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ABSTRACT 

 

 

 

Underwater Acoustic Sensor Network (UW-ASN) is a wireless network 

infrastructure applicable in deep ocean to sense, collect and transmit information to 

seashore data collector. Underwater sensor network consists of sensor nodes 

disposed in different depths, equipped with a low bandwidth acoustic modem and 

acts collaboratively to route the packet from one node to another. Underwater routing 

protocols provide route information to underwater sensor nodes to transmit collected 

information efficiently using an optimal path. Routing protocol related to UW-ASN 

is identified with the issues of low energy consumption, high end-to-end delay and 

shorter network lifetime. These are due to the distribution of unnecessary 

information packet flooding in route establishment, improper selection of next hop 

neighbour and inefficient routing path generation. This research develops a routing 

protocol that will be able to control flooding of hello packet at information 

distribution phase, to calculate link quality and composite metric cost for next hop 

selection and to regularly update the energy status in order to achieve optimum 

balance in routing path. The developed protocol is called Distance based Reliable 

and Energy Efficient (DREE) consists of three schemes. The first scheme is called 

distance calculation and information distribution scheme that calculates the distance 

between potential neighbours and distribute the local information in an energy 

efficient manner. The second scheme is route planning and data forwarding scheme 

in which a node calculates the link quality towards its neighbours and selects a path 

based on physical distance, link quality and node energy information. Finally, the 

third scheme is energy balancing scheme that provides each node with new energy 

status of its neighbours on regular basis. DREE is compared with a Reliable and 

Energy Efficient routing protocol (R-ERP
2
R) and Depth based Routing (DBR) 

protocol. Simulation shows that DREE reducing energy consumption in the 

information distribution phase by 187% and 179% compared to R-ERP
2
R in random 

and grid topology respectively. DREE achieves higher packet delivery ratio of 96% 

with a similar end-to-end delay as R-ERP
2
R. DREE improves packet delivery ratio 

by 7% and 13% over R-ERP
2
R and DBR, with 9.3% and 201% less energy 

consumption respectively in data forwarding phase. Finally, DREE improves 

network lifetime by 18% and 74.5% compared to R-ERP
2
R and DBR protocols. 
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ABSTRAK 

 

 

 

Rangkaian Penderia Akustik Dalam Air (UW-ASN) adalah infrastruktur 

rangkaian tanpa wayar diaplikasikan dalam lautan dalam untuk mengesan, 

mengumpul dan menghantar maklumat ke pengumpul data di tepi pantai. Rangkaian 

penderia dalam air mengandungi nod penderia disusun dengan kedalaman yang 

berbeza, dilengkapi dengan model akustik yang rendah lebar jalur dan bertindak 

secara kolaboratif untuk menghala paket dari satu nod ke nod yang lain. Protokol 

penghalaan dalam air perlu menyediakan maklumat halaan kepada nod deria dalam 

air untuk menghantar maklumat terkumpul secara efisien menggunakan laluan yang 

optima. Protokol penghalaan berkaitan dengan UW-ASN dikenal pasti mengalami 

isu-isu seperti penggunaan tenaga yang rendah, tangguhan hujung-ke-hujung yang 

tinggi dan hayat rangkaian yang pendek. Ini adalah disebabkan oleh pengagihan 

kebanjiran paket maklumat yang tidak perlu semasa pemantapan halaan, pemilihan 

hop jiran seterusnya yang tidak tepat dan penjanaan laluan penghalaan yang tidak 

efisien. Penyelidikan ini membina protokol penghalaan yang mampu mengawal 

kebanjiran paket hello semasa fasa pengagihan maklumat, yang boleh mengira kualiti 

sambungan dan kos metrik komposit untuk pemilihan hop seterusnya dan yang dapat 

mengemaskini secara berkala status tenaga untuk mencapai imbangan yang optima 

dalam laluan penghalaan. Protokol yang dibangunkan dipanggil Boleh percaya dan 

Cekap Tenaga berasaskan Jarak (DREE) mengandungi tiga skema. Skema pertama 

dipanggil skema pengiraan jarak dan pengagihan maklumat yang mengira jarak 

antara jiran-jiran yang berpotensi dan mengagihkan maklumat tempatan dalam 

bentuk cekap tenaga. Skema kedua adalah skema perancangan laluan dan pemajuan 

data di mana nod mengira kualiti sambungan ke arah jiran-jirannya dan memilih 

laluan berdasarkan jarak fizikal, kualiti sambungan dan maklumat tenaga. Akhirnya, 

skema ketiga adalah skema imbangan tenaga yang menyediakan kepada setiap nod 

status tenaga jiran-jiran barunya secara berkala. DREE dibandingkan dengan 

protokol penghalaan Tenaga Efisien (R-ERP
2
R) dan protokol Penghalaan Berasaskan 

Kedalaman (DBR). Simulasi menunjukkan DREE mengurangkan masing-masing  

penggunaan tenaga semasa fasa pengagihan maklumat kepada 187% dan 179%  

dibandingkan dengan R-ERP
2
R dalam topologi rawak dan grid. DREE mencapai 

kadar penghantaran paket yang tinggi iaitu 96% dengan tangguhan hujung-ke-hujung 

sebagaimana R-ERP
2
R. DREE meningkatkan kadar penghantaran paket kepada 7% 

dan 13% ke atas R-ERP
2
R dan DBR dengan mengurangkan masing-masing 9.3% 

dan 201% semasa fasa pemajuan data. Akhirnya, DREE meningkatkan hayat 

rangkaian sebanyak 18% dan 74.5% berbanding dengan protokol R-ERP
2
R dan 

DBR. 
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CHAPTER 1

INTRODUCTION

1.1 Overview

Underwater acoustic sensor network (UW-ASN) is an emerging area of
research because of its applicability of monitoring, navigation, surveillance and
tracking applications in various environmental, industrial and military domains.
The increasing interest in these applications motivates research for development
of underwater routing protocols in acoustic medium. Multiple underwater routing
protocols have been proposed over the years that provide suitable low overhead
mechanisms to sense, collect and transmit sensed information to onshore control
systems. However, the intrinsic conditions in underwater environment raises many
challenges for the design of reliable and efficient routing protocol. The motivation
behind this research is to address the problem of high energy consumption in the
information distribution phase, the problem of high end-to-end delay in route planning
and data forwarding phase and finally the problem of enhancing network lifetime that
has a significant effect on the performance of the network.

1.2 Motivation

The oceanic world has been fascinating humans for many centuries and has
been a tremendous source of aliment, mean of transportation and also hold loads of
natural resources (such as salt, natural gases, coal mines) in it. Since water plays a
vital role in human’s survivability, with the advancement of science and technology
it was only in last century humans seriously started the exploring underwater world,
which was inadequate before. Water covers 71% of earth surface and nearly 10%
has been scrutinized (Ayaz et al., 2011). Oceans play an important role in climatic
change over the land occupied by humans and hence its investigation is important to
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understand the causes of natural events like hurricanes, sea storms, tsunami’s, etc.
However, due to stringent oceanic environment (such as high water pressure, extreme
temperatures) and other uncertain events, unmanned exploration with self-configuring
and communicating capabilities is inevitable. Hence, unmanned exploration gives
rise to the use of automated underwater sensor network technology and underwater
communication protocols.

Underwater routing protocols play a vital role in sensing, collecting and
transmitting sensed information from underwater sources and then delivering this
information to the onshore data collection centre. However, underwater network
routing protocols requires exhaustive research work to improve their performance.
Underwater networks have many applications in the modern world such as oil/gas
exploration, pollution monitoring, measuring of seismic activities for disaster
prevention, navigation support for ships and intrusion detection. These applications are
in great demand but require further enhancement in this technology to work properly
and to collect data in an effective way.

1.2.1 Underwater Scenario Environment

Different architectures and node deployment strategies for underwater sensor
network have been presented in literature such as Al-Bzoor et al. (2013); Climent et al.

(2012); Ibrahim et al. (2013b) and Yadav et al. (2014). These deployment methods can
be classified into two broad categories (i) classification with respect to motion such
as stationary, mobile or hybrid nodes or (ii) classification with respect to coverage
space such as 2D or 3D (Zeng et al., 2013). Underwater acoustic wireless sensor
networks are formed with multiple sensor nodes as shown in Figure 1.1 (Heidemann
et al., 2012). Some nodes are tied using the wire at the bottom of the ocean with
anchors but can move up to the length of the wire they are connected and are called
anchor nodes. Anchor nodes and autonomous underwater vehicles (AUV) are used
to collect information from a specific areas and very helpful in providing localization
information or to be used as a reference point to the nodes. Ordinary sensor nodes
are deployed underwater in most of the scenarios and move freely underwater along
with water currents. However, some underwater routing protocols such as Information
carrying based routing protocol (ICRP) proposed by Liang et al. (2007) make use
of fix ordinary sensors nodes as well. The job of these ordinary nodes is to sense,
collect and transmit the sensed information in the direction of the sink with the help of
acoustic modems. Sink nodes are floating nodes and are deployed at the water surface;
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However in some scenarios sink nodes are stationary (Yan et al., 2008). Sink nodes
are usually equipped with acoustic and radio modems. Radio modems provide inter
sink and communication with onshore control centre, whereas acoustic modems are
used to communicate with ordinary underwater nodes. Onshore data collection centre
make use of terrestrial or satellite communication to send further collected data to an
offshore data centre for data analysis.

Figure 1.1: Different types of node deployment in UW-ASN

All these different sensor nodes must work together in the form of an organized
network, as the set goals/objectives depend upon their collective performance. Hence,
the communication schemes require a change in their way of operation to work in
collaboration and efficiently in underwater networks.

1.2.2 Applications of UW-ASN

Underwater sensor networks are considered a promising solution for the
applications, where different sensor nodes adapt with the complexities and challenges
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posed by extreme underwater environment and work together to achieve their goals. A
brief summary of some of these applications is given below:

i. Disaster Prevention: Underwater sensor networks can be used for disaster
prevention applications from generation to their behavior such as sea quakes,
sea storms and tsunami that help provide warnings to coastal areas.

ii. Environmental oceanic Monitoring: Underwater sensor networks facilitate in
monitoring water currents, changes in the maritime environment, improving
weather forecasts and can help develop human activities and provide study
of their effect on marine echo systems (Akyildiz et al., 2005). Moreover,
monitoring of chemical, biological and nuclear pollution and tracking/study
of the aquatic species are typical applications for which UW-ASN is assumed
to be a promising solution. Furthermore, studies by Zhang et al. (2004)
also describe applications for areal detection of certain micro-organisms.
One of the common and most important application in the modern world is
oil/gas pipeline safety and leakage detection, as a security risk and monitoring
importance increases with increase in length of pipe that is mostly over couple
of miles underwater (Jawhar et al., 2007).

iii. Underwater Exploration: Underwater sensor networks have applications in
mine, mineral and oil/gas reservoir detections underwater. Moreover, they can
also be used in long digital data transfer optical cables and oil/gas pipeline
monitoring and deployment.

iv. Oceanic Sampling: Synoptic and cooperative sampling of 3D ocean
environment can be done in underwater networks assisted with AUV’s.

v. Tactical Surveillance and Targeting: Underwater sensor networks assisted
with AUV’s can perform tactical surveillance, targeting and intrusion detection
in the 3D underwater environment. According to Akyildiz et al. (2005),
underwater surveillance shows better results over traditional terrestrial radar
systems for low signature targets.

vi. Assisted Navigation: Underwater sensor networks are supportive in submarine
and ships navigation and help to provide safe passage in the presence of
hazards and assist in locating underwater rocks and shoals (i.e. sandbanks
and ridges).
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1.2.3 Constraints in UW-ASN

Terrestrial wireless sensor networks (TWSN) make use of radio waves for
communication but in underwater networks these radio waves at high frequency are
prone to absorption but could propagate at ultra-low frequencies ranging between
30 - 300 Hz (Akyildiz et al., 2004). Using radio waves at low frequencies require
large directional antenna’s and high transmission power. On the other hand, optical
communication is subject to scattering and not a good choice for long distance
communication in the underwater environment (Akyildiz et al., 2004). However, up
to several Mbits/sec could be achieved with optical modems in crystal clear water but
for short range connections (Fair et al., 2006). Therefore, acoustic waves mostly are
considered preferred method of communication for the underwater networks. Acoustic
channel is considered a reliable communication medium for short range, adhoc and
cost efficient UW-ASN. Despite a preferred choice, underwater acoustic channels
are considered new and pose a whole lot of new communication challenges at broad
level. Underwater sensor network channels can be classified as vertical and horizontal
channels. However, horizontal channels are considered to have posed with significant
challenges like signal absorption, multipath effect due to moving obstacles causing
frequency selectivity, noises generated by natural events or man-made devices, large
delays and signal scattering due to reflections that result in temporal signals (Sameer
et al., 2012). Moreover, it is also been shown that the increase in frequency in the
acoustic channel results in increased attenuation due to absorption of high frequency
components underwater. For example at frequency of 12.5 kHz, the amount of
absorption is 1 dB/km, while at frequency of 70 kHz, it is more than 20 dB/km
(Heidemann et al., 2006).

On the other hand, low frequencies are dependent upon ambient noise, which
limit the available bandwidth. Hence, in both cases low bit rate is the outcome
which is significantly low as compared to radio networks (Akyildiz et al., 2004).
Beside that, propagation of sound waves in underwater environment are contingent
on the physical characteristics of underwater environment such as density, pressure,
temperature and salinity of water that further degrades the performance of acoustic
channels (Heidemann et al., 2006). Furthermore, acoustic waves travel at the speed
of 1500 m/s underwater which is slower than radio waves in air by five orders of
magnitude and vary spatially with above said physical characteristics (Heidemann
et al., 2012). Furthermore, delay increases with the rise in distance between
communicating nodes, resulting in time-varying frequency shifts and spreading of
frequency, resulting in Doppler variance of received signal. Delay in underwater
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networks is 0.67 km/s, which is five order of magnitude lower than radio networks
(Akyildiz et al., 2004). This variation in acoustic signals gives rise to the phenomenon
of refraction, which together with multipath results in poor reception and in some
places lead to shadow zones (Partan et al., 2007) that complicates the interpretation
at the receiver. Together these constraints result in communication channel of poor
quality and high latency, thus combining the worst aspect of terrestrial mobile and
satellite radio channel into communication medium of extreme difficulty. Therefore,
while designing routing protocols for incorporating the limitations posed by acoustic
medium must be considered for the efficiency of the protocol. The change in the
communication medium from radio channels to acoustic channels make traditional
wired and wireless routing protocol unsuitable, which result in poor performance.

Therefore, challenges enforced by undersea environment requires the new set
of routing protocols and algorithms that can cope up with its harshness and provide
effective communication. The challenges imposed by the underwater environment are:

i. Node Mobility: Multiple applications require free nodes that are not anchored
at the bottom or fixed at the surface. In this situation, nodes move both in
vertical and horizontal direction with water currents, especially in shallow
water. However, vertical movement is not significant (Cui et al., 2006).
This phenomenon results in communication gaps/voids and often requires
autonomous underwater vehicles (AUV’s) for retrieving the location of
separated nodes and help in adjusting their position for data routing. Although
node movement is helpful in the vast coverage area in sparse networks as a
data mule and providing connectivity among nodes but also result in overhead
and require movement prediction models for improved efficiency.

ii. High Bit Error Rate: Acoustic channels have limited bandwidth and multiple
channel impairments like multi-path, fading and noise. Therefore, the error
rate is very high and frequent disconnections are common as compared to
terrestrial sensor networks and the error rate increases with the increase in
distance between the nodes.

iii. Communication Range: Communication range in underwater networks is
inversely proportional to the bandwidth, which means that increase in range
results in very limited bandwidth. For example, a medium range of 1-10 km
only results in 10 kHz of bandwidth, whereas short range of 0.1-1 km can
achieve bandwidth of 20-50 kHz (Akyildiz et al., 2005).

iv. Limited Energy: Nodes in UW-ASN are battery powered and charging
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batteries is hectic. Hence, energy is limited as compared to the terrestrial
networks that can even be charged with solar power.

v. Node Failure: Last but not least, UW-ASN are prone to fouling and corrosion.

1.3 Problem Background

Stringent underwater environment imposes constraints on human involvement
in the exploration of underwater resources. For systematic observations, smooth
communication and to obtain optimal results underwater sensor nodes must be able
to self-configure, share their coordinates, interactively communicate with other sensor
nodes and efficiently pass data to the sink nodes on the surface. However, the downside
of traditional exploration mechanism is that they require human involvement that
is not possible due to the unpredictable nature of the aquatic environment, vastly
monitored area and cost involved. Hence, the efficiency and applicability of traditional
mechanisms is limited with some imposed constraints (Prathap et al., 2012). Last but
not least, with no inter nodes or offshore communication, traditional mechanisms are
not scalable. Hence, they are unsuitable and unreliable for broad coverage. Therefore,
the need of an unmanned solution such as routing protocols for efficient monitoring and
data collection for large-scale real-time applications are required. A solution where,
nodes not only be able to communicate with each other efficiently using acoustic
wireless links but also able to relay data and communicate with an offshore control
system. Issues in designing a routing protocols are discussed below.

Maturity in terrestrial wireless sensor network technology inspires researchers
to experiment using UW-ASN technology in the inhospitable underwater environment.
However, UW-ASN poses significant challenges and requires extensive research to
obtain resilient, robust network with improved performance. Communication in
UW-ASN is not as simple as in TWSN, where common issues like power, energy
efficiency, and deployment become significant in 3D underwater topology and must
be taken into consideration while designing a routing protocol. Underwater network
protocols have high propagation delay in an acoustic medium. This means that the
communication overhead must be bound by a minimum threshold to enhance network
lifetime concerning energy and to avoid further delay in the slower acoustic medium.

Nodes in underwater networks are equipped with limited battery power and
hence utilizing this energy efficiently is one of the most important issues in these
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networks. Energy efficiency in routing protocols is referred to as providing routing
services by reducing energy consumption in events such as transmission/reception of
messages, reducing interference, reducing error rate and number of retransmissions
attempts (Mundada et al., 2012; Zaman, 2012; Pour, 2015). For example, protocols
proposed by Ayaz et al. (2012a); Coutinho et al. (2013); Wahid et al. (2014a, 2015)
consume excessive energy in information distribution phase to setup path for data
delivery. These protocols flood unnecessary traffic which is not required for setting up
data path or never used for data communication. H2-DAB protocol maintains duplicate
paths which it never uses throughout its working process. On the other hand routing
protocol such as R-ERP2R by Wahid et al. (2014a) deploy uncontrolled flooding,
where every new information received at a node such as distance is propagated
throughout the network. Hence these protocols consume alot of energy in information
distribution phase and are not energy efficient. Moreover, these protocols do not deploy
any collision avoidance mechanism and hence collisions are inevitable. Therefore,
a controlled flooding technique is necessary in the information distribution phase to
reduce high energy consumption. Otherwise, it is possible that a node may die early
due to excessive energy consumption and during data forwarding process a source node
may not find any data forwarding candidate at next hop.

Another issue of concern is reducing high end-to-end delay in the route
planning and data forwarding phase. R-ERP2R considers link quality with energy
to form a composite metric for cost calculation for the link at next hop. Composite
metric means combining two or more related metrics and estimating link cost based on
the combination of these metrics. Routing protocols depend upon estimation of link
quality to overcome low power unreliable links and to increase network efficiency in
terms of end-to-end delay and node energy (Gnawali et al., 2009; Baccour et al., 2012).
In R-ERP2R, link quality is used with energy for node selection at next hop. However,
these two metrics are not related, as increase or decrease in energy of the node does
not affect the quality of the communication link and vice versa. R-ERP2R does not
guarantee selection of nodes with higher energy and or with highest link quality. In
first case where R-ERP2R does not select node with highest energy results in reduced
network lifetime. While in the second case of link quality, R-ERP2R suffers from
packet loss as ETX accounts for partial link quality and suffers with higher end-to-end
delay. This is because packet receive ratio for two different nodes at the same distance
from the source can be different and less as compared to a node having more distance
than these two nodes (Baccour et al., 2012). Moreover, R-ERP2R makes use of DY-
NAV 802.11 by Shin & Kim (2008) as MAC layer protocol, which adds to further
delay as its a handshaking based protocol. Depth based protocol (DBR), on the other
hand, consider a single depth metric for data forwarding and cannot provide a robust
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path. Its greedy multipath approach results in frequent collisions and require multiple
retransmissions to deliver data at next hop. Hence, it also suffers from higher end-
to-end delay and higher energy consumption. Moreover, for data forwarding protocol
such as H2-DAB by Ayaz et al. (2012a) utilize a reactive multipath approach, which
not only add the delay at each next hop but results in collisions as well, especially in
dense deployment.

Studies (Liu et al., 2009; Draves et al., 2004) have shown that reliability based
metrics such as ETX exhibit better performance than protocols with conventional
metrics such as hop count and latency. This is because protocols that use shortest
path or minimum hop based metrics rely on the assumption that underlying link
is of good quality and hence suffer from performance degradation. In underwater
networks the channels are highly unreliable due to the factors described in 1.2.3
and continuous mobility of the node. The continuous node mobility does not allow
reliable data connections as in TWSN, where transmission control protocol (TCP) is
used to maintain a end-to-end connection. Therefore, routing protocols proposed for
underwater networks prefer hop-by-hop communication. In beacon based protocols,
R-ERP2R by Wahid et al. (2014a) is the only protocol that consider ETX metric
proposed by De Couto et al. (2005) for estimating the quality of the link. However,
ETX accounts for only partial quality of the link which its overestimates (Baccour
et al., 2012). Therefore, to resist transient fluctuations in underwater networks, to
provide quality of service and to select a stable link between nodes in communication
require accurate estimation of the underlying link. The selection of node based on the
link quality estimation guarantees reliability, it reduces end-to-end delay by reducing
retransmission attempts and by avoiding route re-selection due to link failure (Vigita
& Julie, 2013; Baccour et al., 2012). However, link quality is to be used with some
related metric for the node selection at next hop.

In the data forwarding phase, it is also noticed that some protocols such as H2-
DAB (Ayaz & Abdullah, 2009) and DBR (Yan et al., 2008) do not provide any scheme
to use next hop nodes alternatively and hence compromise the network lifetime. They
do not provide any scheme to balance energy or alternative selection of nodes at next
hop, rather they repeatedly use the same nodes. As a result, some nodes in the network
die early, creating communication voids. A communication void is a situation where
a node is unable to find next hop node in the direction of the sink node (Kheirabadi &
Mohamad, 2013). Communication voids not only results in unanticipated changes in
the topology but also produce signaling overhead in data transmission as data carrying
node search for different new paths. Furthermore, in H2-DAB protocol developed by
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Ayaz & Abdullah (2009), the addressing scheme is designed to achieve the high data
delivery rate. However, the addressing design is compromising the life of the network
by using the same path over and over again. R-ERP2R work on proactive routing tables,
which means that once the routing table is built it is only updated after a specific time
interval. As a result same nodes are used repeatedly in one interval and hence lifetime
of network is reduced. Therefore, a scheme is required using which a node energy
status can be updated on regular basis instead of set intervals. This allows a source to
choose different nodes in a specific interval and enhance network lifetime.

1.4 Problem Statement

This research is to address the problem of high energy consumption in the
information distribution phase due to uncontrolled flooding or unnecessary traffic
flow in building up routes. In underwater networks multiple channel impairments
together with node mobility result in unstable links. Selection of such links for
data communication based on improper quality estimation results in multiple re-
transmission attempts that lead to higher end-to-end delay. Therefore, sending data
over communication links, requires proper quality estimation of the link between
the two neighboring nodes. This research therefore, mainly focuses on next hop
neighbor selection based on composite metric (link quality and distance) in data
forwarding phase to reduce end-to-end delay. This research also address the issue
of inefficient energy balancing schemes that allow repeated use of same nodes for
data communication. Such schemes leads to the death of nodes due to frequent usage
and reduce lifetime of the network. Therefore, the problem on how to efficiently
provide energy balancing has been taken into consideration to enhance the lifetime
of a underwater network.

1.5 Research Questions

i. How to control the unnecessary packet flooding to reduce the energy
consumption in the information distribution phase?

ii. How to estimate optimal link quality estimation and consider more than one
metric to improve end-to-end delay?

iii. How to retrieve and update energy status of nodes at next hop to improve
network lifetime in data forwarding phase?
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1.6 Aim of the Research

The aim of this research work is to design and develop routing schemes for
underwater networks that will enhance information distribution for setting up network
path, find an optimized route on hop-by-hop basis and keep communicating nodes
informed of their energy status at all times. These schemes work together as one unit
and will reduce energy consumption, end-to-end delay in the network while increasing
packet delivery ratio and improving the network lifetime.

1.7 Research Objectives

The following objectives are defined to design and develop enhanced hop-by-
hop routing protocol in UW-ASN.

i. To design and develop a scheme that controls flooding of hello packet to reduce
energy consumption in the information distribution phase.

ii. To design and develop a scheme that estimates link quality and compute cost
using a composite metric for the selection of node at next hop to reduce end-
to-end delay.

iii. To design and develop an energy balancing scheme that allow energy status
update at each communicating node on regular basis to improve network
lifetime in data forwarding phase.

1.8 Scope of the Research Work

Many routing protocols for UW-ASN have been proposed in last few years.
However most of them assume special setups or requirements. For example either
they require a particular sensor (depth calculation sensor) as hardware or require full
dimension location or other special equipment for data forwarding. Example of some
such protocols that use extra mechanical devices, pressure sensors or localization
assumptions includes DFR (Shin et al., 2012), DCR (Coutinho et al., 2013) and DBR
(Yan et al., 2008). On the other hand beacon based protocols such as H2-DAB (Ayaz
& Abdullah, 2009), R-ERP2R (Wahid et al., 2014a) do not use any special setups
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or localization assumptions. Therefore, the scope for this work covers the following
points:

i. Nodes movement is not considered continuous, rather node will move up to
certain point and come back to its original position.

ii. At MAC layer underwater broadcast MAC is considered for the development
of this protocol in random and grid topology.

1.9 Thesis Organization

This rest of the thesis is arranged as follows:

Chapter 2 provides background to the domain and further provides discussion
on related issues in underwater networks. Classification of the existing beacon
based underwater routing protocols and debate on their strength and weaknesses
is provided. Detail on operational working comparison of different protocols for
underwater networks are also presented. Finally Chapter 2 discusses research gap used
to design and develop beacon based hop-by-hop routing protocol.

Chapter 3 presents detail methodology and discusses the design of the distance
based reliable and energy efficient hop-by-hop routing protocol. It provides details on
problems of the benchmark routing protocols and presents solution to these problems.
Chapter 3 clearly explain objectives of with methodology plan. It provides details on
simulation framework, channel model, node energy model and parameters used in the
simulation of proposed protocol.

Chapter 4 offers a detail insight development of designed distance based
reliable and energy efficient hop-by-hop routing protocol. Information distribution,
data forwarding and energy balancing schemes are presented and explained in detail
using examples. Moreover, flowcharts of the schemes are also presented that explain
the behavior of proposed routing protocol.

Chapter 5 yields performance simulation evaluation of the designed routing
protocol. Different performance metrics such as node mobility and packet rate are
considered and results are discussed. Moreover, a comparison with benchmark routing
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protocols based on the packet delivery ratio, energy consumption in information
distribution phase, energy consumption in data forwarding phase, end-to-end delay
and network lifetime is also presented and explained with the help of figures.

Chapter 6 concludes the work by summarizing the main contributions and
findings of the study with some possible future directions.
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