
Robot Path Planning Design and Implementation in Manufacturing, Healthcare and Service Systems - Research Article

Laser simulator: A novel search
graph-based path planning approach

Mohammed AH Ali1 and Musa Mailah2

Abstract
A novel technique called laser simulator approach for visibility search graph-based path planning has been developed in this
article to determine the optimum collision-free path in unknown environment. With such approach, it is possible to apply
constraints on the mobile robot trajectory while navigating in complex terrains such as in factories and road environ-
ments, as the first work of its kind. The main advantage of this approach is the ability to be used for both global/local path
planning in the presence of constraints and obstacles in unknown environments. The principle of the laser simulator
approach with all possibilities and cases that could emerge during path planning is explained to determine the path from
initial to destination positions in a two-dimensional map. In addition, a comparative study on the laser simulator approach,
A* algorithm, Voronoi diagram with fast marching and PointBug algorithms was performed to show the benefits and
drawbacks of the proposed approach. A case study on the utilization of the laser simulator in both global and local path
planning has been applied in a road roundabout setting which is regarded as a complex environment for robot path
planning. In global path planning, the path is generated within a grid map of the roundabout environment to select the
path according to the respective road rules. It is also used to recognize the real roundabout from a sequence of images
during local path planning in the real-world system. Results show that the performance of the proposed laser simulator
approach in both global and local environments is achieved with low computational and path costs, in which the optimum
path from the selected start position to the goal point is tracked accordingly in the presence of the obstacles.

Keywords
Laser simulator (LS), local and global path planning, local map, roundabout, A* algorithm (A*A)

Date received: 24 August 2017; accepted: 6 September 2018

Topic: Robotics Software Design and Engineering
Topic Editor: Lino Marques
Associate Editor: Hamed Fazlollahtabar

Introduction

Path planning in robotic research is one of the most com-

plicated problems that can occur during autonomous navi-

gation in unknown environments. In path planning

approaches, the path trajectory is planned continuously

between the start and goal positions while attempting to

avoid colliding with obstacles and other objects within the

path. Two kinds of path planning approaches for mobile

robot have been established, namely the global and local

path planning. In the former, the surroundings of the envir-

onments are totally known and the collision-free trajectory

is usually accomplished off-line whereas in the latter, the

surroundings of the environments are unknown and feed-

backs from sensors are required for real-time path

planning.1

1Faculty of Manufacturing Engineering, Universiti Malaysia Pahang, Pekan,

Malaysia
2Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM),

Johor Bahru, Malaysia

Corresponding author:

Mohammed AH Ali, Faculty of Manufacturing Engineering, Universiti

Malaysia Pahang, 26600 Pekan, Malaysia.

Email: hashem@ump.edu.my

International Journal of Advanced
Robotic Systems

September-October 2018: 1–16
ª The Author(s) 2018

DOI: 10.1177/1729881418804726
journals.sagepub.com/home/arx

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

http://orcid.org/0000-0002-5179-7027
http://orcid.org/0000-0002-5179-7027
mailto:hashem@ump.edu.my
https://doi.org/10.1177/1729881418804726
http://journals.sagepub.com/home/arx
http://www.creativecommons.org/licenses/by/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1729881418804726&domain=pdf&date_stamp=2018-10-15

In general, the process of path planning involves

three main tasks: (i) sketch clearly and informatively

the robot’s terrain, (ii) determine the collision-free path

from start to target points and (iii) seek for optimum

path to reach the goal.2

The current path planning methods have been utilized

widely to find the shortest path, optimum path to determine

the goal, collision avoidance and collision-free path navi-

gation in difficult environments.

However, none of these approaches can be used effec-

tively in constrained environments such as the road and

factory settings, where there are some rules and constraints

that must be strictly adhered. Owing to the constraints,

current classical path planning algorithms are no longer

suitable for path determination in the maps of the con-

strained environment. In addition, the generated path has

to guarantee low computational and path costs, avoid obsta-

cles and follow a smooth path to reach the goal.

Related works

Many approaches have been developed to accomplish the

path planning tasks in both global and local environment

settings.

In global path planning, a family of heuristic search

algorithms depending on A* and D* algorithms has been

widely used in robotic applications to determine the opti-

mum path from a given starting node to predefined destina-

tion position. In general, these approaches comprise two

kinds of cost functions. The first is the movement cost

which is used to evaluate the moving of particle from the

initial cell to each cell on the grid map. The other function

is the goal cost which is used to estimate the movement

from each cell on the space grid to target cell while avoid-

ing the obstacles.

Lifelong planning A*3 and D*-Lite4 algorithms by

the same authors were proposed to solve the shortcom-

ings and problems of A* and D* methods, particularly

when the edge weights are changed, no edges to be

detected in the path and the cost function has an infinite

value. In general, those algorithms can plan for the

shortest path without looking at the robot kinematic and

dynamic constraints. A new feasible edge with com-

bined AD*algorithm applied in the robot workspace has

been introduced by Kushleyev and Likhachev5 to meet

the robot’s kinematic and environments dimensions and

find the optimal path. All these algorithms are in fact a

search-based algorithm in which they must know the

environment cells well before generating the path. This

searching task is leading to higher computational cost

that is required to calculate the distance to reach all cells

of the grid and choose the suitable one for the path. The

main concerns of these algorithms are to find the short-

est path between the start to goal positions; however,

there are no considerations for the constraints and rules

in the environment.

The artificial intelligence (AI) methods are commonly

used to determine the robot path due to their learning cap-

abilities and ability to deal with non-linearity mapping such

as fuzzy logic, neural network, genetic algorithm, ant col-

ony and particle swarm optimization. The main drawbacks

of AI-based path planning is the limitation of robot features

that has to be taken into consideration when generating path

planning. Increasing the number of features will lead to an

increase in the complexity of the algorithm.

Singh et al. have proposed a neural network algorithm

for robot navigation in unknown environments with static

and dynamic obstacles.

The input of this system has four layers; three layers for

estimating the obstacle distance (right, left and front) and

one layer for determining the angle between the robot and

the goal position. The output layer is the heading angle of

the robot.6 The system mainly focuses on avoiding the

obstacles in unknown environments.

With fuzzy logic algorithm, a mobile robot navigation in

traversability of roughness terrain in a disaster environment

has been accomplished.7 A real-time mapping was built

based on signals of laser range finder (LRF) and the traver-

sability analysis is performed based on a fuzzy logic

approach.

The fuzzy inference engine involves two input member-

ship functions, namely the terrain roughness and slope. The

output membership function is a terrain traversability

which was then inserted to a vector field histogram (VFH)

to calculate the position and velocity of robot. The fuzzy

system focused only on the roughness and slope of the

terrain and no others factors were taken into consideration

such as obstacles, borders and so on.

A genetic algorithm has been used for a wheeled mobile

robot (WMR) navigation in static, dynamic and unknown

environments.8 The genetic algorithm enabled the robot to

avoid the obstacles well in an unstructured environment.

This algorithm is able to determine the feasible path in

acute shaped obstacles such as (U) or (V), find the shortest

path and reduce the goal search time. In general, this work

is just concerned on acute dynamic obstacles and shortest

path determination. A multi-objective feasible path plan-

ning is determined by ant colony algorithm for obstacle

avoidance.9 The ant colony algorithm is combined with

point-to-point sampling approach to estimate the position

of obstacles. The proposed algorithm performed better than

other point-to-point sampling approaches in terms of path

quality and speed.

A reinforcement learning (RL) algorithm has been used

for balancing a lower body of humanoid robot (NAO HR)

during standing up, sitting down, running and walking

operations.10 The three-dimensional (3D) RL trajectory is

converted into reference position of the robot joints using

inverse kinematic, which helps to minimize the dimension-

ality of the learning process. The results of simulation show

that the lower body of HR is stabilized well at upright

position when the RL cost function is maximized. An

2 International Journal of Advanced Robotic Systems

enhancement to the RL method is provided by a central

pattern generator algorithm to balance the 3-links lower

body HR robot, which has significantly reduced the dimen-

sionality of the learning problem.11

The AI-based path planning is taking only some features

into consideration, namely the shortest path, obstacle

avoidance and global–local path planning. By adding addi-

tional features, it will increase the complexity of the algo-

rithm and computational cost of these algorithms. To

include constraints in such algorithms, we need to generate

more features to these algorithms, thereby increasing the

computational cost.

With roadmap path planning method, the initial point is

matched to the goal by arc or straight lines. The space graph

nodes are the initial, goal points and obstacles vertices.

The nodes that are seemingly visible to each other are

connected by a series of lines. The main methods for road

mapping are the visibility-based search graph and Voronoi-

based diagram. In the visibility search graph, the cost of

each line from the start to goal nodes is accordingly calcu-

lated and the algorithm selects the optimum trajectory to

the goal that does not collide with the obstacles. Mean-

while, in the Voronoi diagram with fast marching (VDFM),

the path is comprised of a number of points that are

equidistant from the surrounding polygons or obstacles

which are connected together to form the Voronoi’s

edges.12 Santiago et al. has introduced a hybrid method

employing the use of VDFM to find a global path of robot

in a map. In this method, the VDFM is applied firstly to

extract the safest path in the environment and secondly, fast

marching is implemented to find the best path between the

start and goal positions using the speed function which does

not change its sign while moving to the goal.13 Although the

road map approach needs low computational cost, its path

cost becomes high due to its arbitrary connection with the

environment vertices, which in turn makes the path always

longer compared to other methods.

A probabilistic path planning method, the so called rap-

idly exploring random tree (RRT) has been developed by

LaValle and Kuffner to find the path in a configuration

space.14 In this method, a group of trees are grown from

the start C-space to explore all cells in the configuration

space while taking a random sample of C space in each

step. It starts to explore from the tree’s nearest vertex by

adding a new edge point to the sample. This vertex expands

later by adding a Voronoi bias to the configuration space.

As the boundary vertex of the tree has the biggest Voronoi

region, it will be selected for path expansion. To solve the

problem of producing several branches in randomized

trees, potentially created in the path, a new heuristic tech-

nique that is integrated into the RRT (He-AT-RRT) algo-

rithm has been introduced to give the capability of the RRT

algorithm to select the randomized point in the explored

space that are located close to the goal.15

A new version of RRT algorithm family, the so called

RRTX is used in dynamic environments with moving and

unexpected obstacles.16 In contrast with other single query

RRT algorithms, this algorithm tries to update the search

graph over the time based on the new locations of the

obstacles without any priori off-line computations. The

algorithm remodels the existing search graph once the

obstacles are found by switching from the shortest path

process to goal sub-tree, rewiring and cascading processes.

The main drawbacks of the RRT family algorithms are: (1)

high computational time needed due to the necessity to

explore the whole map, (2) could not deal with the con-

strained environment since the replanning path concept in

these methods is always associated with the obstacles

avoidance without any considerations to the constraints

during the movements, (3) creates a non-smooth path due

to the continuous repairing of the path and (4) usually, it

could not guarantee to reach to the goal through an opti-

mum path.

In the local methods-based path planning, a path

determination method based on the guidance through the

artificial potential field (APF) approach and stochastic

researchable set (APF-SR) has been used for static and

dynamic obstacles avoidance.17 The sampling-based sto-

chastic method is used to find the collision-free path in

static environments and APF is used to avoid the mov-

ing obstacle in its path. The proposed method has low

computational cost in comparison with other sampling-

based methods and can generate a flexible path while

navigating in crowded environments with 300 obstacles.

However, it still needs to explore the whole environment

to determine the optimum path which results in higher

computational cost.

A navigation system using a VFH method and global

positioning system (GPS) has been used to enable a self-

driving car to reach the destination position with a safe

path and obstacle avoidance in real-world environ-

ments.18 It incorporates a VFH as local planner with GPS

as a global planner with a proportional–integral–deriva-

tive controller to autonomously navigate in restricted

environments. The VFH method has been implemented

with two different Light Detection and Ranging (LIDAR)

to build a 3D Cartesian coordinate map, which helps to

overcome the conventional LIDAR system in terms of

accuracy, reliability and efficiency. No constraints are

involved in the path of this vehicle. Similar to APF, all

cells in the map have to be checked to find the suitable

path between the start to goal positions.

Nearness Diagram Approach is used for path planning

of mobile robots to avoid obstacles when moving in a com-

plex terrain. The configuration space of robot is separated

into sub-sectors that are centred in the mobile robot loca-

tion with several bisector angles.19 A suitable distance

between the mobile robot and the obstacles is required to

guarantee the safety of driving in the whole space. Two

functions are estimated in this approach; the nearness dis-

tances from the robot centre position which represent the

approaching of the centre of robot to obstacles and the

AH Ali and Mailah 3

nearness distances from the mobile robot boundaries which

represent the approaching of the robot bounds to obstacles.

It has a high computational cost due the need to explore the

whole map to generate the right heading angles for

movement.

Bug algorithm family is well known for obstacle

detection-based local path planning with less data acquired

from the range sensors.20 As a result, the path is determined

by matching the current position with the edge of the near-

est obstacle. Several types of bug algorithms are typically

used with sensors to find the shortest path from start to goal

positions such as VisBug, DistBug, TangentBug and Point-

Bug (PB). In the PB algorithm, three points are used to

generate the robot’s path, namely the current sudden point,

sudden point on the obstacle edge and previous sudden

point. A logical triangle is then formed between these three

points to generate the path. The PB algorithm shall be used

in the comparative study with the proposed laser simulator

(LS) approach.

The LS approach has been initially introduced by Ali

et al. to find the optimal path in restricted environments

with the presence of multiple constraints during the robot

motion in the roads and factories environment.21–23 The

main feature of the LS approach is the capability to deal

with the environmental constraints and unknown environ-

ments, both in global or local path planning. More details

about this method will be explained in the third section.

Table 1 shows a comparison between the previous

approaches. This comparison has been accomplished based

on the following criteria: (1) Two-dimensional (2D) maps

with polygons borders are considered for global path plan-

ning. (2) Small-scale environments (1–10 m) are consid-

ered in the local path planning. (3) The capability of the

algorithm to avoid obstacles (moving or static) is consid-

ered, no matter whether the size of obstacles is big or small.

(4) The appearance of the path can help to estimate the path

cost, smoothness and constraints. (5) The computational

time is considered always high for the search-based algo-

rithms and low for the selected-based algorithms.

As shown in Table 1, the previous path planning meth-

ods have been utilized to find the shortest path, optimum

path to determine the goal, collision avoidance and

collision-free path navigation in difficult environments.

However, none of these approaches can be used effec-

tively in constrained environments such as the road and

factory settings. In such areas, there are rules and con-

straints that must be strictly adhered. Owing to such

restrictions and limitations, most of the above-

mentioned path planning approaches are no longer

suitable in determining the optimum path for robotic

navigation in restricted environments.19–21

This article presents a novel path planning approach,

the so called LS in a complete form to find the optimum

path in restricted environments with the presence of mul-

tiple constraints in the robot motion. It is in fact emulating

a LRF device.

The features of LS approach have been compared

with the well-known approaches such as A* algorithm

(A*A), VDFM and PB algorithms. A case study on the

implementation of the LS technique for global and local

path planning of a WMR in a road roundabout setting is

accomplished to search for the optimum path between

the initial and target positions while avoiding obstacle.

The roundabout has a circular area and the WMR must

travel within the circular path to find the exit branch

without any reference to the traffic light signal unlike

the cross intersection junction in which the vehicle has

to rely on the traffic light signal and rules when choos-

ing the exit branch.

Such environment has been considered a relatively dan-

gerous area for robot path planning since the WMR has to

follow the constraints in its path such as true branch detec-

tion, rotation on the roundabout before taking the exit and

going always to the right or left sides depending on the

common driving practices (and rules) of some countries.22

Furthermore, to date, no comprehensive study has yet been

done to model and generate a complete real-time naviga-

tion in a roundabout setting.24

Table 1. Comparison between path planning approaches.

Method Global path Local path Dynamic obstacle Static obstacle
Computational
time Path smoothness Path cost Constraints

A*A family Yes No No Yes High Yes Low No
AI family Yes Yes Yes Yes High No Medium No
RRT family Yes Yes Yes Yes High No High No
RM family Yes Yes Yes Yes Medium No Medium No
APF family Yes Yes Yes Yes High No Medium No
VFH No Yes Yes Yes High Yes High No
NDS No Yes Yes Yes High Yes High No
Bug family No Yes Yes Yes Low No Low No
LS Yes Yes Yes Yes Low No Low Yes

AI: artificial intelligence; LS: laser simulator; A*A: A* Algorithm; RRT: rapidly exploring random tree; APF: artificial potential field; VFH: vector field
histogram; RM: road mapping; NDS: nearness diagram approach.

4 International Journal of Advanced Robotic Systems

LS principle

A new approach has been introduced in this article to

search for the optimum path in unknown and restricted

terrains while avoiding obstacles. It is emulating the

LRF when it is used to detect the robot environment

boundaries and build a polygonal map. In this LS

approach, it is possible to apply constraints on the robot

trajectory while navigating in complex terrains such as

factories and road environments. The main advantage of

this approach is its ability to be used for both global and

local path planning with the presence of obstacles in

unknown environments.

The principle of LS is described according to the fol-

lowing steps:

i. The surroundings of the environments shall be rep-

resented as 2D grid maps f(x, y) as shown in Fig-

ures 1 and 2. The environmental boundaries and

obstacles are projected as polygonal lines such as

arc, circular, tangential and straight lines on the

map. The obstacles can be static or dynamic

objects that might exist during navigation.

ii. The initial point (xint, yint) and destination point (xg,

yg) are well known before the starting of path

determination.

iii. The LS is imitating a LRF device where it gener-

ates several series of points in front of the robot

starting from first cell of the map in front of the

current position to the left and right directions as

vertical or horizontal lines, which are always per-

pendicular to the robot motion trajectory as shown

in Figure 2, assuming that the starting robot posi-

tion is (xint, yint).

iv. When there are more than one possible ways to

arrive at the destination, the collision-free path

can be determined using cost function as in

equation (1)

T ¼ f ðGðx; yÞ þ CRðx; yÞÞ ð1Þ

where T is the cost function to reach the goal, G(x, y) is a

function that measures the distance between the current

position and the destination while CR(x, y) is a function

that describes the rules and constraints to be adhered with.

If there are multiple choices that LS can pass through, LS

will evaluate all paths. This evaluation can be presented in

the form of maximum or minimum distances from each

chosen location to reach the goals, for example, in the

corridor environment as shown in Figure 3, the right door

for LS path is the nearest to goal, however in a roundabout

as shown in Figure 7, the right outlet branch is deemed the

farthermost. The constraints function CR(x, y) is repre-

sented in a 2D map when there is a gradual change from

a series of horizontal lines to vertical lines or vice versa as

shown in Figures 1 and 3 to 7. The switching from vertical

to horizontal lines can be detected if the next line becomes

suddenly longer than the previous line on one side or both

sides. This means that the constraint occurs on the right or

left sides from the current position if the next line becomes

longer than the previous line by certain thresholds as illu-

strated in the following conditions

Figure 1. LS approach (red colour) applied on 2D environment
(polygons with black colour) to find the collision-free path (blue
colour): (a) Case A – a single border detected only; (b) case B – a
single border detection with long tangential line; (c) case C – shift
from small to large regions; (d) case D – detection of obstacles;
and (e) case E – selection of shortest path to destination. LS: laser
simulator; 2D: two-dimensional.

AH Ali and Mailah 5

CR ¼
CR right side if Lnþ1 � Ln > h R

CR left side if Lnþ1 � Ln > h L

CR both sides if Lnþ1 � Ln > h R and Lnþ1 � Ln > h L

8><
>:

9>=
>;

where Ln is the length of the current line, Lnþ1 is the length

of the next line, hR is threshold on the right side (hR > 50%
of Ln) and hL is threshold on the left side (hL > 50% of Ln).

The algorithm will then evaluate all the constraints and

choose to go with the one that is nearest to the goal. More

details on how to generate the constraints are illustrated in

the fourth section.

The shortest path between the start to goal positions is

always selected in case if there are no constraints as shown

in Figure 1 (case E).

v. When an obstacle is detected, its border is consid-

ered as one edge of the generated lines and LS lines

will be generated between the obstacle edges and

other borders as shown in Figure 1 (case D). Equa-

tions (2–7) are applied to find the path in this case.

As mentioned in point (iii), the LS is imitating the LRF

to detect the borders of the 2D grid map environments,

which is accomplished by generating vertical or horizontal

series of points as lines to detect the borders of the envir-

onments. In the case of vertical series of points as vertical

line as shown in Figure 2, if the robot is located at the initial

position (xint, yint), a series of points representing a vertical

line will be created through the LS in front of the robot

starting from first cell of the map in front of the current

position (xc, yc) to the left and right direction until it touches

the border as defined in equations (2) and (3). The points

(xint, yint) and (xc, yc) are equally positioned in y direction

and xc is assigned to be bigger than xint by 1 cell.

On the right side of point (xc, yc), the points can be

generated using equation (2)

y ¼ y c þ i1 ð2Þ

On the left side of point (xc, yc), another set of points is

generated using equation (3)

y ¼ y c � i2 ð3Þ

where i1 ¼ 1: R and i2 ¼ 1: L are the count of cells in the

grid map from the right and left of the current position (xc,

yc), respectively, until the generated points hit the borders

on the right (R) and left (L) sides of the environment. The

size of the cells isn’t constant and depends on the resolution

of map’s image.

The x position for the first line remains constant and

equals to xc, which is the first cell of the map in front of

the current position (xc, yc).

The candidate point (xp1, yp1) for the path in this first

vertical line has the following dimension as defined in

equation (4)

x p1 ¼ x c

y p1 ¼ y c þ
i2 � i1

2
ð4Þ

The x position of the candidate point (xp2, yp2) for the

second line can be determined by equation (5) for forward

direction movement

Figure 2. LS algorithm producing a series of points representing: (a) horizontal lines; (b) vertical lines; point () is the candidate of the
path; point (�) is the previous lines path candidate. LS: laser simulator.

6 International Journal of Advanced Robotic Systems

x p2 ¼ x c þ f 1 ð5Þ

For backward direction, the equation can be written as in

equation (6)

x p2 ¼ x c � f 2 ð6Þ

where f1 and f2 are the incremental cells in x position, it

should be assigned with small value to enhance the accu-

racy of the trajectory. By repeating equations (2) and (3) to

count the number of cells on the left and right of point (xp2,

yp1), the y position of the candidate point (xp2, yp2) is

expressed as in equation (7)

y p2 ¼ y p1 þ
i4 � i3

2
ð7Þ

where i3 ¼ 1: R and i4 ¼ 1: L are the count of cells in the

grid map from the right and left of the current point (xp2,

yp1), respectively, until the generated points hit the borders

on the right (R) and left (L) sides of the environment.

By the same way, we can determine the other vertical

lines of LS. Similarly, we can use the same equations (1–6)

Figure 3. Comparison between LS, A* Algorithm and VDFM: (a)
Clear border environment with paths generated by LS (green) and
A*A (purple); (b) clear border environment with paths generated
by LS (green), A*A (purple) and VDFM (red); (c) noisy environ-
ment with paths generated by LS (green) and A*A (purple); (d)
noisy environment with paths generated by LS (green), A*A
(purple) and VDFM (red). LS: laser simulator; A*A: A* Algorithm;
VDFM: Voronoi diagram with fast marching.

(a)

(b)

Figure 4. Computational costs for the LS, A*A and VDFM: (a)
Computational cost for clear environment and (b) computational
cost for noisy environment. LS: laser simulator; A*A: A* Algo-
rithm; VDFM: Voronoi diagram with fast marching.

AH Ali and Mailah 7

to determine the horizontal series of points as horizontal

line, by just swapping the x and y directions. The candidate

point (xp1, yp1) for the path in this first horizontal line has

the following dimension as in equation (8)

y p1 ¼ y c

x p1 ¼ x c þ
i2 � i1

2

ð8Þ

The second candidate points can be determined using

equation (9)

y p2 ¼ yþ f 1

x p2 ¼ x p1 þ
i4 � i3

2

ð9Þ

where i1, i2, i3 and i4 can be defined in the same way as in

equations (2–6) but in the x direction. f1 and f2 are also

similar to equations (5) and (6) but in the y direction.

Three main cases can be observed in the collision-free

path of the robot as follows:

Two-side–borders detection

The LS algorithm generates a series of points from the first

cell of the map located in front of the current position to the

left and right directions to represent vertical and horizontal

lines based on the related equations as shown in Figure 2

The LS approach selects a single point among the

series of generated points as the proposed candidate for

the path as depicted in Figures 1 and 2 (located roughly in

the middle of lines). A particular case is said to have

occurred when the path shifts from a small region to a

large region or vice versa as shown in Figure 1 that is

represented in case C. To prevent getting a drift in such

a case, a set of new lines with in-between distance shall be

deliberately generated.

(a)

(b)

Figure 5. Path costs for the LS, A*A and VDFM with fast
marching approaches: (a) Path cost for clear environment and (b)
path cost for noisy environment. LS: laser simulator; A*A: A*
Algorithm; VDFM: Voronoi diagram with fast marching.

Figure 6. Constraints of the LS path in 2D environments; the
notations 1 to 4 represent the constraints of movement; point
() is the starting position and point () is the goal position. LS:
laser simulator; 2D: two-dimensional.

Figure 7. Roundabout settings with LS path; the notations 1 to 7
represent the constraints of movement; nmax is the maximum
rotational angle of last line in LS. LS: laser simulator.

8 International Journal of Advanced Robotic Systems

The start and end points of each generated line on the

left and right sides of the horizontal lines can be described

as in equations (8) and (9).

One-side–border detection

For only one border that can be detected by the series of

points, the LS algorithm will in turn generate a series of

tangential lines that converge at a single point already deter-

mined as shown in Figure 1 (case A). The tangential lines are

in fact produced from a point on the existing border and

rotated at a certain angle until the other border is detected

as shown in Figure 1 (cases A and B). The distances between

the proposed candidate points of the tangential lines and the

existing border’s points (xint, yint) remain constant. The rota-

tional lines are described as in equation (10)

x ¼ ðy� y intÞ tanðeÞ þ x int ð10Þ

where xint and yint are the points’ coordinate system

when the LS algorithm starts the rotation as shown in Fig-

ure 1. e is a slope of the tangential line against the vertical

ones. Another case is noticed when the new tangential line

intersects with the other border at a relatively long distance

in comparison to the previous tangential line as shown in

Figure 1 (case B). In this state, the displacement between

the existing border and proposed candidate points remained

similar to the previous tangential line.

None of the borders are detected

In this case, the LS algorithm generates tangential lines

starting from the current cells till it finds one or two bor-

ders. Equation (10) is used for generating such lines.

Comparing LS algorithm with other
approaches

A*A algorithm was first chosen to benchmark the LS algo-

rithm, since it is well known and commonly used method

for global path planning as shown in Figure 3(a) and (c).

The LS was also compared with the VDFM technique10 as

shown in Figure 3(b) and (d), notably depicted with netlike

formation. The comparison is performed using a 2D envi-

ronment map with clear border (Figure 3(a) and (b)) and

noisy environments (Figure 3(c) and (d)).

Three parameters have been considered for the compar-

ison, namely the computational cost, trajectory cost and

path smoothness. The trajectory cost is defined as the com-

plete distance required to reach the goal position from the

starting point. As it is preferred to reach the goal with a

shortest possible time during path planning, a computa-

tional time is regarded as the main feature for path deter-

mination approach and is known as the time spent to reach

the destination from the initial position. The path smooth-

ness is recognized through the trajectory patterns of the

generated paths by different approaches.

The computational cost of the LS is usually smaller

than the time executed by the A*A and VDFM to reach

the goal from the starting position as shown in Figure 4.

In the clear boundary environment as depicted in

Figure 3(a) and (b), there is a huge difference in the

computational time between the LS, A*A classic algo-

rithm and VDFM approaches.

However, the differences become smaller in noisy envir-

onments as shown in Figure 3(b) and (d). The computa-

tional costs for all approaches with 20 trials and

considering clear and noisy environments are presented

in Figure 4. The mean values of the computational costs

for clear environment in Figure 4(a) are 91.65 s, 174.25 s

and 100.6 s for LS, A*A and VDFM algorithms, respec-

tively. In contrast, these values for noisy environment as

depicted in Figure 4(b) are found to be 208.3 s, 384.65 s and

238.7 s, respectively, implying small differences.

The path costs for all approaches considering clear and

noisy environments with 20 trials are illustrated in Figure 5.

The path costs for the LS and A*A approaches are approx-

imately similar.

However, there is a noticeable difference between the

LS and VDFM algorithms. Meanwhile, the difference is

slightly smaller between the A*A and LS algorithms as

shown in Figure 5 which may be due to the fact that the

A*A algorithm does not follow the rules and constraints in

its movement. In addition, the robot terrain is regarded as

an unknown environment for LS, while it is already known

for A*A. On the other hand, the VDFM algorithms have the

highest path cost because the coordinate system of the

cells’ centres in VDFM is changing arbitrarily in x and y

direction which in turn causes the algorithm to oscillate and

fluctuate while moving towards the goal.

The mean values of the path costs for clear environment

presented in Figure 5(a) are 189.85 mm, 181.25 mm and

300.05 mm for LS, A*A and VDFM, respectively. How-

ever, for noisy environment as shown in Figure 5(b), these

values are 399.65 mm, 331.95 mm, and 566.45 mm, respec-

tively. From Figures 4(b) and 5(b), it seems that the differ-

ences of the computational and path costs between LS,

A*A and VDFM in the noisy environment become smaller

in some trials. This is due to that the noises are acting as

excitation signals and lead to an optimal solution.25 How-

ever, the cost values are almost similar in all trials for clear

environment as shown in Figures 4(a) and 5(a).

The constraints to reach the goal from start position in

the environment as shown in Figure 6 is to go straight

through the corridor until it finds the right door of the goal’s

room. The doors are discovered if the next vertical line

becomes longer than previous line on one side. We have

four doors that the LS path will pass through them. Doors 1

and 2 have positions that will make the distance to the goal

becomes longer than any candidate points of the path (mid-

dle of vertical lines), and hence they will be excluded.

Doors 3 and 4 are of potential values for the LS path and

since LS does not know the environment yet, it will first

AH Ali and Mailah 9

test whether there are other doors after Door 3, so that it

will generate vertical lines until it reaches Door 4. Now, it

will choose Door 4 as the LS path and draw the testing lines

as real lines. Doors 1, 2 and 3 are considered as the envi-

ronment borders after LS confirms that they are not of

potential value for the path.

For the path smoothness feature as shown in Figure 3,

it is noticed that the path pattern of A*A shows a little

bit smoother than LS, but the VDFM method produces

the worst trajectory. This is because the LS lines are

generating only as vertical and horizontal lines in the

polygon maps which can be improved if the LS is gen-

erating lines in all directions. In comparison with the

VDFM, LS exhibits smooth trend unlike the one shown

by the VDFM cells behaviours.

As featured in Figure 6, the constraints 1 to 4 are rep-

resented in a 2D map when there is a change of vertical

lines to horizontal lines. After evaluation of all the con-

straints, the algorithm choose to go with the fourth one.

Implementation of LS for path planning
in a road roundabout environment: A case
study

The LS approach is implemented to find the collision-free

path within the road roundabout, which is considered as

complicated terrains involving constrains such as bends,

intersections and priority rules. Consequently, it is required

to develop an algorithm with the capability to make deci-

sion for selecting the optimum trajectory from the entrance

to exit of the roundabout. LS algorithm has been imple-

mented in a roundabout terrain in two ways, namely the

global path planning in the grid maps and local path plan-

ning in the real road roundabout environments. This is duly

described in the respective subsections as follows:

Part A: Global path planning in the grid map

It is used to enable a specific point to move from start to

goal positions in a roundabout environment.

The main features of the road roundabout environment

have been modelled in this simulation, namely border

sides or curbs, middle road borders and the intersection

of roundabout. As has been previously mentioned, a 2D

grid map is utilized to represent the road roundabout set-

ting in MATLAB using an image processing toolbox in

which a pixel represents one cell of the 2D grid map. The

roundabout environment is modelled as a circular arc

located in the middle of the roundabout as shown in Figure

7. The LS generates a series of points as horizontal/ver-

tical lines to locate the road’s curbs, where the roundabout

is not found yet.

When negotiating a bend (turning), it will generate

another series of points as tangential lines as shown in

Figure 7 while at the same time, applying an image pro-

cessing algorithm to detect the intersection of edges.

The roundabout settings are classified into three main

regions, namely the entrance, exit and centre regions.

As shown in Figure 7, there are seven constraints (1–7)

in the roundabout that must be followed during navigation

from the entrance to the exit branches. At the entrance of

the roundabout, there are two constraints on the right and

left sides as denoted by constraints 1 and 2 in Figure 7,

which are resulted by three possibilities for the path gen-

eration; to continue in the forward direction (as horizontal

lines and those with inclined angles), right or left (vertical

lines). The algorithm will choose to go in the forward

direction, approximately in the middle due to short path

navigation compared to the left direction which results in

a long path to reach the goal. Note that the shortest path is

to go for the right side, but this is not allowed in a round-

about setting that follows the right driving convention. The

same applies to the constraints 3–7 in Figure 7, where the

algorithm causes the robot to avoid tracking the left side but

instead continues to follow a straight forward direction

until it reaches the goal.

Roundabout entrance and exit regions. In such regions, the

curbs still exist as shown in Figure 7. The series of points

as lines are generated to locate the curbs at both sides of the

road. The 2D road roundabout map is represented in grey-

scale values (0–255), where the side borders and round-

about are presented as black pixels (0–20) and the rest of

roundabout features are presented as greyscale pixels (100–

130).

It is planned to create the robot path in the middle of the

horizontal/vertical lines within the road roundabout curbs.

The initial position of the robot is marked as the first ref-

erence point xs and ys.

The next generation of reference points will be produced

if the movement starts from bottom entrance of Figure 7 by

applying equations (11–13) as follows

y ¼ y s þ i ð11Þ

where ys is the initial position of robot in y direction.

The dimension of the horizontal line is determined by

equations (12) and (13)

x right ¼ x s þ R P ð12Þ

x left ¼ x s � L P ð13Þ

where xs is the initial position of robot in x direction. xright is

the line limit in the right border while xleft is the line limit in

the left border. Rp is the pixel index from the reference

point to the right side curb. Lp is the pixel index from the

reference point to the left side curb. The candidate point for

the robot’s path at the entrance/exit of the roundabout can

be calculated using equations (14) and (15)

y snew ¼ y s � i ð14Þ

x snew ¼ x left þ
R P þ L P

2
ð15Þ

10 International Journal of Advanced Robotic Systems

where xsnew and ynew are the coordinates of the candidate

point. i has the value between 1 and ymax which is equal to

the image width.

Centre region of the roundabout. The centre of the roundabout

environment is modelled as a circular arc located in the

middle of the roundabout terrain. To implement LS for path

planning in the roundabout environment, the LS algorithm

is firstly applied to find the circular border of roundabout in

an unknown terrain; secondly, the path in the middle of the

horizontal/vertical lines will be produced. Three kinds of

borders are found in the road roundabout environment,

namely the roundabout curb, corner curb and open-space

area where no border is detected.

Detection of roundabout. The following factors are utilized to

detect if the object is a roundabout or otherwise:

� the curbs of the road are faded in both left and right

sides of the road at the same time;

� detection of circular object in front of the robot on

the right side.

In general, the roundabout centre has two areas: non-

curbed region located in the gap between the entrance/exit

region and roundabout border and roundabout circular edge

as follows:

i. Non-curb region detecting

In non-curbed region, the LS generates tangential lines

with sloped angles that are gradually incremented in the

environmental map as shown in Figure 7, starting with the

reference points that have been already calculated at

the entrance/exit regions using equation (10) until they

touch the curbs on the right and left sides. The displace-

ment between the reference points and left curb can be

computed as in equations (16) and (17)

xl ¼ x snew � j ð16Þ

y l ¼ y snew � ðx snew � x lÞ tanðd lÞ ð17Þ

The displacements between the reference points and

right curb can be computed as in equations (18) and (19)

x r ¼ x snew þ k ð18Þ

y r ¼ y snew � ðx l � x snewÞ tanðd rÞ ð19Þ

where dr and dl are the slope angles of the tangential lines in

the right and left sides to the horizontal lines, respectively

and k ¼ 1: Rp. j ¼ 1: Lp are the incremental pixels between

the reference points and right/left curbs, respectively.

The pixel number (nl) that is expected to fulfil equations

(16) and (17) can be written as in equation (20)

XL P

j¼1

P j ¼ n l ð20Þ

Similarly, the number of pixels (nr) to fulfil equations

(18) and (19) can be written as in equation (21)

XL P

k¼1

P k ¼ n r ð21Þ

Since the displacement between the road borders or

curbs in reality is almost equal, the LS algorithm is com-

paring the number of pixels of each two consecutive tan-

gential lines based on equation (17) as follows

A l ¼ nl i � nl i� 1; A r ¼ nr i � nr i� 1 ð22Þ

If Al and Ar exceed the threshold described by equation

(23), the new tangential line is not representing the road

roundabout curbs

A l < A l1 þ t d; A r < A r1 þ t d ð23Þ

where Ar1 þ td and Al1 þ td are the thresholds for the right

and left sides, respectively. Ar1 and Al1 are the differences

in pixels between the first two sequence tangential lines. td
is a threshold sub-value chosen carefully to ensure that the

lines are not a part of the roundabout curb. It is assumed as

10% of the image resolution (x, y) in this research.

ii. Centre of roundabout detection

If the curbs are not detectable in step (i), then LS will

execute the algorithm for centre of roundabout detection.

From the reference points that are located at the non-curbed

region, the algorithm is generating multi-tangential lines

starting from the last tangential line in the non-curbed region.

The tangential lines with slightly different angles are cre-

ated, starting from the reference point of the last non-curbed

line in the previous step. The distance of the tangential lines

from the last reference point to the intersection border will

be computed and a threshold is made to these tangential lines

to distinguish between the lines crossing the roundabout and

others. Equation (24) describes the generation of these lines

y ¼ y snew � ðx� x snewÞ tanðnÞ ð24Þ

where x and y are the coordinate system of the pixels which

are gradually changed until it intersects the circular border.

ysnew and xsnew are the coordinate system of the centre of

the last reference line calculated in a non-curbed detection

step. n is the rotational angle of the horizontal lines which

has a value in the range, 0� to 90� as illustrated in Figure 7.

The difference in pixels between the two sequence lines is

calculated from equation (25) given by

A roun ¼ p rouni � p rouni�1 < d roun ð25Þ

where prouni and prouni�1 are the number of tangential line

pixels. droun is the roundabout threshold that is utilized to

differentiate between the lines related to the roundabout

and other borders. If the lines cross the roundabout border,

then Aroun has definitely a value smaller than droun with

other lines neglected.

AH Ali and Mailah 11

A circular shape will then be generated from the round-

about cross points of the tangential lines with the circular

borders. If the cross points achieve the circular shape equa-

tion as expressed in equation (26), it is confirmed that the

centre of the roundabout has been detected

ðx� x0Þ2 þ ðy� y0Þ2 ¼ r c
2 ð26Þ

Five points are selected from the cross points, three of

them are used to find the parameters of circles such as the

centre of circle coordinate system, that is, x0, y0 and circle

radius rc. The other two points are used to verify the

detected shape is a circle using equation (27)

comp ¼ ðx� x0Þ2 þ ðy� y0Þ2 � r c
2 < dev ð27Þ

where comp is typically assigned to a small values between

0 and 1. dev represents the deviation of the radius from the

true value (here, it is set to 10).

iii. Roundabout path planning

In this area, the mobile robot is gradually moving in a

circular path in the roundabout using LS. The motion con-

straints of the robot have to be generated to prevent the

mobile robot from straying in false direction since the

roundabout has four entrances and exits. Actually, the start

and goal positions are defined by users at specific entrance

or exit regions and the other entrances/exits are marked as

non-allowable to pass by changing the pixel values as illu-

strated in Figure 7. The size of the images in x and y

directions is limited by xres and yres as shown in Figure 7.

The entrance regions have the following status:

� x > xres/2, y > yres/2, the entrance is located at the

right section of this image in Figure 7.

� x > xres/2, y < yres/2, the entrance is located at the top

section of this image in Figure 7.

� x < xres/2, y < yres/2, the entrance is located at the left

section of this image in Figure 7.

� x < xres/2, y < yres/2, the entrance is located at the

bottom section of this image in Figure 7.

Similarly, the positions at the exit regions can also be

found. The series of points that form the tangential lines

are generated perpendicularly to the motion of the robot

from the road roundabout circular edge to the non-

curbed area corner or the borders generated by the

motion constraint algorithm (depicted as red lines in

Figure 7). LS tangential lines will be generated starting

from the roundabout circular intersections and ending

with either the borders or motion constraint lines using

equation (28)

y ¼ y round in � ðx� x round inÞ tanð Þ ð28Þ

where yround_in and xround_in are the coordinate system of the

intersection point. is the rotational angle around the

roundabout (measured with reference to the horizontal

lines). yround_in and xround_in can be determined using equa-

tions (29) and (30)

y round in ¼ r c sinð Þ ð29Þ

x round in ¼ r c cosð Þ ð30Þ

where rc is the radius of the roundabout circle. The value of

 is located between 0¼ nmax and ¼ max� nmax. nmax

is the rotational angle for the last line in equation (24) as

shown in Figure 7. max is subjected to the assigned values

as follows:

1. 90� with the goal placed at the Left Rot.�90� Left as

illustrated in Figure 8(a) and (b). Rot stands for

rotation.

2. 180� with the goal placed at the Left Rot. �180�

Straight as illustrated in Figure 8(c) and (d).

3. 270� with the goal placed at the Left Rot. �270�

Straight as illustrated in Figure 8(e) and (f).

4. 360� with the goal placed at the Left Rot. �360�

Straight as illustrated in Figure 8(g) and (h).

The robot path can be calculated as the centre lines

that conform to the following conditions as shown in

Figure 8

y roun cent ¼ y roun in þ ½L t sin ð Þ�=2 if nmax � < 90� or if 180� < � 270�

y roun cent ¼ y roun in � ½L t sin ð Þ�=2 if 90� < � 180� or 270� < � 360� � nmax
ð31Þ

x roun cent ¼ x roun in � ½L t cos ð Þ�=2 if nmax � < 90� or if 180� < � 270�

x roun cent ¼ x roun in þ ½L t cos ð Þ�=2 if 90� < � 180� or 270� < � 360� � nmax

ð32Þ

where Lt is the whole pixel number in the LS lines. xroun_cent

and yroun_cent are the centre lines coordinate system. The

obstacle border, if any, is considered as a road border when

detected by LS.

Simulation results for various scenarios. Figure 8 shows the

simulation of the robot path when travelling from start to

goal positions in the roundabout considering eight scenar-

ios. The path from each entrance is generated to determine

12 International Journal of Advanced Robotic Systems

the appropriate branch exit: Left Rot. �90� Left, Left Rot.

�180� Straight, Left Rot. �270� Straight and Left Rot.

�360� Straight, each of them is represented with the pres-

ence of obstacle or in collision-free path.

Part B: Local path planning in the real road
roundabout environments

LS is used in the real roundabout environments to deter-

mine if the roundabout is located within the local 2D map

that is constructed from the camera and image processing

algorithm during mobile robot navigation in roundabout

environments. The LS algorithm is quite similar to the one

that has been previously discussed in part A, with some

minor changes:

– Local path planning deals with live streaming video

not just one static image as in the global case.

– The roundabout centre in the video image sequences

is looked upon as an ellipse not as a circle unlike in

part A.

– The dimension of the roundabout could not be com-

puted due to the image scaling system of the camera

and calibration error.

To evaluate the local path planning using LS in round-

about detection, experimental works have been carried out

to find the collision-free path in a real roundabout with

cylindrical obstacle as follows:

i. Real roundabout

The LS algorithm is used to apply robot’s navigation in

the real road roundabout as shown in Figure 9.

It has been seen that the algorithm manage to effectively

detect the roundabout when it is detected from the sequence

of images as shown in Figure 9.

The continuous lines in the middle of the LS images

as shown in Figure 9(c), (g), (k) and (o) results denote

that the roundabout is still not detected and the robot

should continue moving with the same speed. However,

the discontinuous line shown in Figure 9(l) indicates the

detection of the roundabout upon which the robot must

change its speed and start moving in a circular path

within the roundabout.

The LS is compared with PB algorithm17 as shown in

Figure 9(d), (h), (l) and (p) to evaluate the performance of

the LS in the local maps. The PB algorithm has a range

equals to 1 m in this work.

From Figure 9(d), (h), (l) and (p), it is obvious that the

paths produced by LS and PB are similar in which the

roundabout is still located far from the current position.

However, the PB approach has a noticeable drift when the

roundabout is detected in its measurement range. This is

because the PB algorithm depends on the obstacle edges to

determine the path of the robot, whereas LS depends on

each sequence of measurements to find its path.

ii. Cylindrical obstacles

The roundabout detection algorithm is also tested by

placing a cylindrical obstacle in the robot path. The LS

shows its capability to distinguish between the obstacle

and the roundabout and determine the path as shown in

Figures 10 and 11. The path navigated through the LS

is compared with PB algorithm as shown in Figures 10

to 12(c).

Similar to the fifth section, part B(ii), LS shows good

performance in comparison with the PB algorithm since the

PB uses few points to find its path and always connect the

path to the obstacle edges, which resulted in non-smooth

and fluctuating paths as shown in Figures 10 to 12(c).

Figure 8. LS path planning (yellow colour) starting from the
entrance at the top of the roundabout environments (black col-
our): (a) Left Rot. �90� Left, (b) Left Rot. �90� Left with obstacle,
(c) Left Rot. �180� Straight, (d) Left Rot. �180� Straight with
obstacle, (e) Left Rot. �270� Straight, (f) Left Rot. �270� Straight
with obstacle, (g) Left Rot. �360� Straight and (h) Left Rot. �360�

Straight with obstacle.

AH Ali and Mailah 13

iii. Roundabout navigation and path determination

A WMR platform with three wheels actuated by dif-

ferential drive motors has been used to inspect the LS

algorithm in real road roundabout environment as shown

in Figure 13. It is a medium size platform with gross

mass (105 kg) and dimensions (100 � 70 � 30 cm3) and

can move at a relatively low speed, typically in the

range of [0.2, 1.5] m/s. It consists of three main units:

differential drive, measurements and vision and process-

ing units. An on-board computer is used as a host con-

troller, where the LRF and Wi-Fi camera are connected

directly to the PC and two DC motors with encoders are

connected via dual brushless cards (Interface Free Con-

troller IFC-BL02) to motor driver card (MDS40A) and

brush cards (IFC-BH02), respectively, through the com-

puter interface card (IFC-CI00). The main power card

(IFC-PC00) regulates the power supply to the whole

embedded controller system.

Figure 9. Sequence of images produced by the LS algorithms for
real roundabout navigation: (a), (e), (i) and (m) – original images;
(b), (f), (j) and (n) – images from the preprocessing and processing
operations; (c), (g), (k) and (o) – applying the LS algorithm (rep-
resented by continuous or discontinuous lines in the middle); (d),
(h), (l) and (p) a comparison between LS (black) and PB algorithm
(red). LS: laser simulator; PB: PointBug.

Figure 10. LS path with cylindrical obstacle in the middle of road:
(a) original image; (b) image from the preprocessing and pro-
cessing operations; and (c) applying LS algorithm (black) and PB
algorithm (red). LS: laser simulator; PB: PointBug.

Figure 11. LS path with cylindrical obstacle near the right curb of
the road: (a) original image; (b) image from the preprocessing and
processing operations; and (c) applying LS algorithm (black) and
PB algorithm (red). LS: laser simulator; PB: PointBug.

Figure 12. LS path with cylindrical obstacle near the left curb of
the road: (a) original image; (b) image from the preprocessing and
processing operations; (c) applying LS algorithm (black) and PB
algorithm (red). LS: laser simulator; PB: PointBug.

14 International Journal of Advanced Robotic Systems

The interface computer card (IFC-IC00) is the main

controller that imports and exports the data from host com-

puter to the slave IFC card via stacker pins. The slave IFC

cards (IFC-BLO2, IFCBH02) are configured to the main

controller using a unique communication addresses. Visual

C# is the main processing program for IFC cards and

MATLAB is used for the video and signal processing

acquired from the camera and LRF, respectively, since it

has suitable image and signal toolboxes. The linking

between C# and MATLAB was done using the COM auto-

mation server; data can be created in the client C# program

and passed to MATLAB and vice versa.

The LS with camera’s local map parameters is incorpo-

rated with the LRF and encoders for roundabout detection

and navigation from starting position at specific entrance of

the road to the target position that is located in a specific

exit of the roundabout with a path equals to 20 m as shown

in Figure 13. The LS path is compared with the PB counter-

part to find the collision-free path in road roundabout as

shown in Figure 13(d).

The path planning of the robot using LS looks smooth in

the road following and roundabout regions as shown in

Figure 13(d). However, there is a slight drift (deviation)

in the navigation path near to the entrance and exit of

the roundabout due to the increasing of the robot speed

which could not be controlled since it is merely a path

planning methodology and no control scheme is

employed at this point in time. Other reasons are related

to the LRF inaccuracy and sensitivity while measuring

the static objects (curbs and roundabout centre) and non-

symmetrical entry and exit features in the roundabout.

On the other hand, the PB algorithm has detected the

roundabout as an obstacle and generates the path using

the start point, five interconnected points in the round-

about and goal point which eventually cause the robot to

‘crash’ undesirably at certain points within the round-

about as shown in Figure 13(d).

Conclusion

A novel algorithm, the so called LS to determine a

collision-free trajectory in an unknown environment has

been presented. With this approach, it is possible to apply

several constraints in the robot path while navigating in a

complicated terrain such as a road roundabout environ-

ment. Other conclusions that can be drawn are as follows:

a. The main advantage of this approach is the LS abil-

ity to be used for both global and local path planning

with the presence of obstacle and unknown

environment.

b. A case study on its implementation in both global

and local path planning has been applied in a road

roundabout setting.

c. In the global path planning, the path is generated

within the grid map of roundabout environment to

select the path according to the respective road

rules. It is also used to recognize the real round-

about and generate the path from sequence of

images during the local path planning in real-

world circumstances.

Results show the effectiveness of this approach in both

simulation and experimental set-ups. The LS approach has

been compared with other well-known approaches, namely

the A*A, VDFM and PB algorithm to show its path perfor-

mance when implemented in both global and local path

planning environments.

Future works shall include the implementation of LS for

the mobile robot to navigate in other more challenging and

complex environments and the possibility of embedding a

robust control method to enhance its overall navigating and

controlling performance.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Figure 13. Outdoor mobile robot navigation using LS: (a) image
showing the mobile robot platform and roundabout environ-
ments, (b) camera’s local map for LS when the robot starts
moving, (c) camera’s local map for LS when the robot detects the
roundabout and (d) path of mobile robot when navigating in a
roundabout setting (black circle) using LS and sensors fusion (blue
crosshairs) in comparison with the PB algorithm (red circles and
are connected by the red dotted) within roundabout setting (6 m
length and 4 m width). LS: laser simulator; PB: PointBug.

AH Ali and Mailah 15

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article: This

project is sponsored by Universiti Malaysia Pahang (UMP) and

Ministry of High Education-Malaysia (MOHE) with grants no:

RDU160131 and RDU180323.

ORCID iD

Mohammed AH Ali http://orcid.org/0000-0002-5179-7027

References

1. Hui-Zhong Z, Shu-Xin D and Tie-Jun W. Real-time path

planning for mobile robots. In: Proceedings of the 4th inter-

national conference on machine learning and cybernetics,

Guangzhou, China, 18–21 August 2005, pp. 526–531. IEEE.

2. Johnson CM and Gray JO. Hierarchical path-planning for a

mobile robot. Eng Appl Artificial Intell 1994; 7(2): 137–149.

3. Koenig S, Likhachev M and Furcy D. Lifelong planning A*.

Artificial Intell J 2004; 155(1–2): 93–146.

4. Koenig S, Likhachev M and Furcy D. D-Lite. In: 18th

national conference on artificial intelligence, Edmonton,

Canada, 28 July–1 August 2002, pp. 476–483. Palo Alto:

AAAI Press.

5. Kushleyev A and Likhachev M. Time-bounded lattice for

efficient planning in dynamic environments. In: 2009 IEEE

international conference on robotics and automation

(ICRA’09), Piscataway, Kobe, Japan, 12–17 May 2009, pp.

1662–1668. IEEE.

6. Mukesh KS and Dayal RP. Intelligent neuro-controller for

navigation of mobile robot. In: International conference on

advances in computing, communication and control, Mum-

bai, India, 2009, pp. 123–128.

7. Yusuke T, Yonghoon J and Atsushi Y. Fuzzy based traver-

sability analysis for a mobile robot on rough terrain. In: 2015

IEEE international conference on robotics and automation

(ICRA), Seattle, Washington, USA, 26–30 May 2015, pp.

3965–3970. IEEE.

8. Soh CY, Parasuraman S and Velappa G.Dynamic path plan-

ning algorithm in mobile robot navigation. In: 2011 IEEE

symposium on industrial electronics and applications (ISIEA),

Langkawi Malaysia, 25–28 September 2011, pp. 364–369.

9. Englot B and Hover F. Multi-goal feasible path planning

using ant colony optimization. In: 2011 IEEE interna-

tional conference on robotics and automation (ICRA),

Shanghai, China, 9–13 May 2011, pp. 2255–2260. IEEE.

10. Tutsoy O, Barkana DE and Colak S. Learning to balance an

NAO robot using reinforcement learning with symbolic

inverse kinematic. Trans Instit Meas Control 2017; 39(11):

1–14.

11. Tutsoy O. CPG based RL algorithm learns to control of a

humanoid robot leg. Int J Robot Autom 2015; 30(1):

178–183.

12. Jonathan M, Qujiang L and Martijn W. An empirical study of

single-query motion planning for grasp execution. In: 2017

IEEE international conference on advanced intelligent

mechatronics (AIM), Munich, Germany, 3–7 July 2017, pp.

1234–1241. IEEE.

13. Santiago G, Luis M, Abderrahim M, et al. Path planning for

mobile robot navigation using Voronoi diagram and fast

marching. In: Proceedings of the 2006 IEEE/RSJ interna-

tional conference on intelligent robots and systems, Beijing,

China, 9–15 October 2006, pp. 2376–2381.

14. LaValle SM and Kuffner JJ. Randomized kinodynamic

planning. Int J Robot Res 2001; 20(5): 278–400.

15. Ardiyanto L and Miura J. Real-time navigation using rando-

mized kinodynamic planning with arrival time field. Rob

Auton Sys 2012; 60: 1579–1591.

16. Michael O and Emilio F. RRTX: Asymptotically optimal

single-query sampling-based motion planning with quick

replanning. Int J Robot Res 2016; 35(7): 797–822

17. Hao-Tien C, Nick M and Kendra L. Path-guided artificial

potential fields with stochastic reachable sets for motion

planning in highly dynamic environments. In: 2015 IEEE

international conference on robotics and automation (ICRA),

Seattle, WA, USA, 26–30 May 2015, pp. 2347–2354. IEEE

Press.

18. Li J, Bao H and Han X. Real-time self-driving car navigation

and obstacle avoidance using mobile 3D laser scanner and

GNSS. Multimed Tools Appl 2017; 76(21): 23017–23039.

19. Minguez J and Montano L. Nearness diagram (ND) naviga-

tion: collision avoidance in troublesome scenarios. IEEE

Trans Rob Autom 2004; 20(1): 45–59.

20. Buniyamin N, Wan Ngah WAJ, Sariff N, et al. A simple local

path planning algorithm for autonomous mobile robots. Int J

Syst Appl Eng Develop 2011; 5(2): 151–159.

21. Ali MAH, Mailah M and Howe Hing T. Path navigation of

mobile robot in a road roundabout setting. In: 1st interna-

tional conference on systems, control, power and robotics,

Singapore, 11–13 March 2012, pp. 198–203. WSEAS.

22. Ali MAH, Mailah M and Howe Hing T. Path planning of

mobile robot for autonomous navigation of road roundabout

intersection. Int J Mech 2012; 6(4): 203–211.

23. Ali MAH, Mailah M and Howe Hing T. A novel approach for

visibility search graph based path planning. In: 13th interna-

tional conference on robotics, control and manufacturing

systems, Kuala-Lumpur, 2–4 April 2013, pp. 44–49.

24. Ali MAH. Autonomous mobile robot navigation and control

in the road following and roundabout environments incorpor-

ating laser range finder and vision system. PhD Thesis, UTM,

2014. UTM Library.

25. Tutsoy O. Design and comparison base analysis of adaptive

estimator for completely unknown linear systems in the

presence of OE noise and constant input time delay. Asian

J Control 2015; 18(3): 1020–1029.

16 International Journal of Advanced Robotic Systems

http://orcid.org/0000-0002-5179-7027
http://orcid.org/0000-0002-5179-7027
http://orcid.org/0000-0002-5179-7027

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

