
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 11, No. 3, September 2018, pp. 1194~1203

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v11.i3.pp1194-1203 1194

Journal homepage: http://iaescore.com/journals/index.php/ijeecs

Enhancing Similarity Distances Using Mandatory and Optional

forEarly Fault Detection

Safwan Abd Razak, Mohd Adham Isa, Dayang N.A Jawawi
Department of Software Engineering, Faculty of Computing, Universiti Teknologi Malaysia, Malaysia

Article Info ABSTRACT

Article history:

Received May 3, 2018

Revised Jun 4, 2018

Accepted Jun 18, 2018

 Software Product Line (SPL) describes procedures, techniques, and tools in

software engineering by using a common method of production for

producing a group of software systems that identical from a shared set of

software assets. In SPL, the similarity-based prioritization can resemble

combinatorial interaction testing in scalable and efficient way by choosing

and prioritize configurations that most dissimilar. However, the similarity

distances in SPL still not so much cover the basic detail of feature models

which are the notations. Plus, the configurations always have been prioritized

based on domain knowledge but not much attention has been paid to feature

model notations. In this paper, we proposed the usage of mandatory and

optional notations for similarity distances. The objective is to improve the

average percentage of faults detected (APFD). We investigate four different

distances and make modifications on the distances to increase APFD value.

These modifications are the inclusion of mandatory and optional notations

with the similarity distances. The results are the APFD values for all the

similarity distances including the original and modified similarity distances.

Overall, the results shown that by subtracting the optional notation value can

increase the APFD by 3.71% from the original similarity distance.

Keywords:

Average percentage of faults

detected (APFD)

Prioritization

Similarity distances algorithms

Software product lines

Copyright © 2018 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Safwan Abd Razak,

Department of Software Engineering, Faculty of Computing,

Universiti Teknologi Malaysia, Malaysia.

Email: safwan7@live.utm.my

1. INTRODUCTION

Software Product Line (SPL) is a group of software-intensive systems that sharing an identical,

managed group of features that fulfill the needs of a certain market section or goal and are build up from a

familiar set of core assets in a recommended way [1]. SPL can give many benefits toward various

organizations due to its implementation of business and technical strategy. Such benefit in software

development is that SPL approach can make enhancements in time to market, cost, and reliability. This

benefit not only helps the organizational, but also individual SPL practitioner [1]. Thus, numerous software

organizations alter their development of software from single systems to SPLs [2].

In achieving these benefits, a complete set of activities that validate and verify the correctness of the

product built should be defined. Thus, the testing approach is introduced. Testing a product line is referring to

extraction from a set of products and test every single of it [3]. Testing an SPL is a hard task. This is because

of the combinatorial explosion faced due to a great number of possible combination features. Exhaustive

testing is infeasible. Exhaustive testing is a test approach in which all possible data combinations are used for

testing. Time consuming and cost issues arise when exhaustive testing in SPLs is conducted. Many attempts

have been done to solve the issues. One of them is the test case prioritization.

Prioritization techniques arrange test cases for implementation in a position that attains to improve

their effectiveness in achieving certain performance goals [4-5]. Various goals can be specified.

For examples, the software testers may want to arrange the test cases in an position that can attain full code

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Enhancing Similarity Distances Using Mandatory and Optional for Early... (Safwan Abd Razak)

1195

coverage as soon as possible or in an order that can improve the rate of fault detection. State a goal first, then

several ordering criteria can be considered. For an example, set the improvement rate of fault detection as a

goal. Software testers could arrange the test cases by the presumed dispose error of the component under test

or they also could position the test cases depending on the total of faults identified by the previous executed

test cases.

There are many types of the prioritization techniques such as string-based, requirement-based, fault-

based, coverage-based, and history-based. Each type has different strategies in prioritizing the test cases.

This paper focus on the similarity distances algorithms which are used within string-based prioritization.

We explore the applicability of the similarity distance with the prioritization technique in improving early

fault detection rate. Four type of similarity distances are used. Those are Hamming distance, Jaccard

distance, Counting function, and Sorensen-Dice. The reason we used prioritization based on similarity

distances is that it has higher fault detection rate and higher feature coverage [6]. Our porposed work are the

enhancement of these four similarity distances algorithms.

For the evaluation, we used the set of configurations and fault metric provided by

Al-Hajjaji et al. [7]. Fault metric is the distribution of fault found in each configuration. Configuration is a

valid combination of features. Each of these similarity distances then are prioritized with five different

prioritization techniques. The similarity distances between the configurations are calculated. The distances

obtained are used to prioritize the configurations. Finally, we calculate the average percentage of faults

detected.

2. SIMILARITY DISTANCES

Similarity function is introduced to maximize the diversity of configurations. On the other hand,

prioritization technique organizes the configurations for implementation in a position that strives to maximize

some objective function. Hemmati et al. [6] and Henard et al. [8] used dissimilarity measure to maximize

diversity among configurations. They explored methods to determine a subset that affordable, that possess

maximum rate of fault detection. Results from those papers advocated that high fault detection rate can be

achieved from two dissimilar configurations rather than similar ones. This due to the earlier ones are more

likely to cover more components than the latest. In this section, we describe the four similarity distances

that we used.

2.1. Jaccard Distance

The Jaccard Distance is also known as Jaccard similarity coefficient. In statistic, it is used in

comparison of sample sets that involve diversity and similarity. The Jaccard model is a similar measure based

on common words [9]. In this paper, we used the Jaccard distance that is defined by Henard et al. [8].

They define the d as a distance measure between two configurations, which are ci and cj, to evaluate the

degree of similarity. The definition is given by:

cjci

cjci
cjcid

1),((1)

The distance is between 0 and 1. Specifically, the configurations are totally different from one

another if the value is equal to 1. Meanwhile, a distance which the value is 0 specifies both configurations are

same. It attempts to find similar members from both chosen configurations, and divided with the total

members that are not similar between them.

2.2. Hamming Distance

Generally, Hamming Distance is used to measure the two-binary string. It used to denote the

difference between them. For this paper, we used the definition of Hamming Distance by Al-Hajjaji et al. [7].

They define the distance between the two configurations as below:

F

cjFciFcjci
Fcjcid

1),,(

 (2)

Above function is define as ci and cj are the two given configurations that relative to the set of

features F. The values of distance between configurations are between the number 0 and 1. The closer the

value to 0, the more similar the two configurations. The configurations are totally different from one another

if the value is equal to 1.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 11, No. 3, September 2018 : 1194 – 1203

1196

2.3. Counting Function

The Counting function is used to compare two sets of transitions. It is the straightforward method to

compare two reused sets. Hemmati et al. [6], define the counting function as Cnt(ci, cj) is the number of same

members in ci and cj, divided by the average members in ci and cj.

 2
1),(

cjci

cjci
cjcid

 (3)

The ci and cj are respectively refer to the configurations. The distance values among configurations

are bounded by number 0 and 1. The closer the value to 0, the more similar the two configurations.

The configurations are totally different from one another if the value is equal to 1.

2.4. Sorensen Dice

The Sørensen-Dice index is a simple way to calculate a measure of the similarity of two strings.

The values produced also are bounded between 0 and 1. The algorithm works by comparing between two

strings the total of same character pairs. It is beneficial for ecological community data where justification for

its use is primarily empirical rather than theoretical. The Sorensen Dice is defined as below:

cjci

cjci
cjcid

2
1),(

 (4)

The ci and cj are referring to the configuration. It attempts to find the same members between the

configurations, and divide it by the total members that exist between both chosen configurations.

3. SIMILARITY DISTANCES ENHANCEMENT

In this section, we present our proposed work which are the enhancement of similarity distances

algorithms with the addition of the feature model (FM) constraints in SPL.

3.1. Feature Model Notations

In software development, a feature model is a solid potrayal of entire products from the SPL in term

of features. During product line development process, feature models are widely used as input to produce

other assets. These assets are the description of architecture, documents, or parts of code. The graphical

representation of a feature model is called a feature diagram [10].

Figure 1. Feature diagram of product line MobilePhone [7]

Feature diagram can be described as a tree where others than root feature, each feature has a parent

feature. One or more features can be decomposed from each feature, except for terminal features. Feature

diagram’s notation is the rules when selecting features to derive a product.

As shown in Figure 1, there are four types of notations. Those are connections between child

features or sub-features with their parent feature. Those groups are:

1. Mandatory: Child feature is required

2. Optional: Child feature is optional

3. Or: At least one of the sub-features must be selected

4. Alternative: One of the sub-features must be selected

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Enhancing Similarity Distances Using Mandatory and Optional for Early... (Safwan Abd Razak)

1197

The features are either abstract or concrete. The feature is concrete if implementation artifacts are

mapped to a feature, such as the Calls feature. Apart from that, the feature is abstract, such as the

MobilePhone feature. On top of that, among the features there are additional dependencies which cannot be

explained with a hierarchical structure. Cross-tree constraints for example. Most common used of cross-tree

constraints are:

1. A requires B: In a product, selection of A suggests the selection of B. Example, the Camera feature

selection in a mobile phone suggests the HighResolution feature selection.

2. A excludes B: In a product, A and B must not be in the same part. For instance, same mobile phone

cannot support both GPS and Basic features.

3. By using logical operators ↔, ∧, ¬, →, and ∨, additional constraints can be defined as propositional

formulas.

Thus, the input of the similarity-based prioritization will be the selection of features from a feature

model, which are called as configurations.

3.2. Enhanced Similarity Distances

We consider the feature model notations in our work to improve the existing similarity distance

algorithm. For our research, we only selected two feature model notations which are mandatory and optional.

This is because in feature model, mandatory and optional are the crucial notations on every feature model.

It is compulsory for the feature models to have both notations. Without them, the Or and Alternative

notations cannot be used.

Figure 2. Overview of proposed work

As shown in Figure 2, we want to consider the Mandatory and Optional notation from feature model

inside similarity distances. In this section, we only highlighted Jaccard distance. There are four modifications

that we have tried with the similarity distances listed in Section 2. The modificatios done are

given as follows.

Modification 1: Addition of Mandatory

We modify the similarity distance by adding one variable that represent Mandatory notation.

The Mandatory notation is the main notation for all feature models. The reason is that it represents the

mandatory feature(s) of the product. Even Optional notation cannot surpass the importance of Mandatory

since without the Mandatory, there will be no product exist. The reason we consider adding the Mandatory

notation into the algorithm is that we want to increase the chances of configurations that embed these

mandatory features to be selected first. If there any fault in it, the tester can detect much faster. Moreover, it

will be a threat toward the product if the tester missed some faults that involved with mandatory feature.

We define Jaccard distance with the addition of Mandatory variable as:

 ()
 ∩

 ∪

Where m is the number of Mandatory notations from the feature model used. If there are two

Mandatory notations inside the feature model, the value of m is 2. These distances are named as Addition

Hamming Mandatory (AHM), Addition Jaccard Mandatory (AJM), Addition Counting Function Mandatory

(ACFM), and Addition Sorensen-DIce Mandatory (ASDM).

Modification 2: Addition of Optional

We modify the similarity distance by adding one variable that represent Optional notation.

Optional notation is one of the notation that represent variable features. The variable features used to express

variability. Inherently, reusable software contains more variability [11]. Thus, it is important to focus on only

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 11, No. 3, September 2018 : 1194 – 1203

1198

optional feature. This due to this feature will be reusable later for the new product. There are chances also

that this optional feature will become mandatory in the future. Therefore, it is wise for the tester to solve the

fault earlier before it spread out when releasing new products. We define Jaccard distance with the addition

of Optional variable as

 ()
(∩)

 ∪

Where o is the number of Optional notations from the feature model used. If there are two Optional

notations inside the feature model, the value of o is 2. These distances are named as Addition Hamming

Optional (AHO), Addition Jaccard Optional (AJO), Addition Counting Function Optional (ACFO), and

Addition Sorensen-DIce Optional (ASDO).

Modification 3: Addition of Mandatory and Optional

We modify the similarity distance by adding two variable which represent Mandatory and Optional

notations. The product line is about commonality and variability. Features that describe only one of them

cannot be useful because the individual instances of valid configurations probably do not describe the system

in enough detail [12]. Thus, we consider adding both notations inside the algorithm. We define Jaccard

distance with the addition of Mandatory and Optional variables as

 ()
(∩)

 ∪

Where o is the number of Optional notations and m is the number of Mandatory notation from the

feature model used. If there are two Mandatory notations inside the feature model, the value of m is 2.

Same concept used for Optional notations. These distances are named as Addition Hamming Mandatory

Optional (AHMO), Addition Jaccard Mandatory Optional (AJMO), Addition Counting Function Mandatory

Optional (ACFMO), and Addition Sorensen-DIce Mandatory Optional (ASDMO).

Modification 4: Subtraction of Optional

We modify the similarity distance by subtracting one variable that represent Optional notation.

We define Jaccard distance with the subtraction of Optional variable as

 ()
(∩)

 ∪

Where o is the number of Optional notations from the feature model used. If there are two Optional

notations inside the feature model, the value of o is 2. These distances are named as Subtract Hamming

Optional (SHO), Subtract Jaccard Optional (SJO), Subtract Counting Function Optional (SCFO), and

Subtract Sorensen-DIce Optional (SSDO).

4. EXPERIMENTAL SETUP

Our implementation is about the similarity-based prioritization. Our aim for the product lines under

test is to detect more faults within a short time.

4.1. Generate Configurations

In SPL, to generate a set of configurations, a feature model is needed. We used the feature model

and generated configurations from MobilePhone product line which is created by Al-Hajjaji et al. [7].

Feature diagrams represent the feature models graphically. Example of feature diagram can be seen in

Figure 1 which is for MobilePhone. Feature diagrams often used to limit the product line variability. This due

to not all combinations of features are valid. Combination that valid is called as configuration [7].

By using pairwise sampling with ICPL [13], nine configurations inside Table 1 are established from

MobilePhone feature model. The ordered list of configurations is generated by using sampling algorithm.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Enhancing Similarity Distances Using Mandatory and Optional for Early... (Safwan Abd Razak)

1199

Table 1. MobilePhone Configurations [7]
ID Configurations

C1 Calls Screen Color
C2 Calls GPS Screen HighResolution Media MP3

C3 Calls Screen HighResolution Media Camera

C4 Calls Screen Basic

C5 Calls Screen HighResolution Media Camera MP3

C6 Calls GPS Screen Color Media,MP3

C7 Calls GPS Screen HighResolution Media Camera
C8 Calls Screen Basic Media MP3

C9 Calls GPS Screen HighResolution

4.2. Implement Similarity Distance

Next step is to apply the similarity distance algorithm. Table 1 plays a crucial part to obtain the

distances. All configurations inside Table 1 are used to calculate the distances between the configurations.

Table 2 shows one of the generated distances between the configurations.

Table 2 shows the calculated distances among each of the configuration by using the Jaccard

distance. The distances are important due to these values will be used to determine the order of the

configuration during prioritization process.

Table 2. Generated Distances
 C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 0 0.714 0.667 0.5 0.714 0.5 0.714 0.667 0.6
C2 0.714 0 0.429 0.714 0.286 0.286 0.286 0.429 0.333

C3 0.667 0.429 0 0.667 0.167 0.625 0.167 0.571 0.5

C4 0.5 0.714 0.667 0 0.714 0.714 0.714 0.4 0.6
C5 0.714 0.286 0.167 0.714 0 0.5 0.286 0.429 0.571

C6 0.5 0.286 0.625 0.714 0.5 0 0.5 0.429 0.571

C7 0.714 0.286 0.167 0.714 0.286 0.5 0 0.571 0.333
C8 0.667 0.429 0.571 0.4 0.429 0.429 0.571 0 0.714

C9 0.6 0.333 0.5 0.6 0.571 0.571 0.333 0.714 0

4.3. Prioritized Configurations

After the distances are determined, we proceed to arrange the configurations according to the

prioritization techniques. To do that, we need to trace a table of the distances row by row, to find which

configuration that will be added to the prioritized list. We used five prioritization techniques in our work

which are All-Yes-Config (AYC), Local Maximum Distance (LMD), Global Maximum Distance (GMD),

Farthest-first Ordered Sequences (FOS), and Greed-aided Ordered Sequences (GOS). We used Table 2 as

reference to trace the flow of one of the prioritization technique.

Table 3 illustrates the process of GOS technique toward the result from Jaccard distance. By

referring the GOS algorithm, the first configuration that need to be put into prioritized list P, is the one that

inherit minimum value. Thus, C4 will be add first because it has smallest value among the other rows. Next

configuration will be the C1, because the first minimum distance added to the P is from the distance between

C4 and C1. Now, two configurations that exist in prioritized list are P= {C4, C1}.

Table 3. Jaccard Distance with GOS
 C1 C2 C3 C4 C5 C6 C7 C8 C9

C1 0 0.714 0.667 0.5 0.714 0.5 0.714 0.667 0.6

C2 0.714 0 0.429 0.714 0.286 0.286 0.286 0.429 0.333

C3 0.667 0.429 0 0.667 0.167 0.625 0.167 0.571 0.5

C4 0.5 0.714 0.667 0 0.714 0.714 0.714 0.4 0.6

C5 0.714 0.286 0.167 0.714 0 0.5 0.286 0.429 0.571

C6 0.5 0.286 0.625 0.714 0.5 0 0.5 0.429 0.571

C7 0.714 0.286 0.167 0.714 0.286 0.5 0 0.571 0.333
C8 0.667 0.429 0.571 0.4 0.429 0.429 0.571 0 0.714

C9 0.6 0.333 0.5 0.6 0.571 0.571 0.333 0.714 0

According to GOS algorithm, the next configuration that will be chosen is the configuration with the

maximum value. There are three configurations that have maximum value. We choose the first configuration

in case same distance value is possess by two or more configurations. Thus, the C2 (bold without square) is

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 11, No. 3, September 2018 : 1194 – 1203

1200

added first as the third configuration inside P, followed by C5 and C7. Now, the configurations that remain in

a set C are C= {C3, C6, C8, C9}. Repeat the process until the C is empty. Thus, the new order that need to be

tested is P= {C4, C1, C2, C5, C7, C3, C8, C9, C6}.

4.4. Calculate Average Percentage Faults Detected (APFD)

The effectiveness of our research can be measured by evaluation within the ability of the string

distances and prioritization techniques in the SPL under test to detect faults. Generated faults are needed for

this purpose. Thus, we used the faults that already generated by Al-Hajjaji et al. [7].

Table 4 displays the distribution of six faults that had been used by Al-Hajjaji et al. [7]. Lastly,

APFD metric used to appraise how quick faults are detected during testing. The APFD metric computes the

average weight from percentage of faults detected while executing the test suite. APFD illustrate as the T as

the test suite which contain a numbers of n configurations, and F is a set of m faults exposed by T. Make TFi

exist as the position of the first test case in T’ of T order which exposes the fault i. The equation of APFD is

given as:

Table 4. Fault Matrix [7]
Configuration Faults

F1 F2 F3 F4 F5 F6

C1 X X

C2 X X

C3 X X X
C4 X X X X

C5 X X X
C6 X

C7 X

C8 X X
C9

nmn

TFnTFTF
APFD

2

1...21
1

The final step is to calculate the APFD for the new order of configurations. Table 5 is created based

on the fault metric in Table 3.

Table 5 contains new faults positions after we prioritized the Jaccard distance result by using GOS

algorithm. To calculate the APFD, Table 5 is required. The value is between 0 to 1. High APFD value from

prioritized test suite has faster fault detection rates than those with low APFD values. The calculation for

APFD shown as:

Table 5. New Configurations Order with Fault Matrix
Configuration Faults

F1 F2 F3 F4 F5 F6

C4 X X X X

C1 X

C2 X X
C5 X X X

C7 X

C3 X X X
C8 X X

C9

C6 X

92

1

69

164111
1

APFD

 = 0.796

The TF1 is equal to 1 because the first fault that we found from the first column of table is at the

first row of the table. TF is the position of the fault that first to emerge. Thus, it is 1 because the first fault

that we encounter first is located at the first row. Next, we look at the second column, which is F2. At which

row that the first fault, emerge. Again, the first fault we encounter is at the first row. It goes the same way as

for F4 and F6. For the F4 column, the TF4 is equal to 4 because the first fault that can be found is at the row

four. Same concept also with the F5.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Enhancing Similarity Distances Using Mandatory and Optional for Early... (Safwan Abd Razak)

1201

5. RESULTS AND ANALYSIS

In this section, the APFD result for each similarity distance with five prioritization techniques

are shown.

Table 6 shown that the similarity SHO presents the highest APFD value which is 0.83333 by using

GMD. The distance’s values between configurations are from 0 until 1. The closer the value to 0, the more

similar the two configurations. If the value is equal to 1, it shows that both configurations are totally

different. The second highest also are from the SHO, which is 0.814815 by using LMD and GOS. By using

SHO with other prioritization techniques also shows that in overall, the APFD values are still high and

consistent compared with Hamming original and others modified Hamming distances.

Table 6. Hamming Distance APFD
 AYC LMD GMD FOS GOS

H 0.759 0.759 0.778 0.611 0.796
AHM 0.759 0.759 0.778 0.611 0.796

AHO 0.759259 0.703704 0.703704 0.648148 0.777778

AHMO 0.759 0.759 0.704 0.611 0.778
SHO 0.796296 0.814815 0.833333 0.796296 0.814815

Table 7 shown that the SJO presents the highest APFD value. The highest value is shared between

GMD and FOS. The second highest value also from the SJO with LMD and GOS. By using SHO with other

prioritization techniques also shows that in overall, the APFD values are still high and consistent compared

with original Jaccard and others modified Jaccard distances.

Table 7. Jaccard Distance APFD
 AYC LMD GMD FOS GOS

Jaccard 0.759 0.759 0.759 0.741 0.796
AJM 0.778 0.759 0.722 0.611 0.796

AJO 0.759259 0.703704 0.759259 0.740741 0.666667

AJMO 0.759 0.704 0.63 0.685 0.778
SJO 0.796296 0.814815 0.833333 0.833333 0.814815

Table 8 shown that the similarity SSDO dominates the highest APFD value which is 0.83333 by

using FOS. The APFD value shown drastic decreased when using SHO with GMD. Still, by using LMD and

GOS, SSDO maintained the second highest APFD value. Overall, the APFD values by using SSDO are still

high and consistent compared with original Sorensen-Dice and other modified Sorensen-Dice distances.

Table 8. Sorensen Dice APFD
 AYC LMD GMD FOS GOS

Sore-Dice 0.759 0.759 0.685 0.63 0.796

ASDM 0.759 0.759 0.685 0.63 0.796

ASDO 0.759259 0.703704 0.648148 0.740741 0.666667
ASDMO 0.759 0.704 0.63 0.741 0.778

SSDO 0.796296 0.814815 0.759259 0.833333 0.814815

Table 9. Cnt. Funtion APFD
 AYC LMD GMD FOS GOS

Cnt. Func 0.759 0.759 0.685 0.63 0.796

ACFM 0.778 0.759 0.722 0.611 0.796

ACFO 0.759259 0.703704 0.666667 0.740741 0.666667
ACFMO 0.759 0.704 0.63 0.741 0.778

SCFO 0.796296 0.814815 0.759259 0.833333 0.814815

By using SCFO, the highest APFD value is gained by using the FOS. Second highest value by using

LMD and FOS. With SCFO, the whole APFD value are still high and consistent compared with original Cnt.

Function and other modified Cnt. Function distances.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 11, No. 3, September 2018 : 1194 – 1203

1202

6. DISCUSSION

As can be seen in Table 6 until Table 9, similarity distances that undergo modifications which

involved Mandatory and Optional notations produced different APFD values. Some values are worst that the

original and others are slightly better. The worst value is 0.611 and the best value is 0.833333. Obviously,

similarity distances that undergo Modification 4 yield the best APFD values by using GMD and FOS.

According to our previous results, we stated that Jaccard distance has better rate of fault detection from the

others and GOS technique outwits other techniques [14]. Our current results denote that Jaccard distance still

the better one. Results from Table 7 demonstrate that two best values obtained by using GMD and FOS.

On the other hand, other similarity distances only produced best value either by using GMD or FOS. Jaccard

distances widely used is statistic for measuring sample sets similarity and diversity [15]. One of the reason

the Jaccard distance is effective because it extremely sensitive to small samples sizes especially with very

small samples or data sets [16]. In our work, we modified the Jaccard distances by removing the Optional

features from the feature model, which is the sample. Therefore, by reducing the sample sizes can increased

the APFD value. Another reason to use Jaccard is that it has low variation, low cost, and high effectiveness

[6]. On the other hand, our current results shown that GOS technique cannot exceed the best value when

combined with any Modification 4 distances. The results indicate that GOS mostly perform well than the

other techniques. We can see from higher APFD values that produced by GOS than AYC, LMD, GMD and

FOS with Modification 1 and Modification 3. Supposedly GOS can outperforms other techniques used for

Modification 4 distances. This due to GOS is one of the group that use minimum distance strategy and by

using minimum strategy should produce high rate of fault detection [17]. Although minimum strategy can

increase the APFD, it also can cause the optimization problem [18]. This due to nature of greedy algorithm

used in GOS. Both GMD and FOS techniques consider calculating the distances between unorder list with

prioritized list while GOS only consider the unorder list. This can make the GOS overlooks the

configurations that may contain faults. Thus, right approach need to be designed to solve the problem.

7. CONCLUSION

Product line testing consumes a lot of time. Every testers expectation during testing is to detect

faults as soon as possible. Therefore, several approaches related to prioritize products have been proposed to

ensure higher probability of faults are detected in the earlier products. One of them is similarity-based

prioritization. In this paper, we have proposed enhancement for the similarity distances that have been used

in SPL to improve early fault detection rate. We utilize feature model notations (Mandatory and Optional)

into similarity distance algorithms that been used in SPL field. This due to enable the configurations that

have important features to be tested first for any existing faults. Finding faults early within important features

are cost friendly. Our results express improvement in early fault detection. By considering the subtraction of

Optional notation into the similarity distances can improve the APFD value.

For future work, we plan to improve GOS so that it can tunes with the enhancement made and

outperform the current results. Plus, more feature models need to be used to find that whether our work still

effective on various size of product line, from small to large sizes. Furthermore, different feature models

simulate different faults. Thus, there exist an uncertainty toward the APFD results and we tend to find

about that.

ACKNOWLEDGEMENTS
Warm thanks to all the anonymous readers and reviewers who read and review this paper.

Comments and suggestions are most welcome for improving the future works of this paper. This research

work relatively supported by Dr. Mohd Adham bin Isa research's grant by Ministry of Education Malaysia

under the Fundamental Research Grant Scheme (FRGS) with vot. R. J130000.7828.4F836.

REFERENCES
[1] Clements P, Northrop L. Software product lines: practice and patterns. Pittsburgh: Addison-Wesley Professional.

2001.

[2] Weiss DM. The Product Line Hall of Fame. Proceedings of International Software Product Line Conference

(SPLC). San Francisco. 2009: 395-395.

[3] Perrouin G, Oster S, Sen S, Klein J, Budry B, le Traon Y. Pair- wise testing for software product lines: comparison

of two approaches. Software Quality Journal. 2012; 20(3-4): 605-643.

[4] Catal C, Mishra D. Test case prioritization: a systematic mapping study. Software Quality Journal. 2013; 21(3):

445-478.

https://en.wikipedia.org/wiki/Similarity_measure

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Enhancing Similarity Distances Using Mandatory and Optional for Early... (Safwan Abd Razak)

1203

[5] Rothermel G, Untch RH, Chu C, Harrold MJ. Test case prioritization: An empirical study. Proceedings of IEEE

International Conference on Software Maintenance (ICSM'99). Oxford. 1999: 179-188.

[6] Hemmati H, Briand L. (2010, November). An industrial investigation of similarity measures for model-based test

case selection. IEEE 21st International Symposium on Software Reliability Engineering (ISSRE). San Jose. 2010:

141-150.

[7] Al-Hajjaji M, Thüm T, Lochau M, Meinicke J, Saake G. Effective product-line testing using similarity-based

product prioritization. Software & Systems Modeling. 2016; 16(22): 1-23.

[8] Henard C, Papadakis M, Perrouin G, Klein J, Heymans P, Le Traon Y. Bypassing the combinatorial explosion:

Using similarity to generate and prioritize t-wise test configurations for software product lines. IEEE Transactions

on Software Engineering. 2014: 40(7): 650-670.

[9] Boubacar A, Niu Z. Valuing Semantic Similarity. Indonesian Journal of Electrical Engineering and Computer

Science. 2014: 12(8): 6361-6368.

[10] Kang KC, Cohen SG, Hess JA, Novak WE, Peterson AS. Feature-oriented domain analysis (FODA) feasibility

study. PHD Thesis. Pittsburgh: Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst:1990.

[11] Estublier J, Vega G. Reuse and variability in large software applications. ACM SIGSOFT Software Engineering

Notes. 2005: 30(5): 316-325.

[12] Osis J. Model-driven domain analysis and software development: Architectures and functions: Architectures and

functions. Latvia: IGI Global. 2010.

[13] Rothermel G, Untch RH, Chu C, Harrold MJ. Prioritizing test cases for regression testing. IEEE Transactions on

software engineering, 2001: 27(10): 929-948.

[14] Razak SA, Isa MA, Jawawi DNA. A Comparison on Similarity Distances and Prioritization Techniques for Early

Fault Detection Rate. Journal of Telecommunication, Electronic and Computer Engineering (JTEC). 2017; 9(3-3):

89-94.

[15] Jaccard P. Bull Soc Vaud Sci Nat. In: Hanrahan G, Gomez FA. Editors. Chemometric methods in capillary

electrophoresis. New Jersey: John Wiley & Sons: 2009: 223-270.

[16] Milligan GW, Schilling DA. Asymptotic and finite sample characteristics of four external criterion measures.

Multivariate Behavioral Research. 1985: 20(1): 97-109.

[17] Jiang B, Zhang Z, Chan WK, Tse TH. (2009, November). Adaptive random test case prioritization. In Proceedings

of the 2009 IEEE/ACM International Conference on Automated Software Engineering. Washington. 2009: 233-

244.

[18] Nguyen PH, Wang D, Truong TK. A new hybrid particle swarm optimization and greedy for 0-1 knapsack

problem. Indonesian Journal of Electrical Engineering and Computer Science. 2016: 1(3): 411-418.

