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ABSTRACT 

 

 

A numerical computation of the ocular fluid mechanics incorporate with 

Descemet membrane detachment (DMD) and Rhemathogeneous retinal detachment 

(RRD) were presented. DMD and RRD are serious diseases of the human eye that 

might cause vision impairment and blindness.The developing mechanisms of both 

diseases are related to the fluid flow in the anterior chamber (AC) and vitreous cavity 

(VC) of the human eye. However, the measurement of the fluid data in the human eye 

is difficult due to the small size of the eye and extremely low velocity of the fluid flow. 

Therefore, mathematical models were proposed to investigate the fluid flow in the 

human eye with DMD and RRD respectively. The aqueous humour (AH) in the AC 

and the vitreous humour (VH) in the VC have similar properties to water. Thus the AH 

and VH were assumed as an incompressible Newtonian fluid. Navier-Stokes equations 

were applied to govern the fluid flow in AC and VC. In AC, the AH flow was driven 

by the buoyancy forces. The AH adjacent to the iris was heated and eventually rises as 

buoyant flow. While, the AH adjacent to the cornea becomes colder and heavier that 

it flows down in the direction of the gravitational force. In VC, the VH flow was 

induced by the movement of the eye. Finite element method was used to solve this 

problem. A source code (MATLAB) was constructed to run the iterative numerical 

procedure, to determine the approximate solutions and to display the results 

graphically. The results show that the circulation of the AH in the AC was affected by 

the types and location of the DMD. Additionally, change in the orientations (the 

direction of the gravitational force) and the shape (the area) of the AC do change the 

characteristics of the AH flow. On the other hand, the characteristic of the VH flows 

in the VC were dependent on the pattern and seriousness of the RRD. The VH flow in 

the VC were dominantly driven by the saccadic eye movement. It is observed that, the 

scale and location of the sclera buckling were the important factors that affect the 

outflow of the subretinal fluid flow into the VC. 
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ABSTRAK 

 

 

Pengiraan berangka bagi mekanik bendalir okular yang melibatkan 

penanggalan membran Descemet (DMD) dan penanggalan retina jenis 

Rhegmatogenous (RRD) dipersembahkan. DMD dan RRD merupakan penyakit mata 

manusia yang serius berkemungkinan boleh menyebabkan gangguan penglihatan dan 

kebutaan. Mekanisme melaratnya kedua-dua penyakit ini berkait rapat dengan aliran 

bendalir di dalam aqueous chamber (AC) dan vitreous chamber (VC) mata manusia. 

Namun, pengukuran data bendalir di dalam mata manusia adalah sukar kerana saiz 

mata yang kecil dan halaju aliran bendalir yang amat rendah. Oleh itu, model 

matematik telah dicadangkan untuk menyelidik aliran bendalir di dalam mata manusia, 

masing-masing dengan DMD dan RRD. Aqueous humour (AH) dalam AC dan 

vitreous humour (VH) dalam VC mempunyai ciri-ciri yang serupa dengan air. Oleh 

itu AH dan VH diandaikan sebagai bendalir Newtonan tidak termampat. Persamaan 

Navier-Stokes telah digunakan untuk mentadbir aliran bendalir dalam AC dan VC. 

Dalam AC, aliran AH didorong oleh daya keapungan. AH bersebelahan dengan iris 

dipanaskan dan akhirnya akan meningkat sebagai aliran apung. Manakala, AH 

bersebelahan dengan kornea menjadi lebih sejuk dan lebih berat sehingga 

kemudiannya akan mengalir mengikuti arah daya graviti. Dalam VC, aliran VH diaruh 

oleh pergerakan mata. Kaedah unsur terhingga digunakan untuk menyelesaikan 

masalah ini. Satu kod sumber (MATLAB) telah dibina untuk melaksanakan prosedur 

berangka secara lelaran, bagi menentukan penyelesaian penghampiran dan 

memaparkan keputusan secara grafik. Keputusan menunjukkan peredaran AH di 

dalam AC dipengaruhi oleh jenis dan lokasi DMD. Di samping itu, perubahan orientasi 

(arah daya graviti) dan perubahan bentuk AC (keluasan) didapati mengubah ciri-ciri 

aliran AH. Sebaliknya, ciri-ciri aliran VH di dalam VC adalah bergantung kepada 

corak dan keseriusan RRD. Aliran VH di dalam VC didominasi oleh pergerakan mata 

sakadik. Diperhatikan bahawa, skala dan lokasi sklera melengkok adalah faktor 

penting yang mempengaruhi pengaliran keluar bendalir subretinal masuk ke dalam 

VC.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

 The eye is an organ that enables a human being to see. The eye helps the human 

being to understand and interpret the world around them. Descemet’s membrane 

detachment (DMD) and Rhematogeneous retinal detachment (RRD) are diseases of 

the eye that might cause blindness. The formation of both diseases involves the fluid 

flow inside the eye. However, the small dimension of the human eye and the extremely 

low velocities of the ocular fluid flow make it difficulties for in-vivo study on the 

human eye. Therefore, many aspects of fluid flow within the human eye have not yet 

been fully examined or quantitatively explained. Alternative, computational 

simulation of the ocular fluid flow is applied to understand the flow mechanisms in 

the human eye, especially when the eye has DMD and RRD. In this chapter, the 

background of the problem is explained. Then, the statement of the problem and the 

objectives of this research are highlighted. Some limitations and scopes of the research 

are also stated here. Finally, the significance of the study and the outline of the thesis 

are presented. 
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Figure 1.1 Structure of Human Eye (Kara, 2011). 

 

 

 

 

1.2 Research Background 

 

 

The clear dome like surface that exists at the front of a human eye is called as 

the cornea. The cornea covers the iris and the pupil, as shown in Figures 1.1. The 

region bounded by the cornea, the iris and the pupil is known as the anterior chamber 

(AC). There are three main layers and two auxiliary layers contained in the cornea, 

those are the epithelium, the stroma, the endothelium, the Browman layer and the 

Descemet membrane (DM). DM is a layer lies between the stroma and the endothelium 

layer of the cornea. DMD happens when DM is separated away from the stroma by the 

aqueous humour (AH) that flows into the space between the DM and the stroma 

through a tear or break on the DM. The detachment of DM may have serious adverse 

effects to the vision function of the human eye. Planar or non-planar, scrolled or non-

scrolled and peripheral or non-peripheral with central corneal involvement are the 

types of DMD (Mulhern et al., 1996; Menezo et al., 2002; Potter and Zalatimo, 2005).  
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DMD due to cataract surgery, iridectomy, trabeculectomy, corneal 

transplantation, deep lamellar keratoplasty, holmium laser sclerostomy, alkali burn 

and viscocanalostomy have been reported by Mulhern et al. (1996), Potter and 

Zalatimo (2005), Hirano et al. (2002) and Ünlü and Aksünger (2000). Sevillano et al. 

(2008) reported the technique of curing of DMD caused by cataract surgery with 

sulphur hexafluoride injection. Potter and Zalatimo (2005) presented the case of 

treating scrolled DMD by injecting fourteen percent of intracameral perfluoropropane 

(C3F8) into AC.  

 

Recently, Couch and Baratz (2009), investigated two cases of delayed bilateral 

DM and in one eye it was fixed surgically and the other eye improved spontaneously. 

They estimated that the spontaneous reattachment happens because of the buoyancy 

effects which cause the AH flow in AC. The spontaneous reattachment of DM has 

been supported by some observational and anecdotal evidences (Marcon et al., 2002; 

Nouri et al., 2002; Couch and Baratz, 2009; Ismail et al., 2012). Fitt and Gonzalez 

(2006) had shown that under normal conditions the buoyancy effects due to the 

temperature gradient in AC enhance the AH to flow. Ismail et al. (2012) intended to 

explain the phenomena of the spontaneous reattachment and thus, developed a 

mathematical model to describe the AH flow in AC with DMD. They concluded that 

the temperature difference across the eye and the orientation of the patient may control 

the clinical outcomes for the DMD. Nonetheless, the model developed by Ismail et al. 

(2012) was based on the lubrication theory limit, which include a lot of simplification. 

Consequently, the model may only partially illuminate the behaviour of the fluid flow 

in AC. Therefore, in this thesis, fluid mechanical theory is applied to model the fluid 

flow in AC, in order to study the effect of the detached DM on the behaviour of the 

AH flow in AC.  

 

DMD is categorized as planar or non-planar, scrolled or non-scrolled and 

peripheral or non-peripheral. Mackool and Holtz (1977) reported that non-planar 

detachments were difficult to reattach spontaneously compared to planar DMD. Assia 

et al. (1995) concluded that non-scrolled and non-planar DMD might be able to 

reattach spontaneously. And, Marcon et al. (2002) claimed that non-planar and non-

scrolled DMD often reattach spontaneously if given enough time. These imply that the 

type of DMD may affect the AH flow, thus influencing the occurrence of the 
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spontaneous reattachment of DMD in AC. Therefore, a model is developed is used to 

analyse the effect of different types of DMD to the fluid flow in AC. As, Amini and 

Barocas (2009) had shown that cornea indentation changed the contour of the iris and 

altered the AC angle, which is the angle between the iris and the cornea. Hence, it is 

possible for the indentation of cornea to affect the AH flow, which is driven by the 

temperature difference in the AC of human eye. Thus, the effects of the cornea 

indentation of the AH flow dynamics are investigated as well. In addition, the DMD 

problem during the indentation is also discussed in this study. 

 

 Retinal detachment happens in human eye when retina peels away from the 

cellular layer, which is called choroid and located between the retina and the sclera 

(Cook et al., 1995; Dyson et al., 2004; Daniel and Wilkinson, 2009; Ismail, 2013). 

Depending on the mechanism of subretinal fluid accumulation, retinal detachment can 

be categorized into Rhegmatogenous, Exudative and Tractional (Dyson et al., 2004; 

Daniel and Wilkinson, 2009; Ismail, 2013). Rhegmatogenous Retinal Detachment 

(RRD) may occur when the liquefied vitreous humour (VH) flow through a tear or 

break into the space between the retina and the retinal pigment epithelium. 

Consequently, the patient will become permanently blind in the affected eye because 

the detached retina lost the ability to function. Exudative retinal detachment and 

Tractional retinal detachment happen without a retina break. Exudative retinal 

detachment occurs when retina is pulled away by subretinal fluid which produced by 

a tumour or an inflammatory disorder. The retinal detachments caused by proliferative 

diabetic retinopathy, cicatricial retinopathy of prematurity, proliferative sickle 

retinopathy and penetrating trauma are called as Tractional retinal detachment. 

 

Retina, sclera and choroid are the main layers of human eyes as shown in 

Figure 1.1. Retina is the innermost layer of these three layers. Sclera is the outermost 

layer of the human eye and choroid is the intermediate layer. Retina is one of the most 

important parts of the human eye and may be considered to be a part of the brain. It is 

a complex nervous structure that is responsible for the visual process. Retina has three 

layers of nerve cells and two layers of synaptic connections (Davson, 1980; Kolb, 2003; 

Ismail, 2013). The nerve cell layers are photoreceptors, inner nuclear and ganglion 

cells. The photoreceptor layer is the outermost layer in the retina against the pigment 

epithelium and the choroid, and consists of the sensitive layer of rods and cones. The 
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nuclear layer, which consists of 1 to 4 types of horizontal cells, 11 types of bipolar 

cells and 22 to 30 types of amacrine cells, lies between the photoreceptors and the 

ganglion cells. Then, in the innermost layer of the retina contains 20 types of the 

ganglion cells (Pirenne, 1967; Davson, 1980; Kolb, 2003). 

 

Retina is also an important part in the visualization process because in the 

centre of the retina is a region with the highest visual acuity and it is named as fovea 

(Pirenne, 1967; Davson, 1980). When light passes through the cornea and the pupil to 

the lens, then it will be focused onto the fovea at the retina. To reach the photoreceptors, 

the light has to travel along the thickness of the retina. When the photoreceptors of the 

human eye receive the light, the light energy is transduced into electrical signals. Then, 

the electrical signals transmit back to the amacrine and the ganglion cells and the 

signals are propagated to the optic nerve by the axons of the ganglion cells. The optic 

nerve takes the ganglion cell axons to the brain for further visual processing (Pirenne, 

1967; Davson, 1980; Kolb, 2003; Ismail, 2013). 

 

RRD happens when the liquefied VH flows through a tear or break on the 

surface of the retina into the space between the retina and the retinal pigment 

epithelium (Daniel and Wilkinson, 2009; Ismail, 2013). The movement of the fluid in 

the subretinal space will pull the retina away from the choroid. To realize the 

mechanisms of the formation of the RRD, a number of researchers investigated the 

RRD problem clinically. Fatt and Shantinath (1971) reported that the RRD happen 

when there exist a hole in the retina. The mechanisms of the subretinal fluid in the 

pigment epithelium were discussed by Quintyn and Brasseur (2004). The recent trends 

in the managements of RRD can be found in the report prepared by Sodhi et al. (2008). 

However, few researchers studied the RRD problem mathematically. Gonzalez (2004) 

modelled the retinal detachment problem mathematically by assuming the detached 

retina as a free surface and the surface tension effect was taken into account. The effect 

of shear stress was neglected. In the study, the author found that the surface tension 

affect the progress of the retinal detachment.  

 

More recently, Ismail (2013) considered the effect of pressure gradient to the 

fluid flow in the detached retina. A paradigm mathematical model was developed and 

solved by asymptotic method. The behaviour and the deformation of the detached 
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retina were analysed. So far, some pioneering experimental and analytical researches 

had been performed, but the findings are short of data for the movements of liquefied 

vitreous in the RRD. Besides that, the results obtained in the previous researches were 

probably incomplete. In those researches, assumptions were made to simplify the 

governing equations, so that the analytical solutions can be determined. Thus, the 

obtained results cannot fully represent the actual fluid flow in the human eye with RRD. 

In this research, full two dimensional Navier-Stokes equations are used to represent 

the fluid flow in VC with RRD. Finite element method is applied to obtain the 

numerical solutions and used to analyse the complex flow field in the eye with a 

detached retina. 

 

There are various treatments for RRD and the most common treatment for 

uncomplicated RRD is scleral buckling (SB) (Sodhi et al., 2008; Ismail, 2013). A SB 

is a piece of fascia lata, palmaris trendon, semi-hard plastic, silicone sponge, rubber, 

or donor sclera that ophthalmologist places on the outside of the sclera or the white of 

the eye to treat the RRD. Silicone is the most popular material used to make the sclera 

buckle because silicon is nontoxic and nonallergenic (Daniel and Wilkinson, 2009). 

To relieve the traction on the retina, the SB will be sewn within the sclera. Therefore, 

the retinal tear will settle against the wall of the eye, so that the chorioretinal adhesions 

can be formed to seal the retinal break (Daniel and Wilkinson, 2009; Ismail, 2013).  

 

SB has gained attention of many researchers due to its popularities. The 

anatomic and visual results in an asymptomatic clinical RRD repaired by SB were 

reported by Greven et al. (1999). Foster et al. (2010) found that rapid eye movements 

facilitate more rapid retinal reattachment. They have used a commercial software, the 

COMSOL Multiphysics to simulate the influence of the SB on the flow of subretinal 

fluid in a physical model of retinal detachment. The physical principles behind the SB 

surgery were analysed. Motivated by the above study, in the present work, the effect 

of the SB on the movement of liquefied VH in the subspace between the detached 

retina and choroid is investigated. 

 

 

 

 



7 

 

1.3 Statement of the Problem 

 

 

As explained earlier, the flow data inside AC and VC are difficult to obtain due 

to the small scale of both chambers. In addition, the complexities of flow 

measurements inside a living eye also are obstacles for obtaining the data. As an 

alternative method, computational simulation of the flow can be very useful in 

producing the needed understanding of the flow mechanisms inside the AC and VC. 

In this way, the behaviour of the fluid flow when the human eye has DMD and RRD 

diseases can be comprehended. Further, most of the studies in the literature were 

conducted by using perturbation or asymptotic methods and were incapable to solve 

the complex fluid flow model used to describe the fluid flow in the AC with DMD and 

the VC with RRD respectively. Numerical method is needed. Therefore, finite element 

method is proposed in this study to obtain the numerical results of the flow. Although 

the DMD is a rare ocular problem, it may induce the loss of vision. The influence of 

the type of DMD, the cornea indentation and the position of the patient, to the flow of 

AH in AC may improve the occurrence of the spontaneous reattachment phenomena. 

Apart from that, as the SB treatment is the most common way to treat RRD, the 

response of the liquefied VH to SB is valuable in order to increase the success rate of 

the treatment.  

 

Some questions need to be answered in order to accomplish this study. How to 

develop the governing equations that describe the behaviour of the fluid flow in the 

AC and the VC respectively? How to model the fluid flow in the AC with DMD and 

the VC with RRD respectively? Is the finite element method able to solve the 

corresponding governing equations? How does AH flow behave in the AC with DMD? 

In what way do the type of the DMD, the cornea indentation and the position of the 

patient influence the AH flow in the AC? How does the liquefied VH flow behave in 

the VC with RRD? And what are the effects of the SB of the fluid field in VC with 

RRD? This research aims to answer these questions successfully.  
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1.4 Objectives of the Study 

 

 

The aim of this research is to investigate the characteristics of fluid flow in the 

human eye with DMD and RRD respectively. This includes the construction of 

suitable mathematical models of the flow by considering an appropriate governing 

equation and the boundary conditions and then solve the resulting equations using 

finite element method. Specifically, the objectives of this study are:      

 

1. To develop the appropriate governing equations that describe the fluid 

flow in the AC with DMD and the VC with RRD respectively.  

2. To develop a source code in MATLAB in order to solve the 

corresponding governing equations by using finite element method.  

3. To investigate the AH flow, driven by the temperature gradient, in the 

AC with DMD. 

4. To investigate the influence of the types of DMD, the indentation of the 

cornea and the position of the patient on the fluid behaviour in the AC.  

5. To investigate the fluid flow in the human eye with RRD, as a simple 

thin layer channel flow where a detachment is present in two cases: 

(i) Both upper and bottom walls are not moving 

(ii) With a moving upper wall  

6. To investigate the influence of the SB, which is used to treat RRD, on 

the liquefied VH flow in the subspace between the detached retina and 

choroid. 

 

 

 

 

1.5 Scope of the Study 

 

 

The fluid flow in the human eye with DMD and RRD are analysed. The fluid 

in the AC and VC is considered as an incompressible Newtonian fluid. The governing 

equations are solved numerically by using finite element method. The MATLAB 2013 
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software is used for the computation of numerical results as well as for plotting the 

graph for visual display. The fluid flow in the AC which is driven by the temperature 

gradient, for the DMD problem is considered. The types of DMD to be considered in 

this thesis are planar, non-planar, scrolled and non-scrolled. Additionally, the effects 

of the indentation of the cornea and the position of the patient in the fluid flow in the 

AC are analysed. Normally, retinal detachment can be characterized as 

rhegmatogeneous, tractional and exudative. The present study only focus on the RRD 

problem. This study is restricted to the effects of SB treatment. The effect of the scleral 

buckle on the outflow of the subretinal fluid through a hole in the retina is discussed.  

 

 

 

 

1.6 Significance of the Study   

 

 

The exact mechanism of RRD is complex and the picture of its development 

remains incomplete. Previous researches show only parts of the full puzzle. It is 

important to comprehend the development of the retinal detachment so that a new 

treatment method can be developed. It is hard to study the formation of the RRD in the 

real human eye. As a result, information on the RRD’s formation is lacking. Thus, 

results obtained in this research fill up the incompletion of the information. Wong et 

al. (1999) reported annual incidences of RRD in Singapore based on ethnicity. The 

results showed that 11.6 cases per 100,000 in the Chinese population, 7 cases among 

the Malays, and 3.9 cases for the Indians.  

 

The annual incidence of RRD of 18.2 cases per 100,000 people, in the 

Netherlands was reported by Van de Put et al. (2013). The result showed that peak 

incidence occurred for 55-59 year olds with 52.5 cases per 100,000 people. The data 

show that population of RRD is huge. Therefore, a full understanding of the RRD’s 

formation is essential for the prevention. Also as sclera buckling is the most common 

treatment for the RRD, it is important to increase the percentage of the successful 

treatment. The understanding of the dynamic effect of SB on retinal detachment is 

essential to reduce the percentage of treatment failure.  
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DMD is an uncommon disease in the eye, mostly occurs during cataract 

extraction. 50% of people between ages 65 and 74 and 70% of people over age 75 have 

cataract (Kara, 2011). Cloudy vision, glare, colour vision problems and double vision 

are some of the symptoms of cataract. To treat cataracts, surgery is normally performed 

to remove the affected lens and replace it by an artificial lens within the eye. The 

mechanism that causes the DM to tear from the stroma is unclear and the most popular 

hypothesis is that it is caused by the mechanical force applied to the cornea during 

surgery. This allows the AH to flow through the tear into the space between DM and 

the stroma and generate full DMD. An understanding of the role of the fluid flow in 

the devolving of full DMD is important. This will assist ophthalmologists to figure out 

better treatment to heal DMD.  

 

The finite element analysis used in this research is originally applied in the 

structural engineering. The application of the method in this study explores the 

technique in the field of fluid mechanics. Furthermore, numerical model obtained in 

this research is expected to be also suitable for other fluid problems such as fluid flow 

in a sphere or fluid flow inside the Earth. In addition, the numerical results obtained in 

this study can be used to validate new results obtained. 

 

 

 

 

1.7 Outline of the Thesis 

 

 

 This thesis contains seven chapters are included in this thesis. The statement of 

problems, objectives, scope and significance of the research make up the introduction 

as Chapter 1. The literature review of the interested problems is elaborated and 

established in Chapter 2. There are two sections in the chapter, the fluid flow in the 

AC and the fluid flow in the VC. The achievements of researchers on fluid flow in the 

human eye as well as the methods that used by them to accomplish the task are 

presented. The implementation of finite element method in solving the proposed 

problem is explained in Chapter 3 and 4. The fundamental procedures of using finite 

element method are given in Chapter 3. In additions, the Taylor-Hood element used to 
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mesh the domain and the iteration manner applied to solve the nonlinear equation are 

also explained in the chapter. The computer implementation of finite element method 

has been explored in Chapter 4. The verification of the source code also has been done 

and presented in the chapter.  

 

 The effect of the DMD to the fluid flow in AC is studied in Chapter 5. The 

effect of the different types of DMD, the shape of the AC and the position of the patient 

to the fluid flow are discussed. In Chapter 6, the RRD problem is demonstrated. Two 

cases are considered: (1) both upper and bottom walls are not moving and (2) with a 

moving upper wall, in order to analyse the behaviour of the fluid flow in the human 

eye with RRD. The alteration of the fluid flow due to the type of the RRD, the change 

of the gravity direction and the indented VC by the SB is explored and discussed. In 

the final chapter of this thesis, the summary of the research is presented. Additionally, 

some suggestions for the future study based on the present research are highlighted.  

 

 

 

 

1.8 Conclusions  

 

 

In this present chapter, the background of the problem, the statement of the 

problem, the objectives of the research, the scope of the research, significance of the 

study and the outline of the thesis are presented. The difficulties for in-vivo study on 

human eye lead researchers to use computational simulation of the ocular fluid flow 

to understand the flowing mechanical of the fluid in the human eye, especially in 

respect to the diseases of DMD and RRD. Six objectives are proposed to achieve in 

this thesis.  
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