃𝑘. As the 

number k tends to infinity, the estimator converges to 

the MLE of (𝛼, 𝛽, 𝜃). 

The estimation performance of these three 

parametric methods is compared through the 

simulation and empirical studies. 

 

 

 

2.6  Simulation Study 

 

It is difficult to estimate the copula dependence 

parameter, 𝜃 and to compare the three parametric 

estimation methods theoretically. Therefore, a 

simulation study was conducted in order to achieve 

the objectives. In the simulation study, simulation data 

are generated from Clayton copula as the true 

copula with four different values of true copula 

parameter dependence that are corresponding to 

Kendall’s tau, τ = 0.20, 0.50, 0.60, and 0.80. The 

relationship of Kendall’s tau (𝜏) with the Clayton 

copula is shown in equation (16) below.  

 

𝜏 =
𝜃

𝜃 + 2
 (16) 

 

The sample sizes of the generated data are set to n 

= 50, 100, 1000, and 5000. 500 repetitions of data 

generation, estimation process and squared error 

calculation are done for each combination of 

different data sample size, n and copula 

dependence level, θ. The performance of the three 

estimation methods and the estimators’ precision 

were compared based on the measured root mean 

square error (RMSE). The RMSE formula is given as 

follows: 

𝑅𝑀𝑆𝐸(𝜃) =  √∑
(𝜃𝑖 − 𝜃)2

500

500

𝑖 =1

 (17) 

 

where 𝜃𝑖 is the estimator for the 𝑖𝑡ℎ replication, and 𝜃 is 

the true parameter used in the simulation. 

The procedures for the simulation study are 

illustrated in Figure 2 as follows: 

 

 
 
Figure 2 The procedures to compare the performance of 

the estimation methods in the simulation study 
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2.7  Empirical Study 

 

In the empirical study, rainfall data were used in 

comparing the performance of the estimation 

methods. Three types of marginal distributions: Weibull, 

Gamma, and Exponential distributions are considered 

in fitting the hydrologic variables. This empirical study 

is limited only to the case of the bivariate copulas that 

are listed in Table 1.  

 
Table 1 The properties of Archimedean and Elliptical copulas 
 

Copula Family and distribution functions, 
𝑪(𝒖, 𝒗; 𝜽) 

𝜽 

range 

Clayton 
(𝑢−𝜃  + 𝑣−𝜃 − 1)−1/𝜃 

𝜃
≥ −1 

  

Ali-Mikhail-Haq 
𝑢𝑣

1 −  𝜃(1 − 𝑢 )(1 − 𝑣 )
 

𝜃
∈ [−1,1] 

  

Frank 

−
1

𝜃
 ln [1 + 

(𝑒−𝜃𝑢 − 1)(𝑒−𝜃𝑣 − 1)

𝑒−𝜃 − 1
] 

𝜃 ≠ 0 

  

Gumbel-Hougaard 

exp −[(− ln 𝑢)𝜃 + (− ln 𝑣)𝜃]
(1/𝜃)

 
𝜃 ≥ 1 

   

Gaussian 

∫ ∫
1

2𝜋(1 − 𝜃2)1/2

𝜙−1(𝑣)

−∞

𝜙−1(𝑢)

−∞

exp {−
𝑥2 − 2𝑥𝑦𝜃 + 𝑦2

2(1 − 𝜃)2
}  𝑑𝑦 𝑑𝑥 

𝜃
∈ [−1,1] 

   

Student’s t 

∫ ∫
1

2𝜋(1 − 𝜃2)1/2

𝑡−1(𝑣)

−∞

𝑡−1(𝑢)

−∞

{1 +
𝑥2 − 2𝑥𝑦𝜃 + 𝑦2

(1 − 𝜃)2
}

−(𝑟+1)/2

𝑑𝑦 𝑑𝑥 

𝜃
∈ [−1,1] 

 

 

The empirical study was conducted by the following 

procedures: 

 

Step 1 : Measure the dependency of the 

bivariate rainfall data in order to see 

the significance of the correlation and 

to check whether all the copula 

models listed in Table 1 can be used to 

model the dependency of the 

bivariate hydrologic data.    

Step 2 : Fit the bivariate hydrologic data with 

the choice of the marginal 

distributions through the goodness of 

fit test. 

Step 3 : Model the dependency of the 

bivariate hydrologic data by using the 

bivariate copulas that have been 

downsized from Step 1. 

Step 4 : Apply the three parameter estimation 

methods to estimate the copula 

dependency parameter, 𝜃. 

Step 5 : Assess the performance of the 

estimation methods and identify the 

best-fitted copula model through the 

goodness of fit test. 

2.8  Goodness of Fit (GOF) Test 

 

To select a fitted marginal distribution, the statistical 

goodness of fit (GOF) test was applied to the empirical 

study in this research. GOF test is a common method 

to verify the fitness of the statistical model to a set of 

observations. The best fitted marginal and copula 

distribution for this research were chosen based on the 

smallest value Akaike Information Criterion (AIC).  

The formula of AIC is written as: 

 
𝐴𝐼𝐶 = 2𝑝 − 2 ln 𝐿 (18) 

 

where 𝐿 is the value of the likelihood function based 

on the estimated parameters and 𝑝 is the number of 

estimated parameters in the statistical model. 

As this study is mainly interested in the estimation of 

copula dependence parameter 𝜃, the AIC values can 

be obtained by calculating the maximum likelihood of 

the copula log-likelihood model in equation (9) 

instead of using the full log-likelihood function in 

equation (7). Therefore, for copula GOF test, the 

formula of AIC can be expressed as: 

 

𝐴𝐼𝐶 = 2𝑝 − 2 ∑ ln 𝑐[�̂�𝑋(𝑥𝑖), �̂�𝑌(𝑦𝑖) ; 𝜃]

𝑛

𝑖=1

 (19) 

 

where 𝑝 is the number of parameters in the copula 

model, �̂�𝑋(𝑥𝑖) and �̂�𝑌(𝑦𝑖) are the values of the 

estimated cumulative distribution at  𝑥𝑖 and 

𝑦𝑖  respectively, and 𝜃 is the estimated copula 

dependence parameter. 

 

 

3.0  RESULTS AND DISCUSSION 
 

The estimation performance of ML estimation, IFM and 

AMBP methods were compared and evaluated in the 

simulation study based on the RMSE value. The three 

parametric estimation methods were then applied to 

the rainfall data in Station A and Station B to estimate 

the dependency between them. 

 

3.1  Simulation Study 

 

The root mean squared errors (RMSE) for θ estimated 

by each method correspond to the sample size n = 50, 

n = 100, n = 1000 and n = 5000 are presented in Table 

2. The rank of each method are based on the 

measured RMSE and illustrated in Figure 3. Rank 1 

indicates that the method has the smallest RMSE 

which means the method has the best performance 

in parameter estimation.  

Table 2 shows the RMSE for θ estimated by each 

method corresponding to the sample size n = 50, n = 

100, n = 1000 and n = 5000. For sample size n = 50, IFM 

method shows higher precision with small RMSEs, 

giving the smallest RMSE under all correlation levels, 

Kendall’s τ of 0.20, 0.50, 0.60, and 0.80. Whereas, the 

rank for AMBP and MLE is not consistent but they do 

give similar RMSE. For sample size n = 100. IFM method 
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shows higher precision with smaller RMSEs when τ = 

0.20, 0.50, and 0.60 but for τ = 0.80, AMBP method has 

the smallest RMSE followed by MLE and IFM. For 

sample size n = 1000, it can be seen that AMBP has 

overtaken the ranking by showing the higher precision 

with small RMSEs for all correlation levels. The ranking is 

followed by MLE and IFM. Lastly, for sample size n = 

5000. The results show that AMBP has the smallest 

RMSEs for all correlation levels. The ranking is followed 

by MLE and IFM.  

Overall, the performance of the parametric 

estimation methods is different based on the sample 

size and the correlation level. When the sample is 

small, where n = 50, IFM method gives more precise 

estimator than MLE and AMBP for all correlation levels. 

For sample size n = 100, for 𝜏 = 0.2, 0.5 and 0.6, IFM 

performs better than MLE and AMBP. But when the 

correlation is very high, 𝜏 = 0.80, AMBP and MLE 

methods estimate more precise estimator than IFM. 

This is because IFM has lost the efficiency in estimation 

because the first step in the IFM method only considers 

marginal parameters but disregards the dependence 

level that may exist between the marginal random 

variables. While, for a large sample, n =1000 and 5000, 

AMBP and MLE methods estimate more precise 

estimator than IFM method for all correlation levels.  

Therefore, based on the results of the simulation 

study, it can be said that for small sample size, 𝑛 < 

1000, IFM estimator is more precise than AMBP and 

MLE estimators for, 𝜏 < 0.80.However, for 𝜏 ≥ 0.80, MBP 

estimator is more precise than MLE and IFM estimators.   

While for large sample size, 𝑛 ≥ 1000, MBP estimator is 

more precise than MLE and IFM estimators for any 

correlation level.  

The difference between the RMSE of AMBP and 

MLE estimators is very small since the AMBP estimator 

𝜃𝐴𝑀𝐵𝑃 converged to MLE estimator 𝜃𝑀𝐿𝐸 as the iteration 

k in Step k in AMBP algorithm tends to infinity. However, 

AMBP performs better than MLE because the AMBP 

estimator is updated until the smallest RMSE 

computed, where 𝜃𝐴𝑀𝐵𝑃 converged to a constant 

value. Therefore, from the above results, it can be 

concluded that all the parametric methods could 

have the same performance when the sample size is 

large although the correlation level is small. 

 

 
 

Figure 3 The ranking for each parameter estimation method 

based on the RMSE from Table 2 

 

 

 

Table 2 Rank of the parametric estimation methods based on the RMSE of θ 

 

Sample size, n Method 
τ = 0.2 τ = 0.5 τ = 0.6 τ = 0.8 

RMSE Rank RMSE Rank RMSE Rank RMSE Rank 

50 

MLE 0.260940 3 0.568561 3 0.761583 2 1.804203 2 

IFM 0.251549 1 0.538741 1 0.725071 1 1.669725 1 

AMBP 0.260926 2 0.568558 2 0.761706 3 1.806007 3 

100 

MLE 0.182119 3 0.383016 3 0.511504 3 1.194508 2 

IFM 0.178910 1 0.379302 1 0.503107 1 1.208958 3 

AMBP 0.182053 2 0.382984 2 0.511315 2 1.189954 1 

1000 

MLE 0.051894 2 0.117036 2 0.152343 2 0.370964 2 

IFM 0.051923 3 0.118020 3 0.153020 3 0.376295 3 

AMBP 0.051885 1 0.116982 1 0.152218 1 0.370962 1 

5000 

MLE 0.024233 2 0.050937 2 0.075162 2 0.158973 2 

IFM 0.024243 3 0.051235 3 0.075954 3 0.160382 3 

AMBP 0.024215 1 0.050811 1 0.074592 1 0.158784 1 

 

 

3.2  Empirical Study 

 

In this section, the three parametric copula estimation 

methods were applied and compared for a joint 

distribution identification of the rainfall data. The 

rainfall data used in this study is selected from two 

Kelantan rain gauge stations, Station Kuala Krai, 

5522047 (Station A) and Station Ulu Sekor, 5520001 

(Station B). Their descriptive statistics are presented in 

Table 3. 
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Table 3 Descriptive statistics of the daily rainfall for Station A 

and Station B 

 
Descriptive statistics Station A: 

Station Kuala 

Krai,  

5522047 

Station B: 

Station Ulu 

Sekor,  

5520001 

Minimum (mm) 0.0 0.0 

Maximum (mm) 305.5 391.0 

Mean (mm) 9.4 7.9 

Standard Deviation 

(mm) 

16.6 17.7 

Coefficient of variation 

(CV) 

177.3% 223.6% 

 

 

Table 3 shows the descriptive summary measures 

for the daily rainfall data from Station A and Station B. 

The measures include the minimum, maximum, mean, 

standard deviation, and coefficient of variation (CV) 

of the rainfall data. The minimum daily rainfall 

recorded for both stations is 0 mm which means there 

was no rain on that day. The highest daily rainfall 

recorded is 305.5 mm at Station A and 391.0 mm at 

Station B. The rainfall data from Station A is averaged 

at 9.4 mm with standard deviation 16.6 mm. 

Meanwhile, at Station B, the rainfall data is averaged 

at 7.9 mm with standard deviation 17.7. The CV shows 

the dispersion of the daily rainfall and it is expressed as 

a percentage. The CV of daily rainfall at Station A is 

177.3%, which is smaller than the CV of daily rainfall at 

Station B, 223.6%.  

 

3.2.1 The Correlation Level between the Rainfalls 

Data 

 

The correlation between the rainfall data from Station 

A and Station B is shown in the scatter plot as follows.  

 
Figure 4 Scatter plot of the daily rainfall data from Station A 

and B in millimeter unit (mm) 

 

 

It is observed that in Figure 4, the rainfall data from 

Station A and Station B are positively correlated. The 

correlation between the rainfall data Station A and 

Station B was measured first using Kendall's tau 

method. The correlation of the two series is 0.4137 with 

p-values equal to 0.000 at the significance level of 𝛼 = 

0.05.  Since the p-value is less than 0.05, this means that 

the correlation for the rainfall data is significant.  

Since the true copula and the copula 

dependence parameter, 𝜃 are unknown, the 

measured Kendall’s tau can also be used to downsize 

the copula selection. From Kendall’s tau 

measurement of the two stations, only five from six 

copulas listed in Table 1 are suitable to model the 

dependence between Station A and B. The five 

copulas are Gumbel-Hougaard, Clayton, Frank, 

Gaussian and Student’s t copulas. The Ali-Mikhail-Haq 

copula is not considered because Kendall's tau of the 

two series is 0.4137 which is out of Kendall’s τ range of 

Ali-Mikhail-Haq copula,  𝜏 ∈ [-0.1817, 0.3333]. 

 

3.2.2 Marginal Distributions of the Daily Rainfall 

Data 

 

In applying the copula parametric estimation 

methods to real hydrological data, the marginal 

distributions need to be identified first in order to avoid 

the misspecification of the marginal distributions. 

Three types of distributions were considered in fitting 

the daily rainfall data: Gamma, Weibull, and 

Exponential. In this study, the best-fitted marginal 

distributions were selected based on the goodness of 

fit test using the Akaike Information Criterion (AIC) 

measurement. The parameters of the fitted marginal 

distribution are estimated by using maximum 

likelihood estimation (MLE). 

In the daily rainfall data, there are some days 

where it did not rain and recorded as zero. Therefore, 

a modification has been done, where the zero values 

are replaced by 0.0001 in order to do the log 

transformation of the rainfall data. The log 

transformation is needed for the AIC calculation and 

for the steps in the MLE of marginal parameters.  The 

goodness of fit test based on the results of AIC values 

is displayed in Table 4. It indicates that Gamma 

distribution is the best-fitted model for the daily rainfall 

data of both stations since the AIC values for Gamma 

distribution are the smallest for both rain gauge 

stations. 

 

Table 4 Test of goodness-of-fit for marginal distribution based 

on the AIC result 

 

Marginal 

Distribution 

Station A: 

Station Kuala Krai, 

5522047 

Station B: 

Station Ulu Sekor, 

5520001 

AIC AIC 

Gamma 65677.14 40538.01 

Weibull 69647.91 43934.22 

Exponential 105653.10 100110.80 
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3.2.3 Joint Daily Rainfall Data by Copula Method 

 

The following copula estimation is then carried out for 

the daily rainfall data from the two stations. Gamma 

distribution is used as the marginal distributions for the 

parametric estimation methods: MLE, IFM, and AMBP 

since these methods need the marginal information. 

For Station A, the estimated shape parameter is  𝛼 = 

0.2522 and the scale parameter is 𝛽 = 37.1838. While, 

for Station B, the estimated shape parameter is 𝛼 = 

0.2043 and the scale parameter is 𝛽 = 38.7087. 

The copula distribution that can describe the 

relationship between rainfalls for both station is still 

unknown. Thus, we need to have a list of suitable 

copula candidates. In this study, the copula 

candidates selected after they have been downsized 

were applied to model the dependence of daily 

rainfall at the two rain gauge stations.  There are three 

copula models under Archimedean which are 

Gumbel-Hougaard, Clayton, and Frank copula and 

two elliptical copula families, Gaussian and Student’s 

t copulas. The estimated dependence parameter of 

the five candidate copulas using the three estimation 

methods are given in Table 5. It can be seen that the 

AMBP estimator is very close to MLE estimator. This is 

because in the AMBP algorithm, the estimator for 

(𝛼𝑘 , 𝛽𝑘 , 𝜃𝑘) is constant for each k iteration, and as the 

number k tends to infinity, the estimator converge to 

the MLE of (𝛼, 𝛽, 𝜃). This result is consistent with the 

findings from Song et al. [7] and Zhang et al. [4].  
 

Table 5 The estimators of the dependence parameter 

 

Copula MLE IFM AMBP 

Gumbel 1.7029 1.688 1.7029 

Clayton 0.834 0.8241 0.834 

Frank 4.0959 4.1147 4.0959 

Gaussian 0.5522 0.5577 0.5522 

Student’s t 0.6006 0.5815 0.6005 

df 1.7365 2.3789 1.7375 

#df = the estimator for degree of freedom for Student’s copula. 

 

 

To select a fitted copula model and to measure 

the performance of estimation methods, the statistical 

goodness of fit (GOF) test has been applied for the 

empirical study in this research. The GOF test describes 

the fitness of the model to a set of observations.  The 

best-fitted distribution is determined based on the 

minimum error produced, which is measured by 

Akaike Information Criterion (AIC) for this study.  

A small AIC value represents a better model fit. The 

AIC of each copula estimated by different estimation 

methods are listed in Table 6.  
 

 

 

 

Table 6 Test of goodness-of-fit for copula function based on 

the AIC result 

 

Copula MLE IFM AMBP 

Gumbel -7766.77 -7730.40 -7766.77 

Clayton -5554.23 -5463.15 -5554.23 

Frank -6613.32 -6600.97 -6613.32 

Gaussian -6670.03 -6611.80 -6670.04 

Student’s t -8932.50 -8359.70 -8932.50 

 

 

Table 6 shows that the AIC of the Student’s t copula 

estimated by MLE, IFM, and AMBP are smaller than the 

AIC of the other copulas. It shows that all estimation 

methods identify Student’s t copula as the best one 

among the five candidate copulas that can describe 

the dependency of the rainfall data from Station A 

and Station B. Since the best-fitted copula has been 

determined, the performance of the three estimation 

methods can be compared based on the estimated 

copula estimator of Student’s t copula and the 

estimated AIC.  

From the results in Table 6, it can be seen that the 

AMBP and MLE methods have estimated the Student’s 

t copula estimators, 𝜃 that are almost similar in values, 

which are 0.6005 and 0.6006 respectively. However, 

the IFM estimator seems to have a larger difference 

compared to the other parametric estimators. This is 

because the first step in IFM method only estimates the 

marginal parameters without considering the 

correlation that exists between the rainfall variables. 

This empirical result is consistent with the simulation. 

Since the sample size for the rainfall data is very large, 

which is about 16314, this condition also contributes to 

a precise copula estimator. The AIC estimated by 

AMBP method is the smallest followed by the 

estimated AIC by MLE and IFM methods.  

 

 

4.0  CONCLUSION 
 

The simulation and empirical results from this study 

have given the statistical evidence in choosing which 

parameter estimation methods that are more 

accurate and efficient to estimate the copula 

dependence parameter. Between the parametric 

approaches, IFM method can estimate efficiently 

enough when the sample size is small, e.g., 𝑛 < 1000 

and the correlation level is less than 0.80. When the 

sample size is large, e.g., 𝑛 ≥ 1000 and the variables 

are significantly correlated, AMBP method should be 

used in order to estimate a precise and efficient 

estimator.   

However, this study also has some limitations. First, 

this study only used normal distribution as the true 

marginal distribution for the simulated variables X and 

Y. Hence, a future study should apply different 

marginal distributions for random variables X and Y. 

The combination of different marginal distribution is 
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able to describe the advantage of using Copula 

method to model the joint distribution. Second, this 

study only focuses on the comparison of parametric 

approaches. Thus, this research can be extended by 

comparing the parametric approaches with the 

semiparametric and nonparametric approaches for 

copula parameter estimation, such as Pseudo 

maximum likelihood (PML), Bayesian approach or 

Kernel density estimation for copula. Furthermore, this 

research can also be improved by using other 

difference performance measures and goodness-of-

fit tests.  
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