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ABSTRACT 

 

 

 

 

The automotive air-conditioning (AAC) system is the second largest consumer 

of energy after the power train in a typical passenger vehicle. An improvement on the 

performance of this system will save a significant amount of energy and significantly 

improve the vehicle performance. The study was divided into two main sections, 

namely, experimental work and parametric simulation. The experimental work was 

conducted to obtain the off-road air-side evaporator heat transfer correlation and 

refrigerant-side correlations of compressor work, refrigerant mass flow rate, cooling 

capacity, and heat rejected from the condenser. The experimental rig comprised the 

original components from the AAC system of a medium-sized passenger car equipped 

with an appropriately sized electric compressor and electronic expansion valve. Cabin 

compartment thermal load, air-side evaporator-cabin compartment, and thermal and 

energy AAC system performance mathematical models had been developed based on 

models proposed by previous studies. Comparison exercises indicated that the 

simulation from the cabin compartment thermal load mathematical model and 

experimental results were within 5% error and were highly consistent with published 

results. Parametric simulation studies revealed that vehicle surface with darker color, 

an increment in the number of occupants, vehicle speed and fractional ventilation of 

air intake, and lower cabin temperature tend to increase the cooling load and require 

additional cooling capacity up to 144.16 W (5.01%). As a result, compressor work 

increased, up to 89.12 W (10.82%). Consequently, maximum reduction of COP up to 

5.53% was recorded due to dominant increase in compressor work, as opposed to an 

increase in cooling capacity. In short, the proposed simulation model is able to help 

designers and/or engineers to understand the best type of vehicles and AAC operating 

system that can enhance the overall performance of the vehicle, particularly an electric 

vehicle, in the most efficient way. Consequently, it can reduce the effort, time, and 

cost to develop AAC systems and vehicles in the future.
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ABSTRAK 

 

 

 

 

Dalam operasi sebuah kereta, sistem penyamanan udara kereta (AAC) 

merupakan pengguna tenaga ke dua terbesar selepas sistem aliran kuasa. 

Penambahbaikan prestasi sistem tersebut akan menghasilkan satu kesan yang 

signifikan dalam penjimatan tenaga dan prestasi keseluruhan kereta tersebut. Kajian 

dibahagikan kepada dua bahagian iaitu kerja ujikaji dan simulasi parametrik. Ujikaji 

dijalankan bagi mendapatkan kolerasi bahagian-udara, pemindahan haba penyejat dan 

kolerasi bahagian-bendalir pendingin kerja pemampat, kadar alir jisim bendalir 

pendingin, kapasiti penyejukan dan haba yang disingkirkan dari pemelwap. Pelantar 

ujikaji terdiri daripada komponen asal sistem AAC kereta bersaiz sederhana, 

dilengkapkan dengan pemampat elektrik dan injap pengembangan elektronik yang 

bersesuaian. Model matematik bagi beban haba ruangan kabin, bahagian-udara 

penyejat-ruangan kabin, dan prestasi haba dan tenaga sistem AAC telah dibangunkan 

berdasarkan gabungan model-model yang telah dibangunkan sebelumnya. 

Perbandingan di antara data simulasi dari model beban haba ruangan kabin dan 

keputusan ujikaji berada dalam ralat 5% dan sangat konsisten dengan keputusan 

kajian-kajian yang sudah diterbitkan. Kajian simulasi parametrik mendapati warna 

luaran kenderaan yang lebih gelap, pertambahan penumpang, kelajuan kenderaan dan 

peratusan kemasukan udara luar, serta suhu kabin yang lebih rendah cenderung 

meningkat beban penyejukan dan memerlukan kapasiti penyejukan tambahan 

sehingga 144.16 W (5.01%). Kesannya, kerja pemampat meningkat sehingga 89.12 W 

(10.82%). Oleh itu, penurunan COP sehingga maksimum 5.53% direkodkan 

disebabkan peningkatan kerja pemampat lebih dominan jika dibandingkan dengan 

peningkatan dalam kapasiti penyejukan. Secara ringkasnya, model simulasi yang 

dicadangkan mampu membantu pereka-pereka dan/atau jurutera-jurutera dalam 

memahami jenis kenderaan dan operasi sistem AAC yang terbaik, yang boleh 

meningkatkan prestasi keseluruhan kenderaan, terutamanya kenderaan elektrik dengan 

cara yang paling cekap. Dengan itu, ia dapat mengurangkan penggunaan tenaga, masa 

dan kos dalam membangunkan sistem-sistem AAC dan kenderaan-kenderaan pada 

masa depan.
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background  

 

 

Transport activity is a key component of economic development and human 

welfare, and this activity is increasing around the world as economies grow (Kahn 

Ribeiro et al., 2007). Sand and Fischer (1997) found that automobiles are used 

approximately 249 h on average every year. Automobile air-conditioning (A/C) is also 

used at nearly 107–121 h per year, which accounts for 43%–49% of vehicle 

consumption (Fischer, 1995). Therefore, an automotive A/C (AAC) system as a 

standard accessory is vital to provide thermal comfort to passengers and drivers. 

Comfort is not the only reason for using AAC systems; another reason is road safety, 

which improves with the comfort of drivers because a pleasant environment reduces 

driver fatigue (Konz, 2007).  

 

 

Many land transport vehicles in the world are powered by internal combustion 

engines (ICEs), and 95% of worldwide total energy is derived from petroleum (Kahn 

Ribeiro et al., 2007), thereby resulting in energy-related greenhouse gas (GHG) 

emissions. In 2004, the transport sector was responsible for 23% of the total GHG 

emissions in the world, with nearly three-fourths coming from ground vehicles (Kahn 

Ribeiro et al., 2007). The continuing annual growth of human populations and 

economies around the world will lead to a higher volume of GHG emissions in the  
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future. Therefore, electric vehicles (EVs) are important to realize a sustainable 

transport system (Strömberg et al., 2011). 

 

 

The driving range of an EV is around 140–160 km on a single charge; however, 

with the application of heating, ventilation, and air-conditioning (HVAC) systems, the 

driving range decreases by 20%–30% (Kwon et al., 2012). Farrington and Rugh (2000) 

showed that an increase of the accessory load from 500 W to 3500 W would decrease 

the EV range by 7%–38%. Chen et al. (2011) observed that the total mileage of an EV 

decreases by 50% when the A/C system is applied, thereby making the vehicle 

infeasible for long-distance transportation. Figure 1.1 shows the effect of the HVAC 

system on the cruising range of EVs.  

 

 

 

Figure 1.1 Effect of heating, ventilation, and air-conditioning system on cruising range 

(Kwon et al., 2012) 

 

 

The usage of the HVAC system varies considerably depending on factors such 

as climate, time of day, time of year, type of vehicle (including vehicle color), 

outdoor/indoor parking, occupant clothing, recent occupant activity levels, length of 

trip, vehicle speed, and personal preference (Farrington and Rugh, 2000). Thus, the 

usage is expected to be higher than that reported in hot humid countries. An energy-
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efficient air conditioner is significant for EV to achieve vehicular thermal comfort in 

the cabin compartments and to extend the traveling range as far as possible. Therefore, 

an improved understanding of the AAC system behavior interacting with various 

factors mentioned by Farrington and Rugh (2000) is needed to obtain an efficient AAC 

system for future vehicles.  

 

 

 

 

1.2  Problem Statement 

 

 

One of the major factors for the success of future EVs is the capability to meet 

consumer needs, such as city driving and long-distance driving, during various 

occasions. Another type of consumer need is thermal comfort, which can be provided 

by the AAC systems that run on battery. AAC cooling loads are the most significant 

auxiliary loads (Zhang et al., 2009; Kaushik et al., 2011), and AAC systems consume 

the second largest amount of energy after powertrains (Roscher et al., 2012). Thus, its 

operation becomes critical for full EVs because of limited battery storage capacity, 

limited battery charging station, and longer time required to charge the battery 

compared with conventional fuel-driven ICE-powered vehicles. The battery is used 

not only to operate the electric motor to run the EV, but also to run the A/C system as 

well as other accessories. Accordingly, the driving range of the EV is reduced. 

Therefore, an energy-efficient A/C of EV (EVAC) system is significant. 

 

 

As highlighted in Section 1.1, an in-depth understanding of the AAC system 

behavior interacting with various factors, such as ambient conditions and vehicle 

operation, is necessary to obtain an efficient AAC system for future vehicles. To 

accomplish this goal, an efficient tool for rapid design and prototyping of the AAC 

system that can interact with the aforementioned factors is necessary. Consequently, 

the overall performance of the vehicle, especially that of the AAC system, can be 

investigated and confirmed before mass production. 
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Given that the increase of experimental and prototyping procedures for any 

AAC system increases development time, workforce, and cost, a simulation program 

can be used to carefully analyze the AAC system. Thus, the simulation program of an 

EVAC system is proposed to predict the AAC system performance under the influence 

of the aforementioned factors. Through this simulation program, the performance of 

the A/C system can be simulated to improve or optimize the system. As a result, the 

energy efficiency of the EVAC system can be enhanced, thereby improving the overall 

performance of the EVs.  

 

 

A thermal environment in a passenger car compartment is created according to 

the performance of its A/C system (Mohamed Kamar, 2008). Therefore, two main 

aspects need to be considered to develop a comprehensive AAC simulation program: 

analysis of thermal load in the cabin compartment, and analysis of thermal and energy 

performance of the AAC system. By connecting the analysis of cabin compartment 

thermal load to the analysis of thermal and energy performance of the AAC system in 

both, air and refrigerant sides via the evaporator, we can describe the thermal behavior 

in the passenger compartment, as well as the thermal and energy performance of the 

AAC system under the influence of outside environment and various operating 

conditions. Therefore, the complete simulation program consists of three mathematical 

models: mathematical model of cabin compartment thermal load, mathematical model 

of refrigerant-side thermal and energy performance of the AAC system, and 

mathematical model of air-side evaporator that links the first two models. 

 

 

In this case, experimental investigation can be conducted to obtain the required 

empirical correlations of each model. An experimental test rig for the EVAC system 

can be developed by modifying the existing AAC system available in the market, that 

is, the AAC system of a 1.6-L Proton Wira Aeroback passenger car with original 

components of heat exchangers and internal and external fans. Modification of the 

EVAC system can be performed in the compressor and expansion valve sections. In 

particular, an appropriate variable capacity brushless direct current motor–compressor 

and an electronic expansion valve (EEV) for valve opening control can be used.  
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In this study, a complete simulation program of direct current-operated AAC 

system is developed. Without requiring complicated experimental work, this 

simulation program significantly reduces the effort and cost in determining the 

performance characteristics of the AAC system. Thus, planning toward enhanced 

overall performance of vehicles through an energy-efficient AAC system is possible 

in the future.  

 

 

 

 

1.3 Objectives of Study 

 

 

The importance of a complete simulation program to evaluate realistically and 

accurately the thermal and energy performance of the AAC system, led this study to 

focus mainly on the development of comprehensive predictive model. Accordingly, 

the objectives of this study are as follows: 

 

a. to predict the thermal load characteristics in the cabin compartment for 

the AAC system,  

b. to develop empirical correlations in order to link cabin compartment 

thermal load characteristic to the air and refrigerant sides of the AAC 

system, and 

c. to perform a parametric study to assess the thermal and energy 

performance of the AAC system. 

 

 

 

 

1.4  Scope of Research 

 

 

The research scope is divided into three categories: coverage (limiting of the 

variables covered), method used (preferred method), and validity of results (range of 

applicability of results). 
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The independent operational variables of the complete AAC system modeling 

are restricted to ambient air dry and wet bulb temperatures, desired cabin air dry bulb 

temperature and humidity, evaporator air volumetric flow rate, condenser air face 

velocity, number of passengers, vehicle thermophysical properties, and vehicle speed. 

The AAC system performance is confirmed by evaluating the performance dependent 

variables including cabin cooling load, refrigerant mass flow rate, evaporating capacity 

and temperature, compressor work, coefficient of performance (COP), and condensing 

temperature.  

 

 

The parametric study for the case of predicting the thermal load characteristics 

in the cabin compartment are only focused on the changing effect of weather, vehicle 

surface color, number of passengers, desired cabin air-dry bulb temperature and 

vehicle speed. Meanwhile, parametric study for the case of assessing the thermal and 

energy performance of the AAC system in the cabin compartment are only focused on 

the changing effect of vehicle surface color, vehicle speed, fractional ventilation air 

intake and evaporator air volumetric flowrate. Both parametric studies cover changing 

effect of weather from 11.00 am to 3.00 pm. 

 

 

Only analytical and experimental approaches are used in this study. 

Compressor and EEV are selected based on the predicted maximum cooling capacity 

that will be supplied to the cabin compartment. For thermal and energy performance 

analysis of the AAC system, an analytical method is proposed based on a mathematical 

model developed from experimental data. The cabin compartment thermal load model 

and the experimental data used for modeling are validated through available results 

published in the open literature. 

 

 

The results collected from this study are considered for steady-state condition 

with few assumptions. The air velocity, humidity, and temperature measured at the 

coils are considered uniform along the cross-sectional area of the duct/coils. The heat 

loss at the EEV and at the wall of the coils where the temperature is measured is 

assumed to be negligible by considering proper insulation of expansion valve and 

proper insulation between temperature sensors and coils, respectively. Heat loss from 
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the surface of the compressor is also assumed negligible. The evaporating and 

condensing temperatures are measured on the surface of the refrigerant pipeline at the 

inlet of the evaporator and at the outlet of the condenser, respectively.  

 

 

The air-side evaporator heat transfer correlation, and refrigerant-side 

correlations of compressor work, refrigerant mass flow rate, cooling capacity, and heat 

rejected from the condenser are model specific. Thus, the simulation model is only 

valid for application on an AAC system as in the experimental test rig in which the 

EEV is fixed at 100% opening degree (OD).  

 

 

 

 

1.5 Thesis Outline 

 

 

This thesis is composed of six chapters. Chapter 1 introduces the importance 

of the study.  

 

 

Chapter 2 presents the literature review. First, the basic concept of an actual 

vapor compression refrigeration cycle (VCRC) system is presented. Then, the analysis 

of thermal load in the passenger compartment is comprehensively reviewed, as well as 

the analysis of the thermal and energy performance of the AAC system. The methods 

for linking the model of thermal load in the passenger compartment with that of 

thermal and energy performance of the AAC system are also presented. 

 

 

In Chapter 3, a complete research approach is outlined. Next, the novel 

procedures to perform cabin compartment thermal load analysis and energy 

performance analysis of an AAC system are presented. Then, procedures to integrate 

the mathematical model of the cabin compartment thermal load with that of energy 

performance of the AAC system for the complete system simulation are presented. 

Finally, the method of selecting components to fabricate the experimental test rig; the 
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purpose of the experimental work; and the method for data mining, data analysis, and 

data accuracy check are briefly described. 

 

 

Chapter 4 presents the experimental set up of this study. It consists of two main 

sub-sections. The first sub-section presents the method of equipment selection (EEV 

and electric compressor) to develop the experimental test rig using the mathematical 

model of cabin compartment thermal load. This sub-section starts with the verification 

process of the model, followed by analysis of maximum cooling capacity estimation. 

Finally, based on the maximum cooling capacity estimation, the selection procedures 

of possible electric compressor and EEV are presented. 

 

 

Then, the experimental work to obtain empirical correlations for the 

performances of the air-side steady-state evaporator heat transfer and refrigerant-side 

steady-state AAC system is presented in the following sub-section. One empirical 

evaporator coil performance correlation and three empirical AAC performance 

correlations are then developed using the experimental data. The development of the 

experimental test rig, the test conditions, and the procedures of collecting data are also 

explained. A validation exercise of the experimental data is also presented before the 

data are utilized for the complete simulation of the AAC system. 

 

 

In Chapter 5, the simulation results through parametric study are presented. 

This chapter discusses the effects of selected parameters including vehicle surface 

color, number of occupants, desired cabin air-dry bulb temperature, vehicle speed, 

fractional ventilation air intake and evaporator air volumetric flow rate on the cabin 

cooling load profile, and thermal and energy performance of the AAC system.  

 

 

Finally, the main findings, conclusions, contributions to the field of knowledge 

and recommendations for future works are presented in Chapter 6. 
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