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Abstract 
 Liquid flow and level control are essential requirements in various industries, such as paper 

manufacturing, petrochemical industries, waste management, and others. Controlling the liquids flow and 
levels in such industries is challenging due to the existence of nonlinearity and modeling uncertainties of 
the plants. This paper presents a method to control the liquid level in a second tank of a coupled-tank plant 
through variable manipulation of a water pump in the first tank. The optimum controller parameters of this 
plant are calculated using radial basis function neural network metamodel. A time-varying nonlinear 
dynamic model is developed and the corresponding linearized perturbation models are derived from the 
nonlinear model. The performance of the developed optimized controller using metamodeling is compared 
with the original large space design. In addition, linearized perturbation models are derived from the 

nonlinear dynamic model with time-varying parameters. 
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1. Introduction 

Liquid level control is crucial in industrial applications, especially in chemical process 
industries. Level control usually occurs in some of the control loops of a process control system, 
such as evaporator systems. Such systems are used in several chemical processes 
manufactures in order to separate chemical products. In addition, level control is also very 
significant for mixing reactant processes, where the quality of the product of the mixture relies 
on the level of the reactants in the mixing tank [1].  

Several other industrial applications rely on single and multi-loop level control. 
Currently, the process industries such as water treatment, petrochemical, and paper 
manufacturing require repeating the process of pumping and storing certain liquids in several 
tanks [2]. Controlling the level of liquids in these tanks and the flow between them is a 
challenging issue for these industries. Designing a controller for such systems usually requires 
deriving complicated mathematical models of these systems, which are obtained from advanced 
physics and chemistry laws. In addition, the presence of nonlinearities and modeling 
uncertainties add more challenges to this type of process control [3]. 

To address the aforementioned issues, several optimization methods have been utilized 
to tune the parameters of controllers to the optimal values. Such methods include, particle 
swarm optimization [4-6], neural network (NN) [7,8], and genetic algorithm [9,10]. Genetic 
algorithm has been extensively used to solve complex optimization problems in several 
research areas, such as control engineering, image processing, and bioinformatics. This is due 
to its various advantages, such as high speed and robustness to find the optimal solution, 
inherently parallel search, supporting multi-objectives problems, and the ability to find solutions 
for noisy environments [11].  

Metamodeling, which is also known as model reduction, has also been successfully 
used in several applications where complex computer models of the actual system exist, while 
running the simulation of the model requires a relatively long time [12]. Examples of such 
applications that require a significant amount of execution time include finite element and fluid 
dynamics analysis, and optimization of complex controllers with many parameters. 
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Samsudin [13] conducted a study to investigate the simulation time required to optimize 
a pole placement controller for a nonlinear plant. The simulation time required to find the 
optimum pole placement gains was around 3 days using a Pentium based computer. In another 
instance, Tsai, et al. [14] conducted a finite element analysis study to solve a microwave 
passive/active circuit design problem.  

The reported simulation time was around 8 hours on a Pentium based PC. Having a 
simpler model that represent complicated plants will reduce the simulation time of several 
design issues, such as the prediction of systems outputs, what-if analysis, and optimization and 
validation of simulation models. This reduction in the simulation time is due to the ability of the 
optimized metamodel to find the output (such as a NN) in a matter of minutes, using an 
equivalent PC. A radial basis function (RBF) NN was presented by M. S. Mohamed Ali, et al. 
[12] to optimize a controller parameters for a mixing plant. The proposed method by the authors 
showed a noticeably shorter simulation time as compared to the large input space. Finding the 
optimal values of the controller required 30 min using the large input space, while it required 1 
min only when using their proposed method. The reported works showed that metamodeling 
can be used to simplify complex models and give approximate solutions within a short time. 
Thus, this work investigates using a RBF metamodel to optimize a controller for a coupled-tank 
system. 
 
 
2. RBF Metamodel 

In this work, RBF is utilized to tune and find the optimal parameters of a PID controller. 
The RBFNN is trained using initial values obtained using integral square error (ISE) data from 
the plant simulation with a randomly selected controller parameters [15]. The minimum ISE is 
obtained by training the NN used to simulate large space of the control parameter sets. Then, 
the point that results the minimum ISE is selected to get the control parameter sets.  
A schematic diagram of an RBFNN is illustrated in Figure 1. 

 
 

 
 

Figure 1. An RBFNN 
 
 

The NN consists of three layers namely the input layer, the hidden layer, and the output  
layer [16]. If the number of output, Q=1, then the output of the RBF ANN in Figure 1 can be 
found from the following formula: 
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where X, ϕk, W1k, SI, and Ck are the input vector, the basis function, the weight in the output 
layer, the number of neurons (and centers) in the hidden layer, and the RBF centers in the input 
vector space, respectively [17]. The output of the neuron in the hidden layer represents a 
nonlinear function of the distance between X and Ck. The centers are defined points that are 
assumed to perform an adequate sampling of the input space. Usually, a large number of input 
vectors are assigned to the centers to ensure a suitable input space sampling. In addition, some 
of the centers may be removed in an organized method to prevent any significant distort of the 
network mapping performance after it has been trained [18]. After setting the centers and the 
parameter, the output layer weights can be calculated as follows: 
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where the set D has N initial input and output training pairs, and ij represents the possible 

samples in a discrete input space. If the input space is ℜ
R×1

 and the number of outputs Q=1, 
equation 1 can be rewritten in a vector matrix form as follows: 
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By considering the quadratic error between the actual and desired ANN outputs as an 
optimization criterion, as follows: 

 

   
T
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The vector of weights that minimizes equation 4 can be derived as follows: 
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          (5) 

 
where ϕ

T
 represents the pseudo-inverse of the nonlinear mapping matrix ϕ. 

 
 

3. Coupled-tank Process 
In this work, a coupled-tank system is selected as the plant that required to be 

controlled. This section presents the mathematical model of the system, which is developed by 
applying the fundamental physical laws of science and engineering [2]. A time-varying nonlinear 
dynamic model is developed and the corresponding linearized perturbation models are derived 
from the nonlinear model. Figure 2 illustrates a diagram of the coupled-tank control system. 

 
 

 
 

Figure 2. A diagram of the coupled-tank system 
 
 
A nonlinear mathematical model is derived using the diagram in Figure 2, where H1 and H2 are 
the liquid level in tank 1 and 2, respectively, measured with respect to the corresponding  
outlet [1]. Considering a simple mass balance, the rate of change of liquid volume in each tank 
equals the net flow of liquid into the tank. Thus, the dynamic equations for tank 1 and tank 2 are 
as follows: 
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where H1 and H2 are the height of liquid in tank 1 and tank 2, respectively. A1 and A2 are the 
cross-sectional areas of tank 1 and tank 2, respectively. Qi1 and Qi2 are the pump flow rate into 
tank 1 and tank 2, respectively. α1, α2, and α3 are proportionality constants that depend on the 
coefficients of discharge, the cross-sectional area of each nozzle, and the gravitational constant, 
respectively. 

 
 

4.    Simulation Results 
4.1. Ziegler-Nichols on-line Tuning Method 

One of the earliest on-line closed-loop tuning methods for PID controllers is Ziegler-
Nichols tuning method. In this method, the proportional gain is gradually increased until the 
output response oscillates with a constant amplitude. The value of KP that produces sustained 
oscillations is called the ultimate gain, KU. The period of this oscillation is called the ultimate 
period, TU. The desired closed loop response is the one with a decay ratio of one-fourth of the 
amplitude of two consecutive oscillations. The controller parameters KP, integral time, TI, and 
derivative time, TD, are calculated based on KU and TU for quarter decay ratio response [19]. 
The formulae for these parameters are given in Table 1. 

 
 

Table 1. Tuned parameters using closed-loop Ziegler-Nichols method 
Controller type KP TI TD 

P KU / 2   
PI KU / 2.2 TU / 1.2  

PID KU / 1.7 TU / 2 TU / 8 

 
 
Then, the integral, KI, and the derivative, KD, gains are set to zero, while KP is increased 
gradually until sustained oscillation is observed. It was found that KU is 140 and the 
corresponding ultimate period is 9 s. Figure 3 shows the response of the system with calculated 
PID gains. For the height control, the controller yielded a rising and settling time of 4.6453 and 
45.58 s, respectively, with an overshoot of 4.86 % and an ISE of 945.4. 

 
 

 
 

Figure 3. Response of the controlled system 
 

 
4.2. PID Controller Optimization 

As discussed in the previous section, PID controllers have 3 parameters that can be 
adjusted to determine the performance and the output response of the controller [20]. The initial 
data sets require a proper identification in order to train the RBFNN to achieve the best 
approximation. Moreover, the initial data sets should cover the maximum and minimum value of 
the large data sets to prevent falling into extrapolation conditions that result unacceptable 
solutions. In addition, the initial data sets should maintain a suitable size that allows a proper 
training while minimizes the training time. The identified initial and large data sets are presented 
in Table 2 and 3. 
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Table 2. Initial Data Sets for PID Controller 
Initial Data Sets (D) 

KP 46, 48, 50, ……………, 58 
KI 0.1, 0.4, 0.7, ……………, 6 
KD 120, 122, 124, ……………, 130 

Total number of data configurations 840 

 
 

Table 3. Large Data Sets for PID Controller 
Large Data Sets (D’) 

KP 46, 46.5, 47, ……………, 58 
KI 0.1, 0.2, 0.3, ……………, 6 
KD 120, 120.5, 121, ……………, 130 

Total number of data configurations 31500 

 
 

The ISE is used to train the RBFNN which will then be used as the metamodel of the 
coupled-tank system to evaluate the ISE for the corresponding large data sets of the controller 
parameters. The error goal is set to 0.1 in the training stage of the RBFNN. The training curves 
are as shown in Figure 4. 

From Figure 4, it is can be seen that 350 epochs are required to achieve the set goal for 
an error of 0.1. A better approximation can be achieved when using a smaller error target. 
However, if the targeted error is very small, the training process will take a longer time. A spread 
value of 150 is used in the training process. This value can be adjusted to achieve a better 
response. The larger the spread, the smoother the function approximation will be. Too large a 
spread means a lot of neurons will be required to fit a fast-changing function. Whereas, a small 
spread implies that many neurons will be required to fit a smooth function, and the network may 
not generalize well. After the training process, RBFNN is used to evaluate 31500 data sets. To 
verify the metamodel, the actual Simulink model was evaluated for all the 31500 cases in large 
space data sets (D’) using the same PC and the ISE (E) was also computed. The result is then 
compared with the actual simulation result as illustrated in Figure 5. 

 
 

 
 

Figure 4. Training curves of RBF-NN using PI 
and PID controller input set 

 

 
 

Figure 5. Comparison of the metamodel and 
the actual simulation outputs of the PID 

controller 
 

  
4.3. Overall Comparison of the Controllers’ Performance 

The performance controllers designed for Couple Tank System which is PID controller, 
one of the first things that must be done during controller design is to decide upon a criterion for 
measuring how good a response is [21]. For example, when we deal with systems where we are 
not bothered with the actual dynamics of how the steady state is reached, but only care about 
the steady state itself, a good measure will be the steady state error of the system defined 
by equation (8): 

 

   – final refE X X          (8) 
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The graph in Figure 6 shows the set-point and the output response for both Ziegler-
Nichols and metamodeling. The best that could be achieved for the both methods of 
compensation studied is compared. A glance reveals that the designed metamodeling method 
has an overall better performance than Ziegler-Nichols method. The comparison of the 
response’s characteristics is shown in Table 4. 

 
 

 
 

Figure 6. Response of Water Height using Ziegler-Nichols and metamodeling 
 
 

Table 4. Comparison of Output Height Response’s Characteristics 
 Ziegler-Nichols Metamodeling 

Rise Time (s), Tr 4.6453 4.7843 
Peak Time (s), Tp 15.9 8.22 

Overshoot % 87.44 4.86 
Settling Time (s), Ts 45.58 16.8 

 
 

It can be concluded that the metamodel gives promising results better than the Ziegler- 
Nichols method. For the height control, this metamodel gave the settling time of 16.8 seconds 
and rising time of 4.7843 seconds compared to Ziegler- Nichols which gave 45.58 seconds and 
4.6453 seconds respectively. The transient response has 4.86 % overshoot and that’s near to 
the critical damp for the metamodeling and 87.44 % overshoot for Ziegler-Nichols. Table 5 show 
the comparison between metamodel and Ziegler-Nichols method in ISE. The ISE for metamodel 
is lower than Ziegler-Nichols. The different ISE between metamodel and Ziegler-Nichols method 
is 739.2037. 

 
 

Table 5. Metamodel and Ziegler- Nichols Comparison for ISE 
Type of Method KP KI KD ISE 

Ziegler- Nichols 82.4 18.31 92.7 945.4 
metamodeling 56 0.3 124 201.4 

 
 

5. Conclusion 
This work presented an RBFNN that has proven its effectiveness as a method of 

controller optimization. The proposed method was able to find the optimal control values within 
a short computational time of 1 min as compared to simulating the process for all values in large 
input space (D’) (around 30 min). The proposed approach was proven to be a useful approach 
for a large D or and complicated problem. In addition, the proposed method was able to provide 
a quick estimation for a set of initial parameters.  

Further improvements of the results can be achieved by increasing the simulation time 
whenever it is required. In this work, the data set D was created based on prior knowledge of 
the plant by choosing the input values in a grid-like fashion. An alternative approach is to start 
off with a small number of samples, and then sequentially adding more data samples employing 
experimental design techniques. It can be concluded that a more strategic data location will 
allow achieving a more accurate metamodel using less data and simulation time to find the 
optimal controller parameters. 
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