
 

 

  
Abstract—The most important property of the Gene Ontology is 

the terms. These control vocabularies are defined to provide 
consistent descriptions of gene products that are shareable and 
computationally accessible by humans, software agent, or other 
machine-readable meta-data. Each term is associated with 
information such as definition, synonyms, database references, amino 
acid sequences, and relationships to other terms. This information has 
made the Gene Ontology broadly applied in microarray and 
proteomic analysis. However, the process of searching the terms is 
still carried out using traditional approach which is based on keyword 
matching. The weaknesses of this approach are: ignoring semantic 
relationships between terms, and highly depending on a specialist to 
find similar terms. Therefore, this study combines semantic similarity 
measure and genetic algorithm to perform a better retrieval process 
for searching semantically similar terms. The semantic similarity 
measure is used to compute similitude strength between two terms. 
Then, the genetic algorithm is employed to perform batch retrievals 
and to handle the situation of the large search space of the Gene 
Ontology graph. The computational results are presented to show the 
effectiveness of the proposed algorithm. 
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I. INTRODUCTION 
HE Gene Ontology (GO) [1] is a biological ontology 
maintained by the GO Consortium which is located at 

www.geneontology.org. The project attempts to provide 
consistent terms to describe gene and gene products in any 
organism found in heterogeneous databases. GO plays an 
important role in searching biological information and 
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annotating proteins or genomes. Some examples of GO 
applications include prediction of functional modules [2], 
microarray analysis [3], prediction of protein-protein 
interactions [4], and proteomics analysis [5]. 
 The amount of available GO terms has grown enormously 
and become more demanded in the last few years. A total 
number of 628 articles are related to the GO since 1998 as 
shown in Fig. 1. Although tools for searching the GO terms 
such as AmiGO (www.godatabase.org), GenNav 
(mor.nlm.nih. gov/perl/gennav.pl), MGI GO Browser 
(www.informatics.jax. org/searches/GO_form.shtml), and 
QuickGO (www.ebi.ac.uk/ ego/) are publicly available, these 
search engines respond to user keyword queries by retrieving 
relevant GO terms based on word matching or Boolean rules. 
Thus, browsing the entire GO graph (see Section 2 for formal 
definition), comprising around 20 thousand terms, to find 
semantically similar terms is time consuming and difficult to 
carry out. 
 In response to this problem, an approach to search the GO 
terms is proposed that incorporates semantic similarity 
measure into genetic algorithm. The semantic similarity 
measure is used to determine the similitude strength of two 
terms organized in the GO graph. This semantic similarity 
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measure (see Section 4) is a hybrid of information content and 
conceptual distance. The information content is computed to 
get the amount of information the GO terms share in common. 
On the other hand, the conceptual distance is calculated to 
know the depth and the local network density of the GO term. 
Then, the genetic algorithm (see Section 5) is applied to 
improve the search in large search space of the GO graph. It 
generates better solution consisting of a set of terms that best 
match to the given term. In order to find feasible solution that 
precludes many GO terms with low score, dimension index is 
added into the fitness function. 
 The combination of semantic similarity and genetic search 
would be helpful to the users to retrieve interrelated GO 
terms. Under this search technique, users’ queries will return a 
list of semantically similar terms that are extracted 
automatically, and it avoids the users from spending lots of 
time browsing the GO graph for those terms. Furthermore, 
this study will accommodate biologists and alignment tools 
such as BLAST (www.ncbi.nlm.nih.gov/BLAST/), 
CLUSTALW (www.ebi.ac. uk/clustalw/), and SIM 
(www.expasy.ch/tools/sim-prot.html) to reduce the processing 
time of discovering similar sequences. As a matter of fact, 
Lord et al. [6] have presented results showing the correlation 
between semantic similarity and sequence similarity. 
 The rest of the paper is organized as follows. Section II 
begins with the problem description of ontology search. 
Section III gives a review of related work on search of the GO 
terms, semantic similarity measure, and genetic algorithm. 
Section IV discusses the technical description of the semantic 
similarity measure. Section V describes the flow of the genetic 
algorithm in detail. Section VI presents experimental results 
and is followed by conclusion in Section VII.  

II. PROBLEM DESCRIPTION 
Ontology is a description of concepts in a domain and the 

relationships between the concepts. Ontology can be 
represented as a directed graph. The ontology graph comprises 
the concepts including the descriptions as nodes and semantic 
relationships as edges. Recently, there has been growing 
development of ontology in the bioinformatics field such as 
Sequence Ontology [7], Cell Ontology [8], Chemical 
Ontology [9], Multiple Alignment Ontology [10], Biodynamic 
Ontology [11], and Protein-Interactions Ontology [12]. 
However, the “ontology search”, which refers to the activity 
of retrieving concepts in the ontology graph, is not accurately 
performed by the traditional search engines that are based on 
keywords. These search engines neglect the semantic 
relationships between the search concepts and only consider 
those concepts as character strings. Thence, a mechanism to 
measure the similarity between concepts in the ontology graph 
is required to reduce dependency of specialists of a certain 
domain to input relevant concepts as search words. 

Given a GO graph G = {V, E} that is structured as a 
Directed Acyclic Graph (DAG), where V is a finite non-empty 
set of nodes representing GO terms and E is a finite set of 

pairs of nodes representing relationships between GO terms. 
Each pair in E is an arc of G. The GO terms can have more 
than one parent, as well as multiple children. The GO terms 
are linked by two relationships, the “is-a” relationships 
(“intracellular organelle”, GO:0043229 and “membrane-
bound organelle”, GO:0043227 are parents of “intracellular 
membrane-bound organelle”, GO:0043231) and the “part-of” 
relationships (“chloroplast stroma”, GO:0009570 is part of 
“chloroplast”, GO:0009507). 

Searching the GO graph to retrieve semantically similar 
terms is an NP-complete problem. This is due to the size of 
the search space of the DAG g(k). The search space is 
astronomical and varies between: 

 
( 1) ( 1)

2 22 ( ) 3
k k k k

g k
− −

≤ ≤  (1) 
  
where k is the number of nodes in the GO graph. To search 
the GO graph, the following research problems need to be 
figured out: 
1) What is the most suitable search algorithm for finding 

feasible solution that offers reasonable amount of 
processing time to this NP-complete problem?  

2) What is the precise criterion to this ontology search 
problem for quantifying the semantic similarity between 
GO terms? 

In this paper, the first problem is solved by applying genetic 
algorithm. The genetic algorithm employs dimension index 
and parallel implementation as catalyst for quality of the 
search result. On the other hand, semantic similarity measure 
is added into the genetic algorithm during the creation of 
population and calculation of fitness value in order to respond 
to the second problem. 

III. REVIEW OF RELATED WORK 
Several GO browsers have been developed to provide text 

searching for the GO terms and the associated information 
such as definition, synonyms, lineage, cross-references, and 
gene products annotated to them. These browsers also have 
graphical view of the hierarchy of the target terms. A 
comprehensive overview with links to respective addresses 
can be accessed at www.geneontology.org/GO.tools.browsers. 
shtml. Among these tools are: 
1) AmiGO Browser; a GO browser developed by the GO 

Consortium. The keyword-based search is executed either 
by exact or ‘contains’ match over the term accession 
number, name, or synonyms. This tool also allows a user 
to use gene product or protein sequence as search input.  

2) GenNav Browser; a GO browser that uses string 
matching method namely exact or approximate match that 
responds to a given term or gene product. GenNav is 
maintained by the United States National Library of 
Medicine. 

3) QuickGO Browser; a GO browser that allows a user to 
retrieve the GO terms by exact or wildcard search for the 
term accession number, name, synonyms, definitions, or 
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comments. This fast web-based GO browser can be found 
at the website of the European Bioinformatics Institute. 

4) MGI GO Browser; a GO browser developed by the 
Mouse Genome Informatics that performs string matching 
by requiring users to enter partial term name or full term 
accession number. 

5) EP GO Browser; a GO browser that carries out the exact 
or ‘contains’ match for the term accession number or 
name entered by the user. This browser is built into an 
expression profiler developed by the European 
Bioinformatics Institute. 

6) TAIR Keyword Browser; a GO browser that uses term 
accession number or name as an input and then performs 
either ‘contains’, ‘start with’, ‘end with’, or exact match. 
This tool is developed by the Arabidopsis Information 
Resource. 

Lately, a number of tools have been constructed based on 
the semantic similarity measure to search the GO terms. For 
example DynGO [13] performs the semantic retrieval over the 
GO terms based on the information content, and FuSSiMeG 
[14] compares the semantic similarity between GO terms 
using combination of information content and conceptual 
distance. However, FuSSiMeG is not capable of performing 
batch retrievals rather has the ability to search one term 
among all terms in the GO graph. Whereas DynGO has 
overlooked the role of conceptual distance in finding the 
significant GO terms. 

Semantic similarity measure has been introduced in many 
areas related to natural language processing and information 
retrieval. For example, this measure has been applied in the 
ontology integration [15], environmental modeling [16], 
computational linguistics [17], and bioinformatics [18]. 
Semantic similarity measure has the capability to improve the 
precision and recall of information retrieval by discovering the 
correlation between concepts. This is done by computing the 
relatedness between concepts either by estimating the distance 
or the amount of information in commonality of the two 
concepts being compared. Most popular mechanisms used to 
calculate the semantic similarity between concepts are 
founded by [19]–[22]. The comparison in [23] shows that 
Jiang and Conrath’s semantic similarity [21] provides the best 
results, and it is used as a main reference in this study. 

Genetic algorithm is a soft computing technique that has 
been recognized in the information retrieval field. This is due 
to its capability of being adaptive, robust, efficient, and a 
global search method that is suitable for situations where the 
search space is large. Furthermore, genetic algorithm 
optimizes its fitness function by manipulating the genetic 
operators to find an optimal solution. Implementations of 
genetic algorithm in information retrieval are normally related 
to web search [24]–[26] and document retrieval [27], [28]. 
Some review of genetic algorithm and discussion on other soft 
computing techniques in information retrieval can be found in 
[29]–[31].  

IV. QUANTIFYING SIMILITUDE STRENGTH BETWEEN GENE 
ONTOLOGY TERMS BY SEMANTIC SIMILARITY MEASURE 

A. Information Content  
The information content is calculated according to 

“association”, a source showing information that is shared 
among the GO terms. The association is a table which stores 
annotations that basically provide a link between a gene 
product and a GO term with an evidence code. For example, a 
gene product “dynein, axonemal, heavy chain 11” (Dnahc11) 
is associated with several GO terms such as “determination of 
left/right symmetry” (GO:0007368) with an evidence code of 
IMP (Inferred from Mutant Phenotype), “axonemal dynein 
complex” (GO:0005858) with an evidence code of IDA 
(Inferred from Direct Assay), and “mitochondrial inner 
membrane” (GO:0005743) with an evidence code of RCA 
(inferred from Reviewed Computational Analysis). The 
information content of the GO term IC(v) is given by the 
following equation:  

 
( ) log( ( ))IC v P v= −  (2) 

  
where P(v) is the probability of occurrence of a GO term v in 
the association. This probability can be computed using 
maximum likelihood estimation as given below: 

 
( )( ) freq vP v

N
=  (3) 

  
where N is the total number of occurrences in the association 
and freq(v) is the number of times that the GO term v and all 
its descendants occur in the association. The frequency of the 
GO term v is given as follows: 

 

( )

( ) ( )
i

i
v descendants v

freq v occur v
∈

= ∑  (4) 

  
where descendants(v) is a function that returns the set of GO 
terms that are the descendants of the GO term v. Note that, if a 
GO term va is an ancestor of a GO term vb, then freq(va) ≥ 
freq(vb) since the GO term va subsumes the GO term vb and all 
its descendants. Therefore, P(v) is larger when the GO term v 
is closer to the root term v0, and IC(va) ≤ IC(vb). 

B. Conceptual Distance 
The conceptual distance of a GO term is measured by the 

depth and the local network density factors. The depth is 
related to the distance of the GO term in the hierarchy of the 
GO graph. The local network density is associated with the 
number of children that span out from the GO term. The depth 
of the GO term D(v) is represented as below: 

 
( ) 1( )

( )
d vD v

d v

α
⎛ ⎞+

= ⎜ ⎟
⎝ ⎠

 (5) 
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where d(v) is the level of the GO term v in the GO graph. The 
d(v) of the root term v0 is 1, and it increases as the altitude of 
the GO term decreases in the hierarchy. The parameter α 
controls the degree of how much the depth factor contributes 
in (5), and α ≥ 0. 

The local network density of the GO term E(v) is defined as 
follows: 

 

( ) (1 )
( )
EE v

e v
β β

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
 (6) 

  
where e(v) is the number of edges that begin from the GO 
term v and E  is the number of edges divided by the number 
of GO terms that exist in the GO graph. The parameter β 
controls the degree of how much the local network density 
factor contributes to (6), and 0 ≤ β ≤ 1. 

The parameters α and β become less important when α 
approaches 0 and β approaches 1, since D(v) and E(v) will 
approach 1 respectively. Furthermore, (5) and (6) are 
equivalent when α = 0 and β = 1. 

C. The Hybrid Approach 
The hybrid approach is derived from the notion of the 

conceptual distance, and by integrating the information 
content as a decision factor. Given a sequence of GO terms va, 
…, vn representing the path from GO term va to vn with length 
n. The hybrid approach calculates the semantic distance 
between GO terms va and vn by the following formula: 

 

( )
1

1
0

( , ) ( ) ( ) ( ) ( )
n

a n i i i i
i

dist v v D v E v IC v IC v
−

+
=

= −∑  (7) 

  
where dist(va, vn) is the summation of edge weights along the 
shortest path that links va with vn. Thus, the semantic distance 
between GO terms vm and vn is quantified as follows: 

 
( , ) ( , ) ( , )m n a m a ndist v v dist v v dist v v= +  (8) 

  
where GO term va is the closest shared ancestor of GO terms 
vm and vn. Since the semantic distance is based on the 
difference between the information content, the normalization 
of the semantic distance is given by: 

 
( , )( , ) min{1, }

max{ ( )}
m n

norm m n
dist v vdist v v

IC v
=  (9) 

  
Therefore, the semantic similarity measure between GO 

terms vm and vn is calculated by converting the semantic 
distance as follows: 

 
( , ) 1 ( , )m n norm m nSSM v v dist v v= −  (10) 

  
Note that, 0 ≤ SSM(vm, vn) ≤ 1 because 0 ≤ distnorm(vm, vn) ≤ 1. 

V. SEARCHING THE GENE ONTOLOGY TERMS BY GENETIC 
ALGORITHM 

The overall method for searching the GO terms is depicted 
in Fig. 2. In the beginning, the GO RDF/XML is partitioned 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 The method for searching the GO terms 
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Algorithm SSMGA (G, s); 
Input: G = {V, E} (a Gene Ontology Graph) and s (a search) 
Output: xt (a chromosome consisting of a set of nodes that are   
                   semantically similar to s and xt ∈ P(t)) 
begin 
 preprocess; 
 t := 0; 
 initialize P(t); 
 evaluate P(t); 
 while not termination-condition do 
  t := t + 1; 
  select P(t) from P(t – 1); 
  alter P(t) by crossover and mutation operator; 
  evaluate P(t); 
 end-while 
end 

Fig. 3 The SSMGA algorithm 
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Algorithm SSM (L, s); 
Input: L = {L0, L1, …, Lm-1} (a set of page clusters) and s (a search) 
Output: C = {C0, C1, …, Cm-1} (a set of clusters containing sorted lists  
                                                     of nodes) 
begin 
 for i := 0 to m-1 do 
  for j := 0 to n-1 do    // where n is the number of nodes in page 
                                            cluster Li 
   calculate the information content IC(vi ,j);   //  where vi ∈ Li 
   calculate the depth D(vi ,j); 
   calculate the local network density E(vi ,j); 
   calculate the semantic distance dist(s, vi ,j); 
   calculate the semantic similarity measure SSM(s, vi ,j); 
   wi ,j := SSM(s, vi ,j);   //  where wi ∈ Ci 
  end-for 
  sort (Ci); 
 end-for 
end 

Fig. 4 The preprocessing by semantic similarity measure algorithm 
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into a set of page clusters [32]. The idea is to cluster this 
single monolithic web page into several page clusters in order 
to make it easier to be searched and maintained. The GO 
RDF/XML format is used rather than the mySQL format since 
the data can be accessed online and be processed by software 
agent and other machine-readable meta-data. The next steps 
are performed by a hybrid of semantic similarity measure and 
genetic algorithm (SSMGA) as shown in Fig. 3. The SSMGA 
is discussed in detail in the following sections. 

A. Preprocessing  
The first step of the SSMGA is the calculation of the 

semantic similarity measure between each GO term in page 
clusters and the user request. Detailed function is shown in 
Fig. 4. The main objective of introducing this preprocessing 
phase is to improve the quality of the chromosome. This is 
done by arranging the positions of nodes in the chromosome 
before the genetic algorithm starts. Thus, first chromosome 
created will contain the nodes with the highest semantic 
similarity score in each cluster. Then, the second chromosome 
will contain the second best and so on. A simple example is 
shown in Fig. 5. Given 4 clusters with 20 nodes and a search 
for node “3”. The GO term accession number is mapped to the 
node number according to identification in the “term” table. 
At first, the similarity between node “3” and all other nodes is 
calculated. Then, the nodes in each cluster are sorted 

descendingly based on the semantic similarity score. 

B. Parameter Encoding 
Starting with the results obtained by the semantic similarity 

algorithm in previous section, the initial population is created 
according to the following representations: 
1) Population size is the number of nodes in a cluster with 

maximum cardinal of nodes.  
2) Chromosome length is the number of nodes in the GO 

graph. 
3) Loci represent the node number. 
4) Gene defines whether a node in the pool of nodes is 

represented by a chromosome or not. 
5) Allele is formed by two binary elements either 0 or 1, 

where 1 shows presence (retrieved) and 0 shows absence 
(not retrieved) of a node in a chromosome. 

A chromosome is produced by picking a node from each 
cluster, starting with the ones with higher semantic similarity 
score. An example is shown in Fig. 6. If the cardinality of a 
cluster is smaller than the number of chromosomes to be 
created, then that cluster will not be present in each 
chromosome. The above representations are important to 
ensure that:  
1) The large GO graph can be presented with a simple and 

direct representation.  
2) The CPU time taken to converge can be reduced since the 

chromosome is represented using 1D binary string. 
3) The genetic evolution is started with a population such 

that t1(xi) ≥ t1(xj), where t1(x) is the sum of the semantic 
similarity score of the nodes in a chromosome x, ∀i,j ∈ 
{1, 2, …, ps}, ps is the size of population, and i < j. 

C. Crossover and Mutation Operators 
In order to maintain the algorithm as generic as possible, 

the genetic algorithm uses normal crossover and mutation 
operators. These operators are selected since they work 
effectively with a simple 1D binary string representation and 
with a fitness function based on semantic similarity measure. 
At each generation, the genetic algorithm applies the fitness 
function as criteria to measure the goodness of each 
chromosome of the current population to create a new set of 
artificial creatures (a new population). Thence, the fitness 
value of the best chromosome in each generation can be 
maximized. An example is shown in Fig. 7, where χ = 1, δ = 
50, and ID = 10  (refer to (11) in Section 5.4). 

The above objective is achieved by employing the 
crossover and mutation operators which try to improve the 
total fitness values of current population by manipulating the 
old ones. Through the crossover operator, the chromosomes 
reproduced in the new mating pool are mated randomly and 
afterward each pair of chromosomes, say xa and xb, undergoes 
a cross change. Then, the mutation operator plays a secondary 
role to prevent an irrecoverable loss of potentially useful 
information which occasionally crossover can cause. This 
operator performs a random alteration of the allelic value of a 
chromosome. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 An example of preprocessing performed by 
semantic similarity measure algorithm 

              Step 3: Sort the nodes 
 Cluster 0 Cluster 1 Cluster 2 Cluster 3 

Rank 0 12 (0.66) 3 (1.00) 11 (0.80) 14 (0.45) 
Rank 1 8 (0.33) 10 (0.73) 6 (0.76) 4 (0.41) 
Rank 2 0 (0.29) 16 (0.51) 17 (0.42) 7 (0.27) 
Rank 3 2 (0.13) 13 (0.28) 1 (0.38) 18 (0.20) 
Rank 4 19 (0.05) 5 (0.23) 15 (0.19)  
Rank 5  9 (0.16)   

Step 1: Given four clusters 
Cluster 0 Cluster 1 Cluster 2 Cluster 3 

0 3 1 4 
2 5 6 7 
8 9 11 14 

12 10 15 18 
19 13 17  

 16   

Step 2: Calculate the semantic similarity measure 
Cluster 0 Cluster 1 Cluster 2 Cluster 3 
0 (0.29) 3 (1.00) 1 (0.38) 4 (0.41) 
2 (0.13) 5 (0.23) 6 (0.76) 7 (0.27) 
8 (0.33) 9 (0.16) 11 (0.80) 14 (0.45) 
12 (0.66) 10 (0.73) 15 (0.19) 18 (0.20) 
19 (0.05) 13 (0.28) 17 (0.42)  

 16 (0.51)   
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D. Fitness Function Computation 
The fitness function for searching the GO terms focus on 

maximizing the preferences for semantic similarity score. The 
decision is inspired by the need to find a set of GO terms that 
perfectly match the user request. The fitness function f(x) for 
chromosome x is given as follows: 

 
1 2( ) ( ) ( )f x t x t xχ δ= +  (11) 

  
where χ and δ are control parameters so that the contributions 
given by factors t1(x) and t2(x) are balanced. The value of the 
fitness function is expressed as a positive value that is higher 
for the best chromosome. 

The fitness function is composed of two factors. The first is 
the sum of the semantic similarity score of the nodes in 
chromosome x, and is given as follows: 

 

1( ) ( )
i

i
u x

t x score u
∈

= ∑  (12) 

  
where score(ui) is the original semantic similarity score 

between the user request and nodes that are present in 
chromosome x. This factor considers the positive effect of 
having as many nodes with high semantic similarity score as 
possibly present in a chromosome. However, a chromosome 
with many nodes with low score could produce a fitness value 
higher than another one with a few good nodes. To avoid this 
phenomenon, the dimension index t2(x) for chromosome x is 
introduced as follows: 

 

2 ( )
( ( ) ) 1

kt x
abs cnt x ID

=
− +

 (13) 

  
where k is the number of nodes in the GO graph, cnt(x) is the 
number of nodes present in chromosome x, and ideal 
dimension ID is the number of matched GO terms that are 
preferred to be returned to the user. Note that, 0 < t2(x) ≤ k 
because if the number of nodes present in chromosome x is 
exactly equal to the ideal dimension, then maximum k is 
reached. Otherwise, it rapidly decreases when the number of 
nodes present in chromosome x is smaller or greater than the 
ideal dimension. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 An example of initial population formed by six chromosomes from a set of four clusters 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 An example of best chromosome formed by mutation and crossover operators 

 Cluster 0 Cluster 1 Cluster 2 Cluster 3 
Rank 0 12 (0.66) 3 (1.00) 11 (0.80) 14 (0.45) 
Rank 1 8 (0.33) 10 (0.73) 6 (0.76) 4 (0.41) 
Rank 2 0 (0.29) 16 (0.51) 17 (0.42) 7 (0.27) 
Rank 3 2 (0.13) 13 (0.28) 1 (0.38) 18 (0.20) 
Rank 4 19 (0.05) 5 (0.23) 15 (0.19)  
Rank 5  9 (0.16)   

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
Chromosome 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 
Chromosome 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 
Chromosome 2 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 
Chromosome 3 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 
Chromosome 4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 
Chromosome 5 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Cluster and initial population mapping 

                     f(x)  
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 value 
Generation 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 145.77 
Generation 10 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 202.71 
Generation 20 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 202.71 
Generation 30 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 202.71 
Generation 40 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 0 336.54 
Generation 50 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 0 336.54 
Generation 60 0 0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 337.34 
Generation 70 0 0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 337.34 
Generation 80 0 0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 337.34 
Generation 90 0 1 0 1 1 1 1 1 0 0 1 0 1 1 0 0 0 0 0 0 504.72 
Generation 100 0 1 0 1 1 1 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1005.19 
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E. Parallel Computation 
Computational challenges of searching the GO terms are 

the size and complexity of the large GO graph as described in 
(1) at the end of Section 2. To overcome these matters, the 
SSMGA is executed in parallel as shown in Fig. 8. The core 
process of parallel SSMGA is to divide the population into 
equal size subpopulations. Hereafter, each subpopulation is 
assigned to a processor where it evolves independently. 
During the process, a group of best chromosomes are 
transferred to replace a group of worst chromosomes between 
subpopulations. This migration process is performed 
periodically at certain cycles of generations. The parameters 
of the frequency of exchange and the number of chromosomes 
to be exchanged are adjustable. The rationale for 
implementing the decomposition approach is as follows: 
1) To reduce the execution times by decreasing the 

communication overhead involved in the exchange of 
chromosomes between processors.  

2) To improve the quality of the solutions reached by 
increasing population sizes without minding the time 
complexity. 

VI. EXPERIMENTAL RESULTS 
The semantic similarity measure presented in Section 4 

(SSMA) has been built according to Jiang and Conrath’s 
approach [21]. We have tested it using GO data released in 
February 2006. The results are compared with other semantic 
similarity measures proposed by Lin (SSMB), Leacock and 
Chodorow (SSMC), and Resnik (SSMD) in order to investigate 
its capabilities. Each GO term in Table 1 is paired with 
“organelle inner membrane” (GO:0019866) and the values are 
in similarity percentage. The parameter settings for the depth 
and the local network density factors are: α = 0.5 and β = 0.3. 
As depicted in Table 1, the SSMA provides the best results. 
Furthermore, GO terms such as “infected host cell surface 
knob” (GO:0020030), “host cell nucleus” (GO:0042025), and 
“membrane-bound organelle” (GO:0043227) are detected by 
the similarity measure SSMA whereas the similarity measures 
introduced by Lin, Leacock and Chodorow, and Resnik, are 
unable to detect these terms. 

The parameters of the SSMGA are shown in Table 2. The 
SSMGA is implemented using a low-cost PC cluster with 
computing power of 25 processors. The program is compiled 
using GNU GCC compiler under Fedora Core 5 operating 
system. The values of the parameters for the fitness function 
are χ = 1 and δ = 0.05. To test the stability of the SSMGA, the 
results of 5 separate runs for the best chromosome selected 
from the 25 subpopulations are compared as shown in Table 3 
and Fig. 9. Hence, if the user makes a search for “organelle 
inner membrane” (GO:0019866), the time taken for the user to 
wait until the results are received varies from 0.08 to 0.13 
seconds. The convergence occurred after 510 generations as 
the fastest and after 630 generations as the slowest. The range 
of the maximum value of fitness function is between 1,033.77 
and 1,034.14. 

The search results generated by the SSMGA are very 
attractive because it returns GO terms that do not contain 
keywords associated with the user request. Examples of such 
GO terms include “plastid” (GO:0009536), “COPII-coated 
vesicle” (GO:0030138), and “cell projection”(GO:0042995) 
for a search for “organelle inner membrane” (GO:0019866). 
The comparison between SSMGA with other GO browsers is 
shown in Fig. 10 for the top 20 search results. 

The effectiveness of the SSMGA is validated using 
standard information retrieval measures: recall and precision. 
Recall and precision are given by: 

 

100
( )

aRecall
a b

=
+

 (14) 

  

100
( )

aPrecision
a c

=
+

 (15) 

  
where a is the number of relevant GO terms retrieved, b is the 
number of relevant GO terms not retrieved, and c is the 
number of irrelevant GO terms retrieved. As shown in Fig. 11, 
the average of recall is 70.35% and the average of precision is 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 The parallelization structure of the SSMGA 
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83.80%. The high recall indicates that a large number of GO 
terms are returned by the SSMGA from all of the GO terms in 
the GO graph that are relevant to the search. The high 
precision indicates that a large proportion of the GO terms is 

relevant to the search among all of the GO terms returned by 
the SSMGA. 

VII. CONCLUSION 
In this paper, the problem of searching for semantically 

similar GO terms has been solved by combining semantic 
similarity measure with genetic algorithm. This is done by 
modeling the GO as a graph in order to ensure that the 
ontology search can be easily performed while considering the 
semantic relationships. The semantic similarity measure is 
used to quantify the similitude strength between GO terms by 
calculating the information content and conceptual distance 
among them. Then, the genetic algorithm plays its role to 
determine a set of GO terms from the large GO graph that 
have significant semantic association with the search term that 
the user entered. During the search process, the dimension 
index implemented in the algorithm prevents many GO terms 
with low semantic similarity score to be returned. The 
algorithm has also been executed in parallel to handle the 
astronomical size of the search space of the GO graph and to 
accelerate the computing time. 

As compared to other GO search engines, the proposed 
algorithm is capable of finding GO terms that do not contain 
the keyword specified by the user. Furthermore, this algorithm 
offers the advantages: the user can search for functionally 
related GO terms; reduced dependency of specialists, and 
significant time saving. In spite of this, the experimental 
results show that the algorithm is effective and stable. Future 
work will cover the extension of the definition and testing of 
automatic procedures for parameter tuning in the genetic 
algorithm. Moreover, the search results obtained by the 
algorithm will be applied to protein prediction or gene 
expression analysis. This is achievable since GO terms are 
connected with amino acid sequences, and this correlation has 
been studied by Lord et al. [6] and Sevilla et al. [18]. 
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TABLE I 
COMPARISON WITH OTHER SEMANTIC SIMILARITY MEASURES 

Term 
Accession 
Number 

Term Name SSMA SSMB SSMC SSMD 

GO:0005652 nuclear lamina 5.7 4.0 3.4 2.3 
GO:0005787 signal peptidase complex 5.8 4.1 3.6 2.3 
GO:0009528 plastid inner membrane 16.1 7.7 6.5 4.3 

GO:0009529 plastid intermembrane 
space 1.6 1.1 0.9 0.5 

GO:0009536 plastid 9.1 5.8 2.7 0.5 

GO:0016023 cytoplasmic membrane-
bound vesicle 6.5 4.3 2.1 0.5 

GO:0017090 meprin A complex 5.8 3.0 2.6 2.3 
GO:0019815 B cell receptor complex 6.5 3.3 3.0 2.9 
GO:0019866 organelle inner membrane 100.0 100.0 100.0 89.0 
GO:0019867 outer membrane 7.8 7.5 6.0 4.9 

GO:0020006 parasitophorous vacuolar 
membrane network 4.0 2.3 1.9 1.7 

GO:0020007 apical complex 2.2 2.0 1.7 1.1 
GO:0020016 flagellar pocket 2.2 1.9 1.0 0.5 

GO:0020030 infected host cell surface 
knob 2.8 0.0 0.0 0.0 

GO:0020031 polar ring of apical 
complex 1.8 1.4 1.3 1.1 

GO:0030138 COPII-coated vesicle 3.9 2.8 1.4 0.5 

GO:0030386 ferredoxin:thioredoxin 
reductase complex 1.6 1.1 0.9 0.5 

GO:0031090 organelle membrane 12.4 10.1 8.6 3.0 

GO:0031300 intrinsic to organelle 
membrane 8.8 5.5 4.8 3.0 

GO:0031471 ethanolamine degradation 
polyhedral organelle 1.6 1.2 0.9 0.5 

GO:0042025 host cell nucleus 5.1 0.0 0.0 0.0 
GO:0042601 forespore (sensu Bacteria) 1.8 1.6 1.5 1.1 
GO:0042995 cell projection 6.4 5.0 4.2 1.1 

GO:0043227 membrane-bound 
organelle 12.7 0.0 0.0 0.0 

GO:0043231 intracellular membrane-
bound organelle 13.8 8.2 4.0 0.5 
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TABLE 2 
SSMGA PARAMETERS 

Item Parameter 
Size of population 500 
Number of generations 1,000 
Crossover probability 0.6 
Mutation probability 0.05 
Size of genome 20,537 
Replacement percentage 0.5 
Type of crossover Two-point crossover 
Type of mutation Swap mutation 
Type of genetic algorithm Steady-state genetic algorithm 
Scaling Sigma truncation scaling 
Fitness function Maximizing preferences 
Ideal dimension 20 
Number of subpopulations 25 
Size of subpopulation 20 
Frequency of exchange Every 10 generations 
Number of chromosomes to be exchanged 4 
Type of replacement Bad by best 
Type of migration Stepping stone 
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