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Abstract: Applying software reuse to many Embedded Real-Time (ERT) systems poses significant challenges to 
industrial software processes due to the resource-constrained and real-time requirements of the systems. 
Autonomous Mobile Robot (AMR) system is a class of ERT systems, hence, inherits the challenge of applying 
software reuse in general ERT systems. Furthermore, software reuse in AMR systems is challenged by the 
diversities in terms of robot physical size and shape, environmental interaction and implementation platform. 
Thus, it is envisioned that component-based software engineering will be the suitable way to promote software 
reuse in AMR systems with consideration to general requirements to be self-contained, platform-independent and 
real-time predictable. A framework for component-oriented programming for AMR software development using 
PECOS component model is proposed in this paper.  The main features of this framework are: (1) use graphical 
representation for components definition and composition; (2) target C language for optimal code generation with 
resource-constrained micro-controller; and (3) minimal requirement for run-time support. Real-time 
implementation indicates that, the PECOS component model together with the proposed framework is suitable for 
resource constrained embedded AMR systems software development.
Keywords: Component-based development, software reuse, autonomous mobile robots 

1. Introduction 

An Autonomous Mobile Robot (AMR) is a mechatronics 
system, which embodies technologies from several 
engineering disciplines in the domains of mechanical 
engineering, electronics, automatic control, artificial 
intelligence, software engineering and computer 
engineering. Thus, building a complete AMR system 
requires expertise in those areas. The software aspect of 
AMR has been recognized as one of the challenging part 
(Braunl, 2003, Broten et al., 2006) for fully functional and 
successful AMR.  
To tackle the difficulty in developing software for AMR, 
many researchers in robotics research communities 
proposed the use of Component Based Software 
Engineering (CBSE) approach (Messina et al., 1999, Blum, 
2001, Schlegel, 2006).  A component-based solution can 
help robotic research groups in the following aspects 
(Oreback, 2000): 1) exchange of software parts or 
components between robotics laboratories, allowing 
specialists to focus on their particular field ; 2) 
comparison of different solutions would be possible from 
the available components ; 3) startup in robot research 
can be accelerated using the available components ; and 
4) speed up the transfer of research laboratories works in 
mobile robot to commercial business application. 

There have been some efforts on providing CBSE of 
robotics software in different approaches. Port-Based 
Object (PBO) component model was proposed to develop 
a software framework for CBSE for robotics (Stewart et 
al., 1997). The PBO is supported by an implementation 
based on domain-specific real-time operating system 
(RTOS) mechanisms. 
Blum (2001), proposed a component-based system 
architecture Operating System for the Control of 
Autonomous Robots (OSCAR) for exploration of indoor 
environment with an AMR. OSCAR fully relies on the 
middle-ware standard CORBA 2.3 specified by the Object 
Management Group consortium. Since, OSCAR is based 
on CORBA component model; it is not suitable for 
implementation on resource limited embedded mobile 
robot systems. This can be seen from the implementation 
of OSCAR on MARVIN (Blum, 2001) robot which is 
equipped with four PCs running Linux operating system.  
Orca is an open-source CBSE framework designed for 
mobile robotics (Brooks et al., 2005).  An Orca component 
is a stand-alone process which interacts with other 
components over as set of well-defined interfaces.  Orca 
framework provides the means for defining and 
implementing these interfaces. In Orca framework the 
processing power and memory requirements are large.  
Thus, Orca framework is only targeted for off-board  
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processing, i.e. Orca assumes some form of embedded 
software already present on AMR for communicating with 
the off-board components.  Thus, requirements for self-
contained AMR and predictable real-time performance of 
AMR systems are not considered in Orca framework. 
Component-based development of AMR systems has 
been used in industries. Mobility is a commercially 
available component-based system produced by Real 
World Interface Company (iRobot, 2002), to support a 
certain class of mobile robot platforms which are 
produced by the company.  
Most of the works on CBSE in robotics do not address the 
issues of ERT software for resource-constrained AMR and 
platform-independent components.  As emphasized by 
Brega et al. (2000) and Pont and Siegwart (2005), real-
world AMR must be self-contained and able to meet 
timing constraints. When on-board or embedded 
computation is required AMR software development is 
typically confronted with limited resources such as 
computing power and memory. With the limited 
computing power, a precise observation of the timing 
constraints of the AMR systems is a necessary to make 
complex robot systems more reliable.  Most important, a 
predictable real-time performance on a robotic system is a 
necessary condition for guaranteeing a stable behavior of 
the robot (Buttazzo, 1996). 
To tackle the above issues an implementation paradigm 
or framework for component-oriented programming 
(COP) of AMR software is proposed. The COP 
framework is a programming framework based the 
PErvasive COmponent Systems (PECOS) component 
model (Nierstrasz et al., 2002). The proposed framework 
enables the idea in PECOS to be implemented optimally 
without requiring any support tools and proprietary run-
time environment from the original PECOS project.  The 
deployment model in the proposed framework is based 
on C language for portability across platforms and 
compact code generation which is optimal for resource-
constrained ERT systems. 
The layout of this paper is as follows. Section 2 describes 
the PECOS component model for which the framework is 
based on. In Section 3 the proposed framework is 
described and its implementation for an AMR software is 
illustrated. Section 4 presents some implementation 
results of the framework on a real AMR. Finally, the 
conclusion is presented in Section 5. 

2. Background 

Industrial component technologies currently available 
such as OMG’s CORBA Component Model (CCM), 
Microsoft’s (D)COM/COM+, .NET,  SUN Microsystems’ 
JavaBeans and Enterprise JavaBeans, are generally 
complex, require large resources such as memory and 
computation power, and are platform dependent 
(Crnkovic, 2004, Rastofer & Bellosa, 2001).  Furthermore, 
they do not address the non-functional properties such as 

how much memory it consumes and timing constraints 
which are important in ERT systems.  
Consequently, a number of component models such as 
PBO (Stewart et al., 1997), Koala (Ommering et al., 2000), 
PECOS (Nierstrasz et al., 2002), and ReFlex (Wall, 2003), 
have been developed to address requirements of ERT 
software. Evaluation of these component models against 
the industrial requirements of heavy vehicle sector shows 
that PECOS is the most complete component technology 
with good support for industrial requirements (Möller et 
al., 2004).
PECOS component model was originally developed for 
field device systems and some supporting tools such as 
Component Composition (CoCo) description language 
for specifying components, code generator for generating 
Java/C++ code skeletons from CoCo and runtime 
environment (RTE) which interfaces generated code from 
the real-time operating system used (Wuyts et al., 2005). 
However, many of these tools are incomplete and 
information on the RTE is not publicly accessible as it is a 
proprietary of the ABB Company (Bouyssounouse and 
Sifakis, 2005).   
Non-functional verification in PECOS is performed using 
Rate monotonic analysis (RMA) and schedule verification 
(Wuyts et al., 2005). The RMA verification is to check 
whether the entire components involved in the 
composition meet their deadlines while schedule 
verification is to check the possibility to fit execution and 
synchronization behavior sequentially in each task. 
The original framework for implementation of PECOS 
components has some limitations with respect to our 
needs for development of ERT software for AMR 
systems. Some of these limitations include: 1) the use of 
CoCo language seems to be difficult for the target 
audience as CoCo is almost a programming language by 
itself; 2) targeting for Java or C++ may not be appropriate 
for small microcontrollers with limited resources, 
furthermore, Java and C++ supports may not be available 
for those microcontrollers; and 3) the RTE is difficult to 
develop and information on the RTE is not publicly 
accessible.  
After experimenting with the PECOS component model 
and implementing it in the AMR applications, it was 
found that the assembling activities of components at 
design stage are simple but the implementation of the 
components is complex without the support from PECOS 
tools (Jawawi et al., 2006).  With the absence of PECOS 
supporting tools and RTE, there are at least three options 
in which the PECOS component model can be used 
effectively in the AMR software development: 1) develop 
our own supporting tools and RTE; 2) seek alternative 
from other existing tools such as real-time Unified 
Modeling Language (UML) tools (Douglass, 2004); or 3) 
propose an alternative implementation framework for 
CBSE of AMR embedded software development. 
Option three has been selected in this work, where a 
practical Component-Oriented Programming (COP) 
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framework is proposed and has been used to implement 
PECOS component model for CBSE of embedded AMR 
software.

3. The Component-Oriented Programming Framework 

This COP framework was originally intended for 
development of ERT software for AMR.  The target 
audience is the mechatronics and robotics researchers 
which are not from software engineering background and 
do not have extensive programming experience. However, 
experience shows that the COP framework is generally 
suitable for developing reactive embedded systems which 
typically use 8-bit or 16-bit microcontrollers with memory 
constraints and developed with C language.  
The main features of the COP framework are: (1) use 
graphical representation for components definition and 
composition; (2) target the codes in C language for 
optimal code generation with resource-constrained 
micro-controller; and (3) depends on minimal 
requirement for run-time support. 
Fig. 1 shows the main elements of the proposed COP 
framework and layers of dependency of each element.  
The main software elements of the COP framework 
consists of the component-based software to be 
developed, the hardware abstraction layer (HAL), and a 
real-time operating system (RTOS) with its associated 
abstraction layer (RTOS AL).  
At the bottom layer is the robot mechanical and 
electronics hardware with the on-board embedded 
controller. The COP framework does not assume any 
particular underlying microcontroller unit and RTOS 
used in the robot hardware. It is up to the HAL and RTOS 
AL to abstract the robot hardware and its communication 
with the robot hardware. The HAL provides decoupling 
between the components and the underlying hardware, 
while the RTOS AL provides a thin layer of interface 
between the components and the actual RTOS used. In 
this way, the COP framework addressed platform 
independent issue. The dependency of PECOS model to 
RTE deployment model thus is replaced by the two 
abstraction layers.   

Fig. 1. The main elements of the COP framework 

Porting the component-based software to different robot 
platform, thus, requires only the rewriting of HAL.  We 
have ported an AMR software running on AMD188ES 
microcontroller to ATMEL MEGA32 microcontroller by 
just rewriting the abstraction layers only.   
On the top of the COP framework is the component-
based software to be developed. Those components 
consist of passive and active components. Active 
components have their own thread of control while the 
passive components do not have their own thread of 
control. The activations of active components are 
supported by a set of services provided by the RTOS. 
To support component-based software development with 
the COP framework, three infrastructures were proposed 
based on PECOS component model:  PECOS component 
model specifications and components repository in 
graphical blocks form, PECOS diagrammatical connection 
model with two enhancements as reported in (Jawawi et 
al., 2006), and a deployment model.   
In this framework, instead of using the CoCo language, 
graphical representation of components is used for 
components definition and composition. Currently, codes 
have to be written manually from this graphical 
representation. The framework describes here is based on 
manual creation of codes guided with the code templates 
proposed in the COP framework.   
The COP framework is targeted for C language, since, 
optimized C compilers are available for most micro-
controllers, and C is portable across many platforms.  
Furthermore, C is a familiar language and has been use 
extensively by the target audience. 
In the following sections, the application of the COP 
framework in the two main engineering activities in the 
development of component-based software, i.e. 
component engineering and application engineering are 
explained. The above three infrastructures proposed here, 
namely, the graphical model specifications, connection 
model and the deployment model and their use in 
component-based development of AMR software are 
highlighted.  

3.1. COP in Component Engineering Process 
Component engineering process concerned with the 
analysis of domains and development of generic and 
domain-specific reusable components. Based on patterns 
analysis in domain of AMR systems, common 
components are identified and the specifications of the 
components are documented in graphical blocks form. As 
a result of a pattern mining process, currently ten 
software components were identified in the analysis 
pattern for typical AMR software. The components 
identified are: input-output, actuator, sensor, signal 
processing, motor control, communication, Human-Robot 
Interface (HRI), Behavior-Based Control (BBC), 
coordinator and planner.  
Fig. 2 shows a generic component named PID

documented in graphical block form. The input ports and 
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output ports, with their associated types and range of 
values are defined in the block. Each port is numbered 
accordingly for easy reference. Arrows on the ports 
indicate the direction or whether they are inports (IP00-
IP02) or outports (OP00). Bidirectional ports are not 
allowed in this framework. The Period and Priority fields 
are timing specifications for active component, which has 
its own execution thread in multitasking environment, 
usually determined in the application engineering stage. 
Not shown in the block is the specification of worst case 
execution time (WCET) of the component.  

Fig. 2. A PID component documented in block form 

The component specifications are further translated 
manually to C source codes and stored in repository for 
use in the application engineering stage. Each component 
is translated into two parts of C codes: code for interface 
and code body.  For example, the generic interface code 
implementation for the PID component in Fig. 2 can be 
written in C is as follows: 

typedef struct 
{

int   IP00;    // set value(0-5000 ) 
int   IP01;    // current value(0-5000) 
float IP02[4]; // array of PID const

// [Kc Ti Td Ts] 
int   OP00;    // control signal(0-5000) 

} INTERFPID; 

The code body for an active component consists of three 
main parts: initialization part, execution part, and 
synchronization part. In the passive components, the 
synchronization part is not required. The initialization 
part is responsible for component initialization, and in 
the case of active component it calls RTOS through RTOS 
AL to create the thread or task for the component with 
the defined Period and Priority.  The execution part 
is the main component behavior while the 
synchronization part updates the data between inner 
ports and outer ports as defined by PECOS component 
execution model. 

Fig. 3. MotorControl composite component 

Composite components can be built by hierarchically 
composing a number of subcomponents and stored in the 
repository for later use. Fig. 3 shows a generic composite 
component named MotorControl built from three 
passive subcomponents:  Encoder, PID and Motor.  The 
code body for the composite component is still consists of 
the above three main parts. On top of this, the composite 
component is responsible for calling the initialization and 
synchronization parts of its child or sub-components. In 
this way complex component can be built by 
hierarchically composing other composite components, 
and the user is only consent with the top level component 
interface and synchronization, while the inner 
components synchronization are handled by the top level 
component. 

3.2. COP in Application Engineering Process 
Application engineering process is also called 
component-based software development (CBD), involves 
developing applications using software components 
previously developed. A design of an AMR embedded 
software will be used in this section to illustrate the steps 
involve in the application engineering using the COP 
framework.
The major steps involve in application engineering of the 
AMR software are: identification of required components, 
composition of components, scheduling analysis and 
assigning the period and priority of components, and 
codes writing. 
Based on the requirements and patterns analysis, the 
required components are identified and composed by 
connecting the compatible ports. Fig. 4 shows a block 
diagram composition of the AMR software for 
MobileRobot1, which consists of eight leaf components 
and seven composite components shown by blocks with 
shadow.
Sometimes, the concrete components which are 
application-specific need to be developed from the 
generic components previously created.  For examples in 
Fig. 4, motorctrl_right and motorctrl_left

components are concrete components developed from the 
MotorControl component.  In this framework, 
connections of constants to compatible ports are allowed. 
This is shown in Fig. 4 by the connections of constants to 
input port (IP01) of motorctrl_right and 
motorctrl_left components. This gives flexibility for 
testing and debugging of components and also useful for 
AMR software to reconfigure components for use with 
specific hardware or application. 
Once the composition is completed, the next step is to 
allocate property bundles value such as period and 
priority for active components using the WCET and some 
scheduling theories. The Rate Monotonic Analysis (RMA) 
(Klien et al., 1993) theory is mainly used to allocate 
priority in this framework. 
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Fig. 4. MobileRobot1 components composition 

The MobileRobot1 components of Fig. 4 are mapped to 
a task which executes sequentially five passive 
components i.e. switches, IRProximity,

DistSensorRHS, DistSensorFront and 
BatterySensor; and nine synchronization parts of its 
child components, i.e. Stop/Go, Avoid, FindWall,
FollowWall, Cruise, motorctrl_right,
motorctrl_left, Subsumption, and manrobotintf.
The mapping results of all components in 
MobileRobot1 composition are tabulated in Table 1. 
The tasks in the table are ordered from highest to lowest 
priority.  The WCET were measured experimentally in 
real-time using oscilloscope and a spare bit of output port 
on the microcontroller, and the tasks periods were 
obtained from the AMR requirements.  

Task Period 
(ms)

WCET
(ms)

Ri
(ms)

MobileRobot 20 2 2 
Motorctrl_left 50 3 5 
Motorctrl_right 50 3 8 
Subsumption 50 1 9 
Stop/Go 60 1 10 
Avoid 60 1 11 
FindWall 60 1 12 
FollowWall 60 1 13 
Cruise 60 1 14 
Manrobotintf 100 16 32 

Table 1. The timing results for the MobileRobot1 

Response time analysis proposed by Audsley et al. (1993) 
is then used to determine whether the deadline for each 
task in Table 1 can be met. The goal of response time 
schedulability analysis is to show that each task 
invocation finishes before its deadline.  For each 
invocation of a task i, worst-case response time Ri is 
calculated and compare with deadline Di.  Equation 1 
gives the total calculation for Ri of a task i by adding its 
own WCET Ci plus the interference on how often higher-
priority task j invocation can preempt an invocation of 
task i.   

1

( )

x
x i
i i j

j hp i j

RR C C
T

+

∈

= +   (1) 

Since, there are ten tasks derived from the AMR 
component composition, the analysis were applied for 
values of i ranging from 1 to 10. 
For each i worst case response time Ri was calculated and 
compare with deadline where Di = Ti, the task period of 
task i. The calculated Ri for all tasks from the design 
composition in Fig. 4 are listed in Table 1. This indicates 
all Ri are within their deadlines, hence the design 
composition of components in Fig. 4 is predicted to be 
schedulable according to RMA theory.  Fig. 5 shows a 
time line description of how the MobileRobot1’s tasks 
will be scheduled. The schedule is generated using 
TimesTool simulator from www.timestool.com (Amnell 
et al., 2003) 
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Fig. 5. MobileRobot’s task schedule 

Once the tasks with the periods and priorities shown in 
Table 1 were verified to be schedulable, a configuration 
file pecos_cfg.h is created for inclusion in the main 
program.  This configuration file specifies which  
components to be included in the project and periods of 
execution and priorities of active components. The effect 
of this file is to include only the required components 
source codes in the final code and to configure periods 
and priorities of active components for the RTOS use. The 
following code shows a fragment of the configuration 
definitions in the pecos_cfg.h file. 

// ******** CONFIG PECOS COMPONENTS :
//   REQUIRE (1) or NOTREQUIRE (0) 
#define COMP_MOTOR_REQ            1 
#define COMP_IRPROX_REQ            1 
#define COMP_DISTSENSOR_REQ          1 
#define COMP_BATTSENSOR_REQ          1 
#define COMP_SUBSUMPTION_REQ            1
#define COMP_BEHAVIOR_BASED_CTRL_REQ        1 
#define COMP_MANROBOT_INTRF_REQ  1 
#define COMP_MOTOR_CTRL_REQ  1 
//* CONFIG REAL-TIME PARAMETERS FOR ACTIVE
//* COMPONENTS
//-- MANROBOTINTF 
#define  MRI_PERIOD         100 
#define  MRI_PRIO          15 
//-- MOTORCTRL_RIGHT 
#define MOTORCTRL_RIGHT_PERIOD  50 
#define MOTORCTRL_RIGHT_PRIO     5 
  : 

The connections between the compatible input ports and 
output ports are achieved by assigning the related input 
and output ports defined by the components interface. 
For example the following code shows how the 
connections between the output ports of Avoid

component and the input ports of IRProximity

component are made: 

//-- Connect all inports to outports 
Avoid.IP00   = IRProximity.OP00; 
Avoid.IP01   = IRProximity.OP01; 

As shown in Fig. 4, the top level component in this 
composition is the MobileRobot1 component which has 
the period of execution of 20 ms and priority of 1, i.e. the 
highest priority. Thus, the main program for this 
composition is the execution behavior of MobileRobot1
component as already discussed in Section 3.1.  The 
template for this main file is shown in Fig. 6. 

#include "pecos_cfg.h" 
#include "includes.h" 

// TOP LEVEl COMPONENT 
void MobileRobot (void* data) { 
/****** INITIALIZATION PART ******/ 
  //-- initialize all child components 
  //--   all ACTIVE tasks will be created
    INITmanrobotintf(); 
    INITmotorctrl_right(); 
    INITmotorctrl_left(); 
    :etc
    for (;;)
/****** EXECUTION PART ******/ 
  //-- Execute all passive components 
  //-- Active components already executed 
        EXECIRProximity(); 
    :etc
/****** SYNCHRONIZATION PART ******/ 
 //-- Synchronous all inports & outports 
        SYNCmanrobotintf(); 
    :etc
//-- Connect all inports to outports 
        Avoid.IP00   = IRProximity.OP00; 
        Avoid.IP01   = IRProximity.OP01; 
        Subsumption.IP00 =    Avoid.OP00; 
        Subsumption.IP01[0] = Avoid.OP01[0]; 
    :etc
//-- call RTOS to create periodic execution 
        OSTimeDelay (MOBILEROBOT_PERIOD);
}

void main(void) { 
    //-- initialize hardware dependent parts
    //-- initialize RTOS 
    //-- create MobileRobot task 
    //-- start the RTOS 
    while (1) ;        // run endlessly
}

Fig. 6. Code fragments for the main program of the mobile robot 
composition 

4. Case-Study Result 

Following the framework described in Section 3 and 
PECOS component definitions, the AMR software 
composed shown in Fig. 4 was implemented on a real 
mobile robot with behavior-based intelligence. The target 
board consists of a 16-bit AMD188ES microcontroller 
with 64Kb ROM and 128Kb RAM. 
The software tools used for the software development are 
Paradigm C compiler (Paradigm, 2000) for generating 
ROMable code and μC/OS-II RTOS (Labrosse, 1999) for 
multitasking support. The result of implementing the 
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AMR application is software with about 5000 lines of C 
codes not including the RTOS source codes. The total 
binary code size for the resulting application is about 
21Kb with RAM usage of about 15Kb.  This indicates that, 
the PECOS component model together with the COP 
framework can generate application with minimal 
memories requirements, suitable for other resource 
constrained ERT systems.  
Implementing the software by reusing at functions or 
libraries level will result in reduction of LOC numbers or 
size of binary codes since the codes to support component 
interfaces, synchronization and implementa-tion can be 
eliminated. However, we do not intend to compare the 
reuse with functions and reuse with components due to the 
advantages offered by component-based reuse approach. 
This is one of the trade-off one has to make in using 
component-based approach. 

4.1. Measuring Amount of Code Reuse 
The main concern in the COP framework is the reuse of the 
components on different platforms and different physical 
sizes/shapes of AMR.  To quantify the benefit of using the 
COP framework for software reuse, the amount of reuse 
metrics were used to measure the reuse improvement 
effort. A common form of reuse metrics is based on lines of 
code i.e. the amount of reuse percentage  is the percentage 
of lines of reuse code in the software over the total line of 
code in the software (Frakes and Terry, 1996). 
The strategy adopted in measuring amount of reuse was 
to use two AMR systems with different mechanical and 
computation platforms and different sizes.  The first 
AMR is called MobileRobot1 and the embedded  

software is the implementation of components 
composition shown in Fig. 4.  The second AMR is called 
MobileRobot2 and the software is the implementation 
of components composition shown in Fig. 7.  Table 2 
tabulates the specifications of platforms and sizes/shapes 
of the two AMRs. The task of MobileRobot1 is to find 
exit passage in an environment surrounded by walls 
while avoiding obstacles. The mission of MobileRobot2
is to navigate in a room with obstacles trying to locate fire 
and automatically extinguishes the fire. To perform these 
different tasks, the two AMR are equipped with sensors 
and actuators as shown in Table 3.  
From Table 3, it can be seen that two hardware 
components exist in both systems are motor and distance 
sensor.  The type of distance sensor used in both robots is 
the same but the type of motor used in the two robots is 
different. Thus, it expected that reuse of distance sensor 
component will be high, while the reuse of motor 
component will be low. 
In this measurement strategy, the amount of software 
reuse involves in developing MobileRobot2 software 
from the MobileRobot1 software is measured.  It is 
assumes that the components from the MobileRobot1
software can be treated as reusable components for 
developing the MobileRobot2 software. This is true in 
this case because the software components are: i) generic 
which were derived from AMR analysis pattern and 2) 
specified using the modified PECOS component model. 
To measure the software reuse rate, line of code (LOC) is 
used because it is a common metric used in measuring 
development effort and reuse rate (Rothenberger and 
Hershauer, 1999).
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Fig. 7. MobileRobot2 components composition  
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AMR MobileRobot1 MobileRobot2 
Processor 
Type

AMD188ES (16 
bits)

ATMEL AVR 
MEGA32 (8 bits) 

Size  (cm) 40 16 

Shape round octagonal 

EPROM (Kb) 64 32 

RAM (Kb) 128 2 

Table 2. The AMR systems processor platform and size 

AMR MobileRobot1 MobileRobot2

Motor 2 2 

Fan 0 1 

Encoder 2 0 

Distance Sensor 2 1 

Proximity Sensor 2 0 
Temperature
Sensor 0 1 

Light Sensor 0 1 

Table 3. The AMR systems sensors and actuators 

The two ways for amount of reuse analysis were 
performed on the components assemblies are: 
1. Count the LOC by ignoring the hardware 

dependence modules which include the HAL and 
some platform specific parts of μC/OS-II RTOS.  
Thus, only the platform independence components 
are considered. 

2. Count the LOC considering all the codes. 
Without considering the hardware dependent module 
and RTOS, the amount reuse percentage is calculated as: 

()

Reused LOC ×100%
All  Components LOC + pecos_cfg LOC +main  LOC

 (2) 

Equation 2 is also used to calculate the new and changed 
percentage by changing the Reuse LOC variable. Fig. 8 
shows the composition of reuse, change and new 
software in developing the MobileRobot2 software.
Fig. 8 shows that 74% of the software is reused from the 
MobileRobot1’s components, 25% software is new since 
two new components are required to handle new sensors 
not previously available on MobileRobot1 software, i.e. 
LightSensor and TemperatureSensor, a new 
behavior (BBCSeekFire) is required for the mission in 
MobileRobot2, and two modules need to be rewritten 
to configure and integrate the components (pecos_cfg and 
main function of MobileRobot2).

74%

25%

1%

reuse

new

change

Fig. 8. MobileRobot2 platform-independence software 
composition 

67%

33%

1%

reuse

new

change

Fig. 9. MobileRobot2 platform independent and platform 
dependent software composition 

Fig. 8 also shows that only 1% changes need to done on 
the two reuse components BatterySensor and 
BBCAvoid.  These two components are considered 
hardware dependence and robot dependence 
components. The changes in BatterySensor

component is required to accommodate different battery 
voltage on MobileRobot2.  In BBCAvoid component, 
the changes is required because the size and shape of the 
MobileRobot2 are different from MobileRobot1 and 
this requires some code changes in the Avoid behavior.    
In MobileRobot2 components composition, five of six 
hardware dependence components from MobileRobot1
i.e. Analogin, Motor, LCD, DistanceSensor and 
Switches can be reused 100% without change.  This is 
possible with the use of HAL as described in Section 3.
If the hardware-dependence modules and components 
are included to calculate the reuse percentage, the reuse 
percentage will reduce to 67% as shown in Fig. 9.  The 
reason for this reduction is that new modules and 
components need to be written to support: 
1. different processor and hardware requirements, 

RTOS platform (67% of new LOC consists of 
pecos_cfg, HAL and porting components of 
μC/OS-II RTOS) 

2. different mission of AMR (34% of new LOC consists 
of modules or components pecos_cfg,
APIBOTmain, BBCSeekFire, LightSensor, and 
TemperatureSensor).
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5. Conclusion  

A practical COP framework for CBSE of autonomous 
mobile robot embedded software is proposed to better 
support embedded resource-constrained AMR 
components integration and composition. To support this 
COP framework, three infrastructures were developed 
based on PECOS component model:  PECOS component 
model specifications and components repository in 
graphical blocks form, PECOS diagrammatical connection 
model, and a deployment model.   
The proposed COP framework enables the idea in PECOS 
to be implemented optimally without requiring any 
support tools and proprietary run-time environment from 
the original PECOS project.  The deployment model in 
the proposed framework is based on C language. 
Templates for components and code skeletons for AMR 
software are provided in C language. As the C language 
is the common and familiar language for the target 
audience, i.e. robotics engineers with little training in 
software engineering, these strategies will speed up the 
development of AMR application software. 
The COP is used to implement embedded software on 
two real AMR systems with behavior-based intelligence.  
Results show that, the modified PECOS component 
model together with the developed COP framework can 
generate software with minimal memories requirements, 
suitable for platform-independent resource constrained 
ERT systems.  This is achievable in the COP by removing 
the dependency on run-time environment with 
abstraction layers, targeting the codes to standard calls 
for minimal RTOS, and the use of C language.  
The amount of reuse measurement showed that up to 
74% reuse rate can be achieved in designing a new 
component-based robot software from existing software 
components.  This indicates that the use of PECOS based 
component model enable component engineering 
products to be created directly from other projects.  This 
measurement also prove that the introduction of HAL 
and RTOS abstraction layers in the proposed COP 
framework can increase the reuse capability of the design 
components in the component-based software 
development. 
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