
International Journal of Advanced Robotic Systems, Vol. 4, No. 3 (2007)
ISSN 1729-8806, pp. 371-380 371

A Component-Oriented Programming for
Embedded Mobile Robot Software

1Dayang N. A. Jawawi; 2Rosbi Mamat and 1Safaai Deris
1Department of Software Engineering, Faculty of Computer Science and Information Systems, Universiti Teknologi
Malaysia Malaysia, 81310 UTM, Skudai, Malaysia
2Department of Mechatronics and Robotics Engineering, Faculty of Electrical Engineering, Universiti Teknologi
Malaysia Malaysia, 81310 UTM, Skudai, Malaysia
dayang@utm.my

Abstract: Applying software reuse to many Embedded Real-Time (ERT) systems poses significant challenges to
industrial software processes due to the resource-constrained and real-time requirements of the systems.
Autonomous Mobile Robot (AMR) system is a class of ERT systems, hence, inherits the challenge of applying
software reuse in general ERT systems. Furthermore, software reuse in AMR systems is challenged by the
diversities in terms of robot physical size and shape, environmental interaction and implementation platform.
Thus, it is envisioned that component-based software engineering will be the suitable way to promote software
reuse in AMR systems with consideration to general requirements to be self-contained, platform-independent and
real-time predictable. A framework for component-oriented programming for AMR software development using
PECOS component model is proposed in this paper. The main features of this framework are: (1) use graphical
representation for components definition and composition; (2) target C language for optimal code generation with
resource-constrained micro-controller; and (3) minimal requirement for run-time support. Real-time
implementation indicates that, the PECOS component model together with the proposed framework is suitable for
resource constrained embedded AMR systems software development.
Keywords: Component-based development, software reuse, autonomous mobile robots

1. Introduction

An Autonomous Mobile Robot (AMR) is a mechatronics
system, which embodies technologies from several
engineering disciplines in the domains of mechanical
engineering, electronics, automatic control, artificial
intelligence, software engineering and computer
engineering. Thus, building a complete AMR system
requires expertise in those areas. The software aspect of
AMR has been recognized as one of the challenging part
(Braunl, 2003, Broten et al., 2006) for fully functional and
successful AMR.
To tackle the difficulty in developing software for AMR,
many researchers in robotics research communities
proposed the use of Component Based Software
Engineering (CBSE) approach (Messina et al., 1999, Blum,
2001, Schlegel, 2006). A component-based solution can
help robotic research groups in the following aspects
(Oreback, 2000): 1) exchange of software parts or
components between robotics laboratories, allowing
specialists to focus on their particular field ; 2)
comparison of different solutions would be possible from
the available components ; 3) startup in robot research
can be accelerated using the available components ; and
4) speed up the transfer of research laboratories works in
mobile robot to commercial business application.

There have been some efforts on providing CBSE of
robotics software in different approaches. Port-Based
Object (PBO) component model was proposed to develop
a software framework for CBSE for robotics (Stewart et
al., 1997). The PBO is supported by an implementation
based on domain-specific real-time operating system
(RTOS) mechanisms.
Blum (2001), proposed a component-based system
architecture Operating System for the Control of
Autonomous Robots (OSCAR) for exploration of indoor
environment with an AMR. OSCAR fully relies on the
middle-ware standard CORBA 2.3 specified by the Object
Management Group consortium. Since, OSCAR is based
on CORBA component model; it is not suitable for
implementation on resource limited embedded mobile
robot systems. This can be seen from the implementation
of OSCAR on MARVIN (Blum, 2001) robot which is
equipped with four PCs running Linux operating system.
Orca is an open-source CBSE framework designed for
mobile robotics (Brooks et al., 2005). An Orca component
is a stand-alone process which interacts with other
components over as set of well-defined interfaces. Orca
framework provides the means for defining and
implementing these interfaces. In Orca framework the
processing power and memory requirements are large.
Thus, Orca framework is only targeted for off-board

International Journal of Advanced Robotic Systems, Vol. 4, No. 2 (2007)

372

processing, i.e. Orca assumes some form of embedded
software already present on AMR for communicating with
the off-board components. Thus, requirements for self-
contained AMR and predictable real-time performance of
AMR systems are not considered in Orca framework.
Component-based development of AMR systems has
been used in industries. Mobility is a commercially
available component-based system produced by Real
World Interface Company (iRobot, 2002), to support a
certain class of mobile robot platforms which are
produced by the company.
Most of the works on CBSE in robotics do not address the
issues of ERT software for resource-constrained AMR and
platform-independent components. As emphasized by
Brega et al. (2000) and Pont and Siegwart (2005), real-
world AMR must be self-contained and able to meet
timing constraints. When on-board or embedded
computation is required AMR software development is
typically confronted with limited resources such as
computing power and memory. With the limited
computing power, a precise observation of the timing
constraints of the AMR systems is a necessary to make
complex robot systems more reliable. Most important, a
predictable real-time performance on a robotic system is a
necessary condition for guaranteeing a stable behavior of
the robot (Buttazzo, 1996).
To tackle the above issues an implementation paradigm
or framework for component-oriented programming
(COP) of AMR software is proposed. The COP
framework is a programming framework based the
PErvasive COmponent Systems (PECOS) component
model (Nierstrasz et al., 2002). The proposed framework
enables the idea in PECOS to be implemented optimally
without requiring any support tools and proprietary run-
time environment from the original PECOS project. The
deployment model in the proposed framework is based
on C language for portability across platforms and
compact code generation which is optimal for resource-
constrained ERT systems.
The layout of this paper is as follows. Section 2 describes
the PECOS component model for which the framework is
based on. In Section 3 the proposed framework is
described and its implementation for an AMR software is
illustrated. Section 4 presents some implementation
results of the framework on a real AMR. Finally, the
conclusion is presented in Section 5.

2. Background

Industrial component technologies currently available
such as OMG’s CORBA Component Model (CCM),
Microsoft’s (D)COM/COM+, .NET, SUN Microsystems’
JavaBeans and Enterprise JavaBeans, are generally
complex, require large resources such as memory and
computation power, and are platform dependent
(Crnkovic, 2004, Rastofer & Bellosa, 2001). Furthermore,
they do not address the non-functional properties such as

how much memory it consumes and timing constraints
which are important in ERT systems.
Consequently, a number of component models such as
PBO (Stewart et al., 1997), Koala (Ommering et al., 2000),
PECOS (Nierstrasz et al., 2002), and ReFlex (Wall, 2003),
have been developed to address requirements of ERT
software. Evaluation of these component models against
the industrial requirements of heavy vehicle sector shows
that PECOS is the most complete component technology
with good support for industrial requirements (Möller et
al., 2004).
PECOS component model was originally developed for
field device systems and some supporting tools such as
Component Composition (CoCo) description language
for specifying components, code generator for generating
Java/C++ code skeletons from CoCo and runtime
environment (RTE) which interfaces generated code from
the real-time operating system used (Wuyts et al., 2005).
However, many of these tools are incomplete and
information on the RTE is not publicly accessible as it is a
proprietary of the ABB Company (Bouyssounouse and
Sifakis, 2005).
Non-functional verification in PECOS is performed using
Rate monotonic analysis (RMA) and schedule verification
(Wuyts et al., 2005). The RMA verification is to check
whether the entire components involved in the
composition meet their deadlines while schedule
verification is to check the possibility to fit execution and
synchronization behavior sequentially in each task.
The original framework for implementation of PECOS
components has some limitations with respect to our
needs for development of ERT software for AMR
systems. Some of these limitations include: 1) the use of
CoCo language seems to be difficult for the target
audience as CoCo is almost a programming language by
itself; 2) targeting for Java or C++ may not be appropriate
for small microcontrollers with limited resources,
furthermore, Java and C++ supports may not be available
for those microcontrollers; and 3) the RTE is difficult to
develop and information on the RTE is not publicly
accessible.
After experimenting with the PECOS component model
and implementing it in the AMR applications, it was
found that the assembling activities of components at
design stage are simple but the implementation of the
components is complex without the support from PECOS
tools (Jawawi et al., 2006). With the absence of PECOS
supporting tools and RTE, there are at least three options
in which the PECOS component model can be used
effectively in the AMR software development: 1) develop
our own supporting tools and RTE; 2) seek alternative
from other existing tools such as real-time Unified
Modeling Language (UML) tools (Douglass, 2004); or 3)
propose an alternative implementation framework for
CBSE of AMR embedded software development.
Option three has been selected in this work, where a
practical Component-Oriented Programming (COP)

Dayang N. A. Jawawi; Rosbi Mamat and Safaai Deris: A Component-Oriented Programming for Embedded Mobile Robot Software

373

framework is proposed and has been used to implement
PECOS component model for CBSE of embedded AMR
software.

3. The Component-Oriented Programming Framework

This COP framework was originally intended for
development of ERT software for AMR. The target
audience is the mechatronics and robotics researchers
which are not from software engineering background and
do not have extensive programming experience. However,
experience shows that the COP framework is generally
suitable for developing reactive embedded systems which
typically use 8-bit or 16-bit microcontrollers with memory
constraints and developed with C language.
The main features of the COP framework are: (1) use
graphical representation for components definition and
composition; (2) target the codes in C language for
optimal code generation with resource-constrained
micro-controller; and (3) depends on minimal
requirement for run-time support.
Fig. 1 shows the main elements of the proposed COP
framework and layers of dependency of each element.
The main software elements of the COP framework
consists of the component-based software to be
developed, the hardware abstraction layer (HAL), and a
real-time operating system (RTOS) with its associated
abstraction layer (RTOS AL).
At the bottom layer is the robot mechanical and
electronics hardware with the on-board embedded
controller. The COP framework does not assume any
particular underlying microcontroller unit and RTOS
used in the robot hardware. It is up to the HAL and RTOS
AL to abstract the robot hardware and its communication
with the robot hardware. The HAL provides decoupling
between the components and the underlying hardware,
while the RTOS AL provides a thin layer of interface
between the components and the actual RTOS used. In
this way, the COP framework addressed platform
independent issue. The dependency of PECOS model to
RTE deployment model thus is replaced by the two
abstraction layers.

Fig. 1. The main elements of the COP framework

Porting the component-based software to different robot
platform, thus, requires only the rewriting of HAL. We
have ported an AMR software running on AMD188ES
microcontroller to ATMEL MEGA32 microcontroller by
just rewriting the abstraction layers only.
On the top of the COP framework is the component-
based software to be developed. Those components
consist of passive and active components. Active
components have their own thread of control while the
passive components do not have their own thread of
control. The activations of active components are
supported by a set of services provided by the RTOS.
To support component-based software development with
the COP framework, three infrastructures were proposed
based on PECOS component model: PECOS component
model specifications and components repository in
graphical blocks form, PECOS diagrammatical connection
model with two enhancements as reported in (Jawawi et
al., 2006), and a deployment model.
In this framework, instead of using the CoCo language,
graphical representation of components is used for
components definition and composition. Currently, codes
have to be written manually from this graphical
representation. The framework describes here is based on
manual creation of codes guided with the code templates
proposed in the COP framework.
The COP framework is targeted for C language, since,
optimized C compilers are available for most micro-
controllers, and C is portable across many platforms.
Furthermore, C is a familiar language and has been use
extensively by the target audience.
In the following sections, the application of the COP
framework in the two main engineering activities in the
development of component-based software, i.e.
component engineering and application engineering are
explained. The above three infrastructures proposed here,
namely, the graphical model specifications, connection
model and the deployment model and their use in
component-based development of AMR software are
highlighted.

3.1. COP in Component Engineering Process
Component engineering process concerned with the
analysis of domains and development of generic and
domain-specific reusable components. Based on patterns
analysis in domain of AMR systems, common
components are identified and the specifications of the
components are documented in graphical blocks form. As
a result of a pattern mining process, currently ten
software components were identified in the analysis
pattern for typical AMR software. The components
identified are: input-output, actuator, sensor, signal
processing, motor control, communication, Human-Robot
Interface (HRI), Behavior-Based Control (BBC),
coordinator and planner.
Fig. 2 shows a generic component named PID

documented in graphical block form. The input ports and

Component-Based Software

Component1Component3

Component4

Component5
Component2

Hardware Abstraction
Layer (AL)

RTOS AL

RTOS

Robot Hardware

International Journal of Advanced Robotic Systems, Vol. 4, No. 2 (2007)

374

output ports, with their associated types and range of
values are defined in the block. Each port is numbered
accordingly for easy reference. Arrows on the ports
indicate the direction or whether they are inports (IP00-
IP02) or outports (OP00). Bidirectional ports are not
allowed in this framework. The Period and Priority fields
are timing specifications for active component, which has
its own execution thread in multitasking environment,
usually determined in the application engineering stage.
Not shown in the block is the specification of worst case
execution time (WCET) of the component.

Fig. 2. A PID component documented in block form

The component specifications are further translated
manually to C source codes and stored in repository for
use in the application engineering stage. Each component
is translated into two parts of C codes: code for interface
and code body. For example, the generic interface code
implementation for the PID component in Fig. 2 can be
written in C is as follows:

typedef struct
{

int IP00; // set value(0-5000)
int IP01; // current value(0-5000)
float IP02[4]; // array of PID const

// [Kc Ti Td Ts]
int OP00; // control signal(0-5000)

} INTERFPID;

The code body for an active component consists of three
main parts: initialization part, execution part, and
synchronization part. In the passive components, the
synchronization part is not required. The initialization
part is responsible for component initialization, and in
the case of active component it calls RTOS through RTOS
AL to create the thread or task for the component with
the defined Period and Priority. The execution part
is the main component behavior while the
synchronization part updates the data between inner
ports and outer ports as defined by PECOS component
execution model.

Fig. 3. MotorControl composite component

Composite components can be built by hierarchically
composing a number of subcomponents and stored in the
repository for later use. Fig. 3 shows a generic composite
component named MotorControl built from three
passive subcomponents: Encoder, PID and Motor. The
code body for the composite component is still consists of
the above three main parts. On top of this, the composite
component is responsible for calling the initialization and
synchronization parts of its child or sub-components. In
this way complex component can be built by
hierarchically composing other composite components,
and the user is only consent with the top level component
interface and synchronization, while the inner
components synchronization are handled by the top level
component.

3.2. COP in Application Engineering Process
Application engineering process is also called
component-based software development (CBD), involves
developing applications using software components
previously developed. A design of an AMR embedded
software will be used in this section to illustrate the steps
involve in the application engineering using the COP
framework.
The major steps involve in application engineering of the
AMR software are: identification of required components,
composition of components, scheduling analysis and
assigning the period and priority of components, and
codes writing.
Based on the requirements and patterns analysis, the
required components are identified and composed by
connecting the compatible ports. Fig. 4 shows a block
diagram composition of the AMR software for
MobileRobot1, which consists of eight leaf components
and seven composite components shown by blocks with
shadow.
Sometimes, the concrete components which are
application-specific need to be developed from the
generic components previously created. For examples in
Fig. 4, motorctrl_right and motorctrl_left

components are concrete components developed from the
MotorControl component. In this framework,
connections of constants to compatible ports are allowed.
This is shown in Fig. 4 by the connections of constants to
input port (IP01) of motorctrl_right and
motorctrl_left components. This gives flexibility for
testing and debugging of components and also useful for
AMR software to reconfigure components for use with
specific hardware or application.
Once the composition is completed, the next step is to
allocate property bundles value such as period and
priority for active components using the WCET and some
scheduling theories. The Rate Monotonic Analysis (RMA)
(Klien et al., 1993) theory is mainly used to allocate
priority in this framework.

MotorControl

PID
IP00

IP02

IP01 OP00
Motor

IP00

IP01

Set speed:
0..5000

IP00

IP01

IP02

OP00
Encoder

OP00

Direction:
1- forwad 0- stop
-1- reverse

Period Priority

Current
speed:
0..5000

PID Settings:
[Kc, Ti, Td, Ts]

PID

Set Value: 0-5000

Current Value: 0-5000

Control Signal: 0-5000PID Settings:
[Kc, (0.01..99.99)
Ti, Td, Ts (all in ms)]

IP00

IP02

IP01 OP00

Period Priority

Dayang N. A. Jawawi; Rosbi Mamat and Safaai Deris: A Component-Oriented Programming for Embedded Mobile Robot Software

375

IR Proxim ity

OP00

OP01

OP02

OP03

switches

OP00

OP01

OP02

[1000 20 0 50]

motorctrl_left

IP00
50 ms 6

IP01

IP02

OP00

IP00

IP01

IP02

IP03

manrobotintf

[1000 20 0 50]

motorctrl_right

IP00
50 ms 5

IP01

IP02

OP00

100ms 15

20ms 1

BatterySensor

Cruise
60 13

IP00
OP00

OP01

FindWall
60 10

IP00
OP00

OP01

Avoid
60 9

IP00 OP00

OP01IP01

DistSensorFront

OP00

50ms 7

Stop/Go
60 8

IP00 OP00

OP01IP01

FollowW all
60 11

IP00
OP00

OP01

DistSensorRHS

OP00

MobileRobot1

OP00

Subsumption

IP00

IP01

IP02

IP03

IP04

IP05

IP06

IP07

IP08

IP09

OP03

OP02

OP01

OP00

OP04

Fig. 4. MobileRobot1 components composition

The MobileRobot1 components of Fig. 4 are mapped to
a task which executes sequentially five passive
components i.e. switches, IRProximity,

DistSensorRHS, DistSensorFront and
BatterySensor; and nine synchronization parts of its
child components, i.e. Stop/Go, Avoid, FindWall,
FollowWall, Cruise, motorctrl_right,
motorctrl_left, Subsumption, and manrobotintf.
The mapping results of all components in
MobileRobot1 composition are tabulated in Table 1.
The tasks in the table are ordered from highest to lowest
priority. The WCET were measured experimentally in
real-time using oscilloscope and a spare bit of output port
on the microcontroller, and the tasks periods were
obtained from the AMR requirements.

Task Period
(ms)

WCET
(ms)

Ri
(ms)

MobileRobot 20 2 2
Motorctrl_left 50 3 5
Motorctrl_right 50 3 8
Subsumption 50 1 9
Stop/Go 60 1 10
Avoid 60 1 11
FindWall 60 1 12
FollowWall 60 1 13
Cruise 60 1 14
Manrobotintf 100 16 32

Table 1. The timing results for the MobileRobot1

Response time analysis proposed by Audsley et al. (1993)
is then used to determine whether the deadline for each
task in Table 1 can be met. The goal of response time
schedulability analysis is to show that each task
invocation finishes before its deadline. For each
invocation of a task i, worst-case response time Ri is
calculated and compare with deadline Di. Equation 1
gives the total calculation for Ri of a task i by adding its
own WCET Ci plus the interference on how often higher-
priority task j invocation can preempt an invocation of
task i.

1

()

x
x i
i i j

j hp i j

RR C C
T

+

∈

= + (1)

Since, there are ten tasks derived from the AMR
component composition, the analysis were applied for
values of i ranging from 1 to 10.
For each i worst case response time Ri was calculated and
compare with deadline where Di = Ti, the task period of
task i. The calculated Ri for all tasks from the design
composition in Fig. 4 are listed in Table 1. This indicates
all Ri are within their deadlines, hence the design
composition of components in Fig. 4 is predicted to be
schedulable according to RMA theory. Fig. 5 shows a
time line description of how the MobileRobot1’s tasks
will be scheduled. The schedule is generated using
TimesTool simulator from www.timestool.com (Amnell
et al., 2003)

International Journal of Advanced Robotic Systems, Vol. 4, No. 2 (2007)

376

M an ro b o tin tf

A v o id

F in dW a ll

S u b s um p tio n

M o to rc tr l_ r ig h t

M o to rc tr l_ le f t

M o b ile R o b o t

id le

m s

S to p /G o

F o llo w W a ll

C ru is e

Fig. 5. MobileRobot’s task schedule

Once the tasks with the periods and priorities shown in
Table 1 were verified to be schedulable, a configuration
file pecos_cfg.h is created for inclusion in the main
program. This configuration file specifies which
components to be included in the project and periods of
execution and priorities of active components. The effect
of this file is to include only the required components
source codes in the final code and to configure periods
and priorities of active components for the RTOS use. The
following code shows a fragment of the configuration
definitions in the pecos_cfg.h file.

// ******** CONFIG PECOS COMPONENTS :
// REQUIRE (1) or NOTREQUIRE (0)
#define COMP_MOTOR_REQ 1
#define COMP_IRPROX_REQ 1
#define COMP_DISTSENSOR_REQ 1
#define COMP_BATTSENSOR_REQ 1
#define COMP_SUBSUMPTION_REQ 1
#define COMP_BEHAVIOR_BASED_CTRL_REQ 1
#define COMP_MANROBOT_INTRF_REQ 1
#define COMP_MOTOR_CTRL_REQ 1
//* CONFIG REAL-TIME PARAMETERS FOR ACTIVE
//* COMPONENTS
//-- MANROBOTINTF
#define MRI_PERIOD 100
#define MRI_PRIO 15
//-- MOTORCTRL_RIGHT
#define MOTORCTRL_RIGHT_PERIOD 50
#define MOTORCTRL_RIGHT_PRIO 5
 :

The connections between the compatible input ports and
output ports are achieved by assigning the related input
and output ports defined by the components interface.
For example the following code shows how the
connections between the output ports of Avoid

component and the input ports of IRProximity

component are made:

//-- Connect all inports to outports
Avoid.IP00 = IRProximity.OP00;
Avoid.IP01 = IRProximity.OP01;

As shown in Fig. 4, the top level component in this
composition is the MobileRobot1 component which has
the period of execution of 20 ms and priority of 1, i.e. the
highest priority. Thus, the main program for this
composition is the execution behavior of MobileRobot1
component as already discussed in Section 3.1. The
template for this main file is shown in Fig. 6.

#include "pecos_cfg.h"
#include "includes.h"

// TOP LEVEl COMPONENT
void MobileRobot (void* data) {
/****** INITIALIZATION PART ******/
 //-- initialize all child components
 //-- all ACTIVE tasks will be created
 INITmanrobotintf();
 INITmotorctrl_right();
 INITmotorctrl_left();
 :etc
 for (;;)
/****** EXECUTION PART ******/
 //-- Execute all passive components
 //-- Active components already executed
 EXECIRProximity();
 :etc
/****** SYNCHRONIZATION PART ******/
 //-- Synchronous all inports & outports
 SYNCmanrobotintf();
 :etc
//-- Connect all inports to outports
 Avoid.IP00 = IRProximity.OP00;
 Avoid.IP01 = IRProximity.OP01;
 Subsumption.IP00 = Avoid.OP00;
 Subsumption.IP01[0] = Avoid.OP01[0];
 :etc
//-- call RTOS to create periodic execution
 OSTimeDelay (MOBILEROBOT_PERIOD);
}

void main(void) {
 //-- initialize hardware dependent parts
 //-- initialize RTOS
 //-- create MobileRobot task
 //-- start the RTOS
 while (1) ; // run endlessly
}

Fig. 6. Code fragments for the main program of the mobile robot
composition

4. Case-Study Result

Following the framework described in Section 3 and
PECOS component definitions, the AMR software
composed shown in Fig. 4 was implemented on a real
mobile robot with behavior-based intelligence. The target
board consists of a 16-bit AMD188ES microcontroller
with 64Kb ROM and 128Kb RAM.
The software tools used for the software development are
Paradigm C compiler (Paradigm, 2000) for generating
ROMable code and μC/OS-II RTOS (Labrosse, 1999) for
multitasking support. The result of implementing the

Dayang N. A. Jawawi; Rosbi Mamat and Safaai Deris: A Component-Oriented Programming for Embedded Mobile Robot Software

377

AMR application is software with about 5000 lines of C
codes not including the RTOS source codes. The total
binary code size for the resulting application is about
21Kb with RAM usage of about 15Kb. This indicates that,
the PECOS component model together with the COP
framework can generate application with minimal
memories requirements, suitable for other resource
constrained ERT systems.
Implementing the software by reusing at functions or
libraries level will result in reduction of LOC numbers or
size of binary codes since the codes to support component
interfaces, synchronization and implementa-tion can be
eliminated. However, we do not intend to compare the
reuse with functions and reuse with components due to the
advantages offered by component-based reuse approach.
This is one of the trade-off one has to make in using
component-based approach.

4.1. Measuring Amount of Code Reuse
The main concern in the COP framework is the reuse of the
components on different platforms and different physical
sizes/shapes of AMR. To quantify the benefit of using the
COP framework for software reuse, the amount of reuse
metrics were used to measure the reuse improvement
effort. A common form of reuse metrics is based on lines of
code i.e. the amount of reuse percentage is the percentage
of lines of reuse code in the software over the total line of
code in the software (Frakes and Terry, 1996).
The strategy adopted in measuring amount of reuse was
to use two AMR systems with different mechanical and
computation platforms and different sizes. The first
AMR is called MobileRobot1 and the embedded

software is the implementation of components
composition shown in Fig. 4. The second AMR is called
MobileRobot2 and the software is the implementation
of components composition shown in Fig. 7. Table 2
tabulates the specifications of platforms and sizes/shapes
of the two AMRs. The task of MobileRobot1 is to find
exit passage in an environment surrounded by walls
while avoiding obstacles. The mission of MobileRobot2
is to navigate in a room with obstacles trying to locate fire
and automatically extinguishes the fire. To perform these
different tasks, the two AMR are equipped with sensors
and actuators as shown in Table 3.
From Table 3, it can be seen that two hardware
components exist in both systems are motor and distance
sensor. The type of distance sensor used in both robots is
the same but the type of motor used in the two robots is
different. Thus, it expected that reuse of distance sensor
component will be high, while the reuse of motor
component will be low.
In this measurement strategy, the amount of software
reuse involves in developing MobileRobot2 software
from the MobileRobot1 software is measured. It is
assumes that the components from the MobileRobot1
software can be treated as reusable components for
developing the MobileRobot2 software. This is true in
this case because the software components are: i) generic
which were derived from AMR analysis pattern and 2)
specified using the modified PECOS component model.
To measure the software reuse rate, line of code (LOC) is
used because it is a common metric used in measuring
development effort and reuse rate (Rothenberger and
Hershauer, 1999).

switches

20ms 1

Cruise
60ms 13

IP00
OP00

OP01

DistanceSensor

Seekfire
60ms 9

IP01

OP00

OP01

Stop/Go
60ms 11

IP00 OP00

OP01IP01

Avoid
60ms 9

IP00
OP00

OP01

IP00

IP02
TemperatureSensor

Lightsensor

BatterySensor

motorctrl_right

IP00
50 ms 5

IP01

IP02

OP00

motorctrl_left

IP00
50 ms 6

IP01

IP02

OP00

IP00

IP01

IP02

manrobotintf
 100ms 15

IP03

OP00

OP00

OP00

OP01

OP00

OP01

OP02

OP00

MobileRobot2

Subsumption

IP00

IP01

IP02

IP03

IP04

IP05

IP06

IP07

IP08

IP09

OP03

OP02

OP01

OP00

OP04

60ms 8

Fig. 7. MobileRobot2 components composition

International Journal of Advanced Robotic Systems, Vol. 4, No. 2 (2007)

378

AMR MobileRobot1 MobileRobot2
Processor
Type

AMD188ES (16
bits)

ATMEL AVR
MEGA32 (8 bits)

Size (cm) 40 16

Shape round octagonal

EPROM (Kb) 64 32

RAM (Kb) 128 2

Table 2. The AMR systems processor platform and size

AMR MobileRobot1 MobileRobot2

Motor 2 2

Fan 0 1

Encoder 2 0

Distance Sensor 2 1

Proximity Sensor 2 0
Temperature
Sensor 0 1

Light Sensor 0 1

Table 3. The AMR systems sensors and actuators

The two ways for amount of reuse analysis were
performed on the components assemblies are:
1. Count the LOC by ignoring the hardware

dependence modules which include the HAL and
some platform specific parts of μC/OS-II RTOS.
Thus, only the platform independence components
are considered.

2. Count the LOC considering all the codes.
Without considering the hardware dependent module
and RTOS, the amount reuse percentage is calculated as:

()

Reused LOC ×100%
All Components LOC + pecos_cfg LOC +main LOC

 (2)

Equation 2 is also used to calculate the new and changed
percentage by changing the Reuse LOC variable. Fig. 8
shows the composition of reuse, change and new
software in developing the MobileRobot2 software.
Fig. 8 shows that 74% of the software is reused from the
MobileRobot1’s components, 25% software is new since
two new components are required to handle new sensors
not previously available on MobileRobot1 software, i.e.
LightSensor and TemperatureSensor, a new
behavior (BBCSeekFire) is required for the mission in
MobileRobot2, and two modules need to be rewritten
to configure and integrate the components (pecos_cfg and
main function of MobileRobot2).

74%

25%

1%

reuse

new

change

Fig. 8. MobileRobot2 platform-independence software
composition

67%

33%

1%

reuse

new

change

Fig. 9. MobileRobot2 platform independent and platform
dependent software composition

Fig. 8 also shows that only 1% changes need to done on
the two reuse components BatterySensor and
BBCAvoid. These two components are considered
hardware dependence and robot dependence
components. The changes in BatterySensor

component is required to accommodate different battery
voltage on MobileRobot2. In BBCAvoid component,
the changes is required because the size and shape of the
MobileRobot2 are different from MobileRobot1 and
this requires some code changes in the Avoid behavior.
In MobileRobot2 components composition, five of six
hardware dependence components from MobileRobot1
i.e. Analogin, Motor, LCD, DistanceSensor and
Switches can be reused 100% without change. This is
possible with the use of HAL as described in Section 3.
If the hardware-dependence modules and components
are included to calculate the reuse percentage, the reuse
percentage will reduce to 67% as shown in Fig. 9. The
reason for this reduction is that new modules and
components need to be written to support:
1. different processor and hardware requirements,

RTOS platform (67% of new LOC consists of
pecos_cfg, HAL and porting components of
μC/OS-II RTOS)

2. different mission of AMR (34% of new LOC consists
of modules or components pecos_cfg,
APIBOTmain, BBCSeekFire, LightSensor, and
TemperatureSensor).

Dayang N. A. Jawawi; Rosbi Mamat and Safaai Deris: A Component-Oriented Programming for Embedded Mobile Robot Software

379

5. Conclusion

A practical COP framework for CBSE of autonomous
mobile robot embedded software is proposed to better
support embedded resource-constrained AMR
components integration and composition. To support this
COP framework, three infrastructures were developed
based on PECOS component model: PECOS component
model specifications and components repository in
graphical blocks form, PECOS diagrammatical connection
model, and a deployment model.
The proposed COP framework enables the idea in PECOS
to be implemented optimally without requiring any
support tools and proprietary run-time environment from
the original PECOS project. The deployment model in
the proposed framework is based on C language.
Templates for components and code skeletons for AMR
software are provided in C language. As the C language
is the common and familiar language for the target
audience, i.e. robotics engineers with little training in
software engineering, these strategies will speed up the
development of AMR application software.
The COP is used to implement embedded software on
two real AMR systems with behavior-based intelligence.
Results show that, the modified PECOS component
model together with the developed COP framework can
generate software with minimal memories requirements,
suitable for platform-independent resource constrained
ERT systems. This is achievable in the COP by removing
the dependency on run-time environment with
abstraction layers, targeting the codes to standard calls
for minimal RTOS, and the use of C language.
The amount of reuse measurement showed that up to
74% reuse rate can be achieved in designing a new
component-based robot software from existing software
components. This indicates that the use of PECOS based
component model enable component engineering
products to be created directly from other projects. This
measurement also prove that the introduction of HAL
and RTOS abstraction layers in the proposed COP
framework can increase the reuse capability of the design
components in the component-based software
development.

6. References

Amnell, T.; E. Fersman; L. Mokrushin; P. Pettersson & Yi,
W. (2003). TIMES: a Tool for Schedulability Analysis
and Code Generation of Real-Time Systems,
Proceedings of the 1st International Workshop on Formal
Modeling and Analysis of Timed Systems FORMATS
2003, pp. 60-72, September 6-7 2003, Marseille, France

Audsley, N.; Burns, A.; Richardson, M.; Tindell, K. &
Wellings, A. (1993). Applying New Scheduling
Theory to Static Priority Pre-emptive Scheduling,
Software Engineering Journal, Vol. 8, No. 5, pp. 284-292

Blum, S. (2001). Towards a Component-based System
Architecture for Autonomous Mobile Robots,
Proceedings of IASTED International Conference Robotics
and Applications (RA’01), pp. 220-225, Tampa

Bouyssounouse, B. & Sifakis, J. (2005). Embedded
Systems Design: The ARTIST Roadmap for Research
and Development, Lecture Notes in Computer Science,
Vol. 3436 / 2005, Springer-Verlag GmbH, pp. 160-194.

Braunl, T. (2003). Embedded Robotics: Mobile Robot
Design and Applications with Embedded Systems,
Springer-Verlag

Brega, R.; Tomatis, N. & Arras, K.O. (2000). The Need for
Autonomy and Real-Time in Mobile Robotics: A
Case Study of XO/2 and Pygmalion, Proceedings
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2000), Volume 2, pp. 1422 – 1427
Takamatsu, Japan, October 30- November 5 2000

Brooks, A.; Kaupp, T.; Makarenko, A.; Orebäck, A. &
Williams, S. (2005) Towards Component-Based
Robotics, IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2005), August 2-6
2005, Edmonton, Alberta

Broten G.; Monckton, S.; Giesbrecht, J. & Collier, J. (2006).
Software Systems for Robotics: An Applied Research
Perspective. International Journal of Advanced Robotic
Systems, Vol. 3, No. 1, (March 2006), pp. 11-16, ISSN
1729-8806

Buttazzo, G. C. (1996). Real-time Issues in Advanced
Robotics Applications, Proceedings of the 8th IEEE
Euromicro Workshop on Real-time Systems, pp. 133-138
L’Aquila, Italy, June 1996

Crnkovic, I. (2004). Component-based Approach for
Embedded Systems, Proceedings of 9th International
Workshop on Component-oriented Programming, Session
4 – Application of CBSE, Oslo, June 2004

Douglass, B. P., “Real-Time UML”. Addison Wesley. 2004
Frakes, W. & Terry C. (1996). Software Reuse: Metrics and

Models. ACM Computing Surveys (CSUR), Vol. 28,
No. 2, pp. 415 – 435

Genssler, T. et al., PECOS in a Nutshell, Technical Report,
PECOS Project, September 2002

iRobot Corporation. (2002). Mobility Robot Integration
Software User’s Guide

Jawawi, D.N.A; Deris, S. & Mamat, R. (2006).
“Enhancements of PECOS Embedded Real-Time
Component Model for Autonomous Mobile Robot

Application”. Proceeding of The 4
th

ACS/IEEE
International Conference on Computer Systems and
Applications, pp. 882 – 889. Dubai/Sharjah, March 8-
11 2006

Klien, M.; Ralya, T.; Pollak, B. & Obenza R. A
Practitioner’s Handbook for Real-time Analysis, Kluwer
Academic Publisher, 1993

Labrosse, J. J. (1999). MicroC/OS-II The Real-Time Kernel,
2nd edition, R&D Books, USA.

International Journal of Advanced Robotic Systems, Vol. 4, No. 2 (2007)

380

Messina, E.; Horst, J.; Kramer, T.; Huang, H. &
Michaloski, J. (1999). Component Specifications for
Robotics Integration, Autonomous Robots, Vol. 6,
pp.

Möller, A.; Åkerholm, M.; Fredriksson, J. & Nolin,
M. (2004). Evaluation of Component
Technologies with Respect to Industrial
Requirements, Proceedings of the 30th
EUROMICRO Conference on Component-Based
Software Engineering Track, pp. 56-63, Rennes,
France, August 2004

Nierstrasz, O. et al. (2002). A Component Model for Field
Devices, Proceedings of 1st International IFIP/ACM
Working Conference on Component Deployment,
Springer-Verlag Heidelberg, Vol. 2370, pp. 200-209,
Berlin, Germany, June 2002

Ommering, R.; Linden, F.; Kramer, J.; & Magee, J. (2000)
The Koala Component Model for Consumer
Electronics Software, IEEE Computer, Vol. 33, No. 3,
pp. 78 –85

Oreback, A. (2000). Components in Intelligent Robotics,
MDH-MRTC-15/2000-1-SE Component Based Software
Engineering - State of the Art, Mälardalen Real-Time
Research Centre Mälardalen University, 233-243.
ISSN 1404-3041

Paradigm Systems (2000). Paradigm C++ Reference
Manual Version 5.0, Endwell

Pont, F. & Siegwart, R. (2005). A Real-Time Software
Framework for Indoor Navigation, Proceedings of the
IEEE/RSJ Intenational Conference on Intelligent Robots
and Systems (IROS), pp. 2085 – 2090, Edmonton,
Canada, August 2-6 2005

Rastofer, U. & Bellosa, F. (2001). Component-based
Software Engineering for Distributed Embedded
Real-time Systems, IEE Proceeding- Software, Vol. 148,
No. 3, pp. 99-103

Rothenberger, M. A. & Hershauer, J. C. (1999). A Software
Reuse Measure: Monitoring an Enterprise-Level
Model Driven Development Process. Journal of
Information & Management, Vol. 35, No. 5, pp. 283-293

Schlegel, C. (2006). Communication Patterns as Key
Towards Component-Based Robotics Task.
International Journal of Advanced Robotic Systems, Vol.
3, No. 1, (March 2006), pp. 49-54, ISSN 1729-8806

Stewart, D. B.. Volpe, R. A & Khosla, P. K. (1997). Design
of Dynamically Reconfigurable Real-time Software
Using Port-Based Objects, IEEE Transaction on
Software Engineering. Vol. 23, No. 12, pp. 759 –776

Wall, A. (2003) Architectural Modeling and Analysis of Complex
Real-Time Systems, Mälardalen University, Phd Thesis

Wuyts, R.; Ducasse, S. & Nierstrasz, O. (2005). A Data-
centric Approach to Composing Embedded, Real-
time Software Components, The Journal of Systems and
Software, Vol. 74, pp. 25-34

