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ABSTRACT 

 

 

 

 
The use of Fibre Reinforced Polymer (FRP) composites together with infill grout 

has been proven effective for repairing damaged steel pipelines. The common 

understanding of the role of grout is to fill the damaged section and to transfer loads 

from damaged pipeline to composite wrap. The properties of grouts are important 

parameters used in numerical simulation or theoretical prediction on the behaviour of a 

repair system. However, relatively limited information on the behaviour and role of 

grout in composite repair system has restricted efforts to explore the contribution of 

grouts as a secondary load bearing component. Therefore, this study aimed to investigate 

the performance and behaviour of epoxy grouts in terms of load transfer mechanism and 

load bearing capacity of pipeline composite repair system through detailed material 

characterization, hydrostatic burst test and finite element analysis (FEA). Selected 

mechanical and thermal tests were carried out on ten different grouts, steel pipe coupon 

and FRP composite wrap. Four hydrostatic burst tests were conducted on non-defect 

steel pipe, defective steel pipe and two composite repaired steel pipes. FEA was then 

utilized to enrich the information of grout in terms of load transfer mechanism and load 

bearing capacity. The finite element (FE) models were developed to simulate all 

hydrostatic burst tests for sensitivity analysis purposes. Results revealed that Grout A 

with highest silica sand filler content exhibits the highest modulus under all loading 

conditions. In terms of strength, Grout A shows the best performance under compressive 

load but the lowest resistance under tensile, flexural and lap shear load. Modified grout 

with no filler content, Grout A (1:0), shows contradictory properties and behaviour. In 

studying the effect of different grouts on overall performance of composite repaired steel 

pipe, Grout A and Grout A (1:0) were used to repair two steel pipe segments. Both 

grouts have increased the burst pressure of the steel pipe by about 23% and 26%, 

respectively. All FE models were found to be capable of predicting the behaviour and 

burst pressure of experimental test with margin of error less than 8%. The grout has 

experienced relatively high tensile stress when compared with the compressive stress. 

The highest tensile stress of grout was found at hoop direction while the highest 

compressive stress was recorded at radial direction. In addition, sensitivity analysis 

revealed that repair using Grout B resulted in 8% decrease of burst pressure, while grout 

with high tensile modulus and strength increased the burst pressure by 11%. Thus, based 

on the experimental test and numerical analysis, it is proven that the role of grout is not 

limited to transferring load and filling the defect, as it also provides additional 

reinforcement. It was also confirmed that different properties of grout affect the overall 

performance of repair. For a low tensile strength grout, an increase of modulus shows 

little difference of burst pressure, while for high tensile strength grout, a similar increase 

in modulus has led to a considerable increment in burst pressure. The finding in this 

study is significant as it provides comprehensive understanding of the role and 

contribution of grout in composite repaired steel pipeline. This can serve as an initial 

step towards optimizing the current design, such as minimizing the usage of composite 

layers and subsequently design repair without composite layers.  
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ABSTRAK 

 

 

 

 
Penggunaan komposit polimer diperkuat gentian (FRP) bersama isian grout telah 

terbukti efektif untuk membaiki talian paip keluli yang mengalami kerosakan. Pemahanan 

umum tentang peranan grout adalah untuk mengisi bahagian kecacatan dan memindahkan 

beban dari paip ke pembalut komposit. Sifat-sifat grout merupakan parameter penting yang 

digunakan dalam simulasi berangka atau ramalan teori bagi kelakuan sesuatu sistem 

pembaikian. Walau bagaimanapun, maklumat yang terhad mengenai kelakuan dan peranan 

grout di dalam sistem pembaikian komposit telah membataskan usaha untuk meneroka 

sumbangan grout sebagai komponen galas beban sekunder. Oleh itu, kajian ini bertujuan 

untuk mengkaji prestasi dan kelakuan grout epoksi dari segi mekanisma pemindahan beban 

dan keupayaan galas beban bagi sistem pembaikian komposit melalui pencirian bahan yang 

terperinci, ujian letus hidrostatik dan analisis unsur terhingga (FEA). Ujian sifat-sifat 

mekanikal dan termal yang terpilih telah dijalankan terhadap sepuluh jenis grout, kupon paip 

keluli dan pembalut komposit FRP. Empat ujian letus hidrostatik telah dijalankan terhadap 

paip yang tiada kecacatan, paip cacat dan dua paip yang dibaiki dengan komposit. 

Seterusnya, FEA telah digunakan untuk memperkaya maklumat grout dari segi mekanisma 

pemindahan beban dan keupayaan galas beban. Model-model FE telah dibangunkan untuk 

mensimulasi semua ujian letus bagi tujuan analisis sensitiviti. Keputusan ujian menunjukkan 

bahawa Grout A yang mempunyai kandungan pengisi pasir silika tertinggi mempamerkan 

modulus tertinggi di bawah semua keadaan pembebanan. Dari segi kekuatan, Grout A 

menunjukan prestasi terbaik di bawah beban mampatan dan ketahanan terendah di bawah 

beban tegangan, beban lenturan dan beban ricihan. Grout diubah suai yang tidak 

mengandungi pengisi, Grout A (1:0), menunjukan sifat dan kelakuan yang bertentangan. 

Untuk mengkaji kesan daripada penggunaan grout yang berbeza, Grout A dan Grout A (1:0) 

telah digunakkan untuk membaiki dua segmen paip. Kedua-dua grout telah meningkatkan 

tekanan letus paip sebanyak 23% dan 26%. Semua model FE didapati mampu untuk 

meramal kelakuan dan tekanan letus ujikaji eksperimen dengan jidar selisih kurang daripada 

8%. Grout didapati mengalami tegasan tegangan yang amat tinggi berbanding dengan 

tegasan mampatan. Tegasan tegangan grout yang tertinggi adalah pada arah gegelang 

manakala tegasan mampatan yang tertinggi direkodkan pada arah jejarian. Sebagai 

tambahan, analisis sensitiviti mendedahkan bahawa pembaikian menggunakan Grout B 

menyebabkan pengurangan tekanan letus sebanyak 8%, manakala grout yang mempunyai 

modulus dan kekuatan tegangan yang tinggi dapat meningkatkan tekanan letus sebanyak 

11%. Oleh itu, ujian eksperimen dan simulasi berangka telah membuktikan bahawa peranan 

grout bukan hanya terhad kepada pemindahan beban dan pengisian kecacatan, malah juga 

memberi pengukuhan tambahan. Sebagai tambahan, ini telah disahkan bahawa perbezaan 

sifat-sifat grout mempengaruhi prestasi keseluruhan pembaikian. Bagi grout yang 

mempunyai kekuatan tegangan yang rendah, peningkatan modulus hanya menyebabkan 

sedikit perbezaan tekanan letus, manakala bagi grout yang mempunyai kekuatan tegangan 

yang tinggi, peningkatan modulus yang sama telah mengakibatkan peningkatan tekanan letus 

yang agak banyak. Penemuan dalam kajian ini adalah penting kerana telah memberikan 

pemahaman yang komprehensif tentang peranan dan sumbangan grout di dalam paip yang 

dibaiki dengan komposit. Tambahan pula, ini boleh digunakan sebagai langkah awal untuk 

mengoptimumkan rekabentuk sedia ada, seperti meminimumkan penggunaan lapisan 

komposit dan kemudiannya merekabentuk pembaikian tanpa lapisan komposit.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.0 Overview 

 

 

 In the oil and gas industry, pipelines are regarded as the most economic and 

safe way to transport products from one point to another (Kishawy and Gabbar, 

2010; Noor et al., 2012; Li et al., 2013, Yusof et al., 2014). Throughout their service 

years, these pipelines are subjected to damage and deterioration caused by several 

factors. These include material and construction defects, natural forces, third party 

damage and corrosion (Peabody, 2011; CONCAWE, 2013; Tahir et al., 2015). A 

corroded pipeline will reduce its strength and eventually its service life. The 

deterioration of steel pipelines is a common and serious problem experienced by the 

oil and gas industry as this may reduce steel pipeline life span and structural 

integrity. It could also lead to failures such as leaking and explosion which involve 

considerable cost and inconvenience to the industry and to the public. 

 

 

 As reported by the United States Department of Transport, the average 

annual cost related to corrosion is estimated at $7 billion for the monitoring, 

replacement and maintenance of gas and liquid transmission pipelines.  About 80% 

of the cost is related to the maintenance and operation of corrosion related problems 

(United States Department of Transport, 2007). A rupture pipeline caused by external 

corrosion on May 2015 had an estimated of 500-barrel (bbl) of crude oil enter the 

Pacific Ocean. Even though this incident doesn’t caused any fatalities or injuries, the 

total cost of property damage and clean-up was about $143 million (United States 
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Department of Transport, 2016a). In 2014, an explosion of an underground pipeline 

in Kaohsiung, Taiwan killed at least 27 people and injured 286 due to a leaked 

pipeline (Hsu and Liu, 2014). According to Saeed et al. (2014), more than 60% of 

the world’s oil and gas transmission pipelines are more than 40 years old. 

Meanwhile, more than 35% of local onshore pipeline in Malaysia are more than 30 

years old (Petronas Gas Berhad, 2014). Most of these pipelines are in urgent need of 

rehabilitation in order to re-establish their desired operating capacity. Therefore, 

corrosion and metal loss cause pipeline failures and their repair techniques is of 

interest to researchers all around the world (Shamsuddoha et al., 2013a; Alexander, 

2014; Chan et al., 2015; Shamsuddoha et al., 2016).  

 

 

 

 

1.1 Background of the Problem 

 

 

 Currently, a wide range of rehabilitation techniques and repair methods are 

available for onshore and offshore pipelines. For years, the most common repair 

solution for a corroded steel pipeline was to remove the pipe entirely or removing 

only a localized section and then replacing it with a new one. Alternatively, repair 

can be done by installing a full-encirclement steel sleeve or a steel clamp. These 

conventional repair techniques incorporate external steel sleeves that are either 

welded or bolted to the outside surface of the pipe. The shortcomings of these 

techniques are bulky, costly and time consuming, especially for underground 

pipelines (Kou and Yang, 2011; Shamsuddoha et al., 2012). In addition, these 

methods are generally suitable for straight pipe sections and have limited 

applications for joints or bends. Thus, researchers have been searching for repair 

techniques that are relatively lightweight, cheaper, easily applicable, and can be an 

effective repair solution. 

 

 

 In recent years, it is observed that there is a rapid growth in the development 

and application of Fibre-Reinforced Polymer (FRP) composites where the method 

has been proven effective for repairing steel structures such as risers and pipelines 

(Duell et al., 2008; Leong et al., 2011; Alexander, 2014; Chan et al., 2015). 
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Although the products made by different companies and research institutes around 

the world have widely different performance, a composite material repair system 

mainly includes three parts: (i) a high strength FRP composite wrap; (ii) a high 

performance adhesive; and (iii) a high compressive infill material. FRP composites 

have been chosen to repair steel pipelines due to their lightweight, high strength and 

stiffness, excellent fatigue properties and good corrosion resistance. Despite many 

advantages offered by composite repair systems, several issues regarding the 

behaviour and performance of the composite repair systems are not fully 

understood.  These issues include the complexity of surface preparation, 

delamination and de-bonding between steel pipe and composite, performance and 

contribution of the infill material, load transfer mechanisms, effect of defect 

geometries, and conservativeness in existing design codes (Duell et al., 2008; Ma et 

al., 2011; Shamsuddoha et al., 2013b; United States Department of Transport, 2013; 

Saeed et al., 2014). These gaps in the current body of knowledge demand further 

investigation in order to have better understanding on the behaviour of composite 

repaired steel pipeline, and subsequently improve the efficiency of composite repair 

systems. 

 

 

 

 

1.2 Research Problem 

 

 

Grout or putty is usually used as infill material in composite repair systems. 

The common understanding on the role of grout/putty is to fill the damaged sections 

(i.e. corrosion) and to provide a smooth bed for the composite wrap instead of 

serving as a secondary layer of protection and sharing the load. In addition, putty 

also serves as a medium for load transfer from the corroded pipe to the composite 

wrap. This is important to provide a continuous support to minimise the outward 

distortion of the corroded section. Therefore, the effectiveness of these repair 

systems largely depends on the performance of the grout (Farrag, 2013; 

Shamsuddoha et al., 2013b).  
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The properties of grout are significant parameters for the numerical 

simulation or theoretical prediction of the behaviour of a repair system to be 

optimised in terms of repair design. It is therefore essential to characterize the 

mechanical and thermal properties of epoxy grouts to determine their efficiency as 

infill materials in composite repair system (Shamsuddoha et al., 2013b). However, 

detailed investigations on the properties, role and contribution of putty are very 

limited in the literature (both experiment test and numerical simulation) for a 

composite repaired pipe due to its assigned limited function in composite repair 

system. Hence, this limits the effort to optimise the design of composite repair 

system. All previous works mainly focused on the performance of the wrapper 

instead of putty. In most of the past literatures, detail information of infill material in 

a composite repaired pipe is hardly available, such as in the works done by Duell et 

al. (2008), Alexander et al. (2014), and Chan et al. (2015). On the other hand, 

Shamsuddoha et al. (2013b) and Shamsuddoha et al. (2016) carried out detailed 

characterization on infill material but no repair work was carried out, thus complete 

evaluation of these infill materials in composite repair system is not feasible. Owing 

to this, the overall behaviour of composite repaired pipe is not fully understood yet.  

 

 

Composite repair system with a legitimate design code in strengthening 

damaged pipeline is relatively new in the oil and gas industry, and there is still room 

for improvement in designing the composite repair system. In addition, the future 

trend in repairing damaged pipeline is to optimize the composite repair system by 

proper selection of infill material, reducing the usage of composite wrapping layers 

and less conservative design philosophy. The neglect of infill is also reflected in the 

closed-form solution in existing codes and standards of current industry practices. 

The design of composite repair system can be found in ASME PCC-2- Part 4, 

Nonmetallic and Bonded Repairs (2011) and ISO/TS 24817, Composite Repairs for 

Pipework (2006). The repair design for both ASME and ISO codes does not account 

for the presence of infill material, only the minimum remaining wall thickness (of 

the pipe) and additional strength of composite wrap are considered. Hypothetically, 

as the putty acts as part of the repair system, it should somehow affect the overall 

performance of the repair. However, the evaluation on the effect of infill towards 

overall repair performance is hardly available in previous studies. 
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In the above mentioned studies and codes, there is lack of detailed 

information on the performance and contribution of an important component in 

composite repair system, the infill materials. This could be the reason where 

comprehensive understanding of the behaviour and load transfer mechanism of a 

composite repaired pipe is yet to be fully established. Therefore, more research is 

needed to understand the role of infill material. This is crucial in providing a better 

understanding of the behaviour of composite repair systems. In addition, it can serve 

as an initial step towards optimizing current design, such as reduces 

conservativeness in current closed-form solution, minimizing the usage of composite 

layers and subsequently design a repair without composite layers. Therefore, this 

study has taken initial step to harvest more information on the behaviour of infill 

material and its contribution in composite repair systems through detailed material 

characterization, hydrostatic burst tests and numerical analysis. 

 

 

 

 

1.3 Research Objectives 

 

 

The main aim of this research is to investigate the behaviour and 

performance of epoxy grouts in terms of load transfer mechanism and load bearing 

capacity of pipeline composite repair system using detailed material characterization, 

hydrostatic burst test and finite element analysis (FEA). The objectives of this study 

are: 

 

1. To characterize the mechanical and thermal properties of existing epoxy 

grouts and to determine its behaviour as a “stand-alone” material. 

 

2. To investigate the detailed load transfer mechanism and behaviour of 

infill materials as part of composite repair systems through full-scale 

pipeline hydrostatic burst tests and comparison made with finite element 

analysis. 
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3. To propose a modified infill material by modifying composition and 

adding graphene nanoplatelets to investigate its potential in improving 

the performance of composite repair system. 

 

 

 

 

1.4 Research Scope 

 

 

This study investigates the behaviour of infill materials in composite repair 

systems for repairing damaged steel pipe. The type of damage is limited to external 

corrosion defects of 50% metal loss, and 100mm (hoop) by 100mm (axial) defect. 

Internal corrosion, through wall thickness defect and defect geometries are not 

covered in this study. The mechanical properties and stress-strain behaviour of the 

infill materials were investigated under various loading conditions including 

compression, tensile, flexural and lap shear. Experimental hydrostatic burst test and 

numerical analyses of non-defective pipe, defective pipe and repaired pipes using 

two types of infill materials were done to evaluate the performance and behaviour of 

the infill materials. Enhancement on the performance of infill material was done by 

modifying the properties of existing infill. However, no development of new 

material is covered by this research. 

 

 

 

 

1.5 Importance of Study 

 

 

Several companies in the oil and gas pipeline industry are keen in reducing 

the usage of composite wrap since it can directly reduce the repair cost of repair 

material and other issues related to usage of composite wraps (i.e.: logistic, 

congested area). One of the main challenges in improving the current pipeline repair 

system is the lack of information on the behaviour of composite repaired damaged 

pipes. The role of infill materials is very significant to ensure satisfactory repair 

performances; hence it is of utmost importance to understand the behaviour of infill 

materials and its contribution towards overall repair performance. If the required 

properties and behaviour of infill materials can be determined in detail, it would 
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benefit the industry by improving the design for composite repair systems. It also 

could serve as a stepping stone for future research in order to achieve the above 

mentioned aim. Ultimately, it is hoped that in the future, repair works can be done 

without composite wrapping. 

 

 

 

 

1.6 Overall Research Methodology 

 

 

 Laboratory test and numerical analysis were conducted in this study. It 

consists of three stages: infill material characterization, pipeline hydrostatic burst 

tests and finite element analysis (FEA). The first stage required extensive laboratory 

tests including compression, tensile, flexural, and lap-shear test to provide detail 

understanding of the fundamental properties and behaviour of existing and modified 

infill material under different loading conditions as stand-alone material. The next 

stage aims to evaluate the effect of infill material as part of composite repair system. 

Full scale pipeline hydrostatic burst tests were carried to determine the behaviour 

and performance of four steel pipes. The first specimen is a bare pipe, representing 

the original strength of a newly installed pipe. A defect was machined onto the 

second specimen resembling an external corrosion to determine the strength 

reduction due to the wall loss. A defect similar to the second specimen was machined 

onto the third and fourth specimens. Both third and fourth specimens were repaired 

using a similar composite wrap but with different infill material as such the effect of 

infill can be evaluated. The final stage involved comprehensive finite element 

analysis to investigate the overall behaviour and performance all tested steel pipe 

specimens, focusing on the infill material. In addition, sensitivity analyses were 

carried out to numerically investigate the role and contribution of infill material as 

part of composite repair system. 
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