MULTI AREA ECONOMIC DISPATCH USING PARTICLE SWARM OPTIMIZATION TECHNIQUE

KELVIN YONG HONG CHIEN

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Power System)

> School of Electrical Engineering Faculty of Engineering Universiti Teknologi Malaysia

DEDICATION

This thesis is dedicated to my wife, who have supported me with best kind of encouragement and comfort. This thesis also dedicated to my parents, who taught me that even the largest task can be accomplished if it is done one step at a time.

ACKNOWLEDGEMENT

In preparing this thesis, I have engaged many individual from lecturer, office, direct supervisor and students in order to verify my knowledge. In particular, I wish to express my sincere appreciation to my thesis supervisor, Dr. Mohd Hafiz Bin Habi Buddin, for encouragement, guidance, critics and friendship. I am also very thankful to Coordinator of Pesisir Kuching, Professor Dr. Ir. Mohd. Wazir Mustafa for the words of encouragement, advices and arrangement. Without their continued support and interest, this thesis would not have been the same as presented here.

I am grateful to friendly and helpful administrative staff from Faculty of Electrical Engineering. My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space. I am also grateful to all my family member.

ABSTRACT

Multi-area Economic Dispatch (MAED) is an important issue in power system operation and generation which the main aim is to achieve minimal cost. In previous paper, the consideration is only on single area economic dispatch. However, this cannot represent power generation as an overall on transmission network. Particle Swarm Optimization (PSO) is used to find optimum cost of generation by considering the constraints such as tie-line limit, area power balance and transmission line losses. In this paper, the algorithm with respect to predicted load demand is tested on a two area network with three set of test data consists of 4 Units, 6 Units and 40 Units system. The proposed methodology to solve MAED problem begins with finding range of area power demands for each area by incorporating the tie line limits. Area with cheaper fuel cost will be selected to export power to area with high demand. In order to design this algorithm, the assumption are no losses in tie-line and fix amount of power flow through the tie-line. Comparison were performed with respect to Genetic Algorithm (GA) and PSO for solving the MAED problem in practical power system. PSO has shown a better result than GA for all the three case studies.

ABSTRAK

Pengagihan Kuasa Secara Ekonomi Di Beberapa Kawasan (MAED) adalah isu penting dalam operasi dan penjanaan sistem kuasa di mana tujuan utamanya adalah untuk mencapai kos yang minimum. Dalam artikel dahulu, pertimbangan hanya dilakukan pada satu kawasan pengagihan kuasa secara ekonomi. Walau bagaimanapun, ini tidak dapat mewakili penjanaan kuasa sebagai keseluruhan pada rangkaian pengagihan. Pengoptimuman Swarm Partikel (PSO) digunakan untuk mencari kos penjanaan yang optimum dengan mempertimbangkan kekangan seperti talian had penghubung, keseimbangan kuasa kawasan dan kerugian dalam talian pengagihan. Dalam artikel ini, algoritma berkenaan dengan permintaan beban yang diramalkan akan diuji pada dua rangkaian kawasan dengan tiga set data ujian terdiri daripada sistem 4 Unit, 6 Unit dan 40 Unit. Metodologi yang dicadangkan untuk menyelesaikan masalah MAED bermula dengan mencari pelbagai permintaan kuasa kawasan untuk setiap kawasan dengan menggabungkan talian had penghubung. Kawasan dengan kos bahan api yang lebih murah akan dipilih untuk mengeksport kuasa ke kawasan dengan permintaan yang tinggi. Untuk merangka algoritma ini, andaian tidak ada kerugian dalam talian penghubung dan jumlah aliran kuasa melalui talian penghubung adalah tetap dan tidak berubah. Perbandingan dilakukan antara Algoritma Genetik (GA) dan PSO dalam menyelesaikan masalah MAED dalam sistem kuasa yang sebenar. PSO telah menunjukkan hasil yang lebih baik daripada GA untuk semua tiga kajian kes.

TABLE OF CONTENTS

TITLE

DEC	CLARATION	ii
DED	DICATION	iii
ACK	KNOWLEDGEMENT	iv
ABS	TRACT	v
ABS	TRAK	vi
ТАВ	BLE OF CONTENTS	vii
LIST	Γ OF TABLES	X
LIST	Γ OF FIGURES	xi
LIST	Γ OF ABBREVIATIONS	xii
LIST	Γ OF SYMBOLS	xiii
LIST	Γ OF APPENDICES	xiv
СНА	APTER 1 INTRODUCTION	15
1.1	Problem Background	15
1.2	Statement of the Problem	16
1.3	Objectives of the Study	16
1.4	Scope of the Study	16
1.5	Report Outline	17
СНА	APTER 2 LITERATURE REVIEW	18
2.1	Overview	18
2.2	Definition	18
	2.2.1 Economic Dispatch	18
	2.2.2 Multi Area System Economic Dispatch	20
2.3	Problem Formulation of MAED	21
	2.3.1 Power Balance Constraint	21
	2.3.2 Generator Constraint	22
	2.3.3 Tie-line limit Constraint	22

	2.3.4	Transmission Line Losses Con	nstraint	22
2.4	Optin	ization Technique for MAED		23
	2.4.1	Mathematical Programming-F	Based or Heuristically-Based	23
	2.4.2	Artificial Intelligence Method	S	24
		2.4.2.1 Artificial Neural Ne	twork	24
		2.4.2.2 Genetic Algorithm		25
		2.4.2.3 Evolutionary Progra	amming	27
		2.4.2.4 Differential Evolution	on	28
	2.4.3	Hybrid Methods		29
2.5	Partic	e Swarm Optimization (PSO)	for MAED	30
CHA	PTER	RESEARCH METHO	OOLOGY	33
3.1	Overv	iew		33
3.2	Desci	ption of Research Flow Activity	ties	33
3.3	Steps in Solving MAED Problem			34
	3.3.1	Determine the range of power with tie-line limit	demands of each area	35
	3.3.2	Power export/import through	tie-line	35
	3.3.3	Output power of generator at	each area	36
3.4	Imple	nentation of MAED Model wi	th Transmission Line Losses	37
3.5	Comparison of PSO and GA			40
	3.5.1	Case 1		41
	3.5.2	Case 2		42
	3.5.3	Case 3		43
3.6	Tools for Design of MAED Model			44
	3.6.1	PSOt - a Particle Swarm Optim for use with Matlab	mization Toolbox	44
	3.6.2	Genetic Algorithm Toolbox		45
CHA	PTER	RESULT AND DISCUS	SSION	46
4.1	Overv	iew		46
4.2	Case			46
4.3	Case	2		47

4.4	Case 3			
4.5	5 Analysis of PSO and GA			
	4.5.1 Solution Quality	52		
	4.5.2 Computation Efficiency	53		
4.6	Methods of MAED			
4.7	Summary			
CHAP	TER 5 CONCLUSION AND RECOMMENDATIONS	56		
5.1	Conclusion	56		
5.2	Attainment of Research Objectives	56		
5.3	Future Works	57		
REFE	RENCES	59		

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 2.1	Summary of optimization methods: advantages and disadvantages	32
Table 3.1	Parameters of PSO	40
Table 3.2	Parameters of GA	41
Table 3.3	Summary description of case studies	41
Table 3.4	Fuel cost data of Case 1	42
Table 3.5	Fuel cost data of Case 2	43
Table 4.1	Simulated generators output and parameters of PSO and GA for Case 1	46
Table 4.2	Summary of simulation result for PSO and GA for Case 1	47
Table 4.3	Simulated generators output and parameters of PSO and GA for Case 2	47
Table 4.4	Summary of simulation result for PSO and GA for Case 2	48
Table 4.5	Simulated generators output and parameters of PSO and GA for Case 3	48
Table 4.6	Summary of simulation result for PSO and GA for Case 3	49
Table 4.7	Summary result of simulation for all three cases	55

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
Figure 2.1	Summary of economic dispatch definition	19
Figure 2.2	Convex and non-convex curves for cost function	24
Figure 2.3	Flow chart of generation process of GA	27
Figure 2.4	Summary of methods used to solve the economic dispatch problem	31
Figure 3.1	Flow chart of the study	34
Figure 3.2	Flow chart of proposed PSO of MAED	39
Figure 3.3	Description of Case 1	41
Figure 3.4	Description of Case 2	42
Figure 3.5	Description of Case 3	43
Figure 3.6	Types of test function in PSOt	44
Figure 3.7	Description of GA function	45
Figure 4.1	Convergence curve of PSO for Area 1 and Area 2 for Case 3	50
Figure 4.2	Convergence curve of GA for Area 1 and Area 2 for Case 3	51
Figure 4.3	Comparison of fuel cost for three case studies	52
Figure 4.4	Comparison of convergence time for three case studies	53
Figure 4.5	Model of two area power systems	54
Figure 4.6	Model of four area network with six tie-lines	54

LIST OF ABBREVIATIONS

ABCO	-	Artificial Bee Colony Optimization
AI	-	Artificial Intelligence
ANN	-	Artificial Neural Network
CED	-	Central Economic Dispatch
DE	-	Differential Evolution
ED	-	Economic Dispatch
EP	-	Evolutionary Programming
GA	-	Genetic Algorithm
HNN	-	Hopfield Neural Network
MAED	-	Multi Area Economic Dispatch
MFA-LF-DM	-	Modified Firefly Algorithm with Lezy Flights and Derived
		Mutation

LIST OF SYMBOLS

λs	-	Incremental cost of selling utility (RM/MWh)
λb	-	Decremental cost of selling utility (RM/MWh)
λc	-	Cost of the transaction (RM/MWh)
Cij(Pgij)	-	Generation cost of <i>ith</i> generation unit at <i>jth</i> area
P_D	-	Real power demand
P_L	-	Total transmission line losses
P_{Tjm}	-	Tie-line real power transfer from area j to area m
N_T	-	Number of tie-lines from <i>jth</i> area to <i>mth</i> area
B _{ij} , B _{0i} , B ₀₀	-	Transmission line losses coefficient/ B-coefficient
vij	-	Velocity of each particle
Xij	-	Position of each particle
W	-	Inertia weight parameter
C ₁ , C ₂	-	Acceleration constant

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1	B Coefficient of Case 2	61
Appendix 2	Fuel Cost Function for 40 Units System	62
Appendix 3	Source Code of Particle Swarm Optimization Toolbox	63
Appendix 4	Source Code of Genetic Algorithm Toolbox	65

CHAPTER 1

INTRODUCTION

1.1 Problem Background

Power system engineer has the responsibility of designing a secure, efficient and optimum generating system at lowest cost. Hence, a reliable cum economical energy generation plan is required. The electricity demand in the world is in increasing trend, the rise will cause more complex interconnection network. Therefore, lowering the cost of electrical generation is necessary to reduce the impact of continuous increasing price of energy. Economic dispatch will keep the fuel cost low and based on the demand.

Single area Economic Dispatch (ED) is one of the optimization problems in power system operation. Generators are well allocated to the load demands in most economical manner while satisfying physical and operational constraints in single area [1]. Multi Area Economic Dispatch (MAED) is an extra of economic dispatch. A few areas are interconnected by tie-line with each area having few generators. MAED is optimization problem that generates the minimal fuel cost in all areas by determining level of generation and power transfer between areas. It is also necessary to satisfy the constraints such as generator limits, power balance, tie-line limit and transmission line losses.

1.2 Statement of the Problem

In paper [2], PSO is used to solve economic dispatch problem and then comparison with respect to Evolutionary Programming (EP) technique is conducted. There is no direct comparison between PSO and GA. Based on the results, PSO has outperformed EP in the case of achieving lower optimal cost. However, this paper focused on voltage stability and the case study is different. In paper [3], PSO is capable of obtaining higher quality solution efficiently by comparison between PSO and GA but without consideration on multi-area problem. In [4], PSO has shown to have fastest computational time compared to other algorithm. Hence, PSO is feasible to be used in MAED with consideration of constraints to handle most of the cost function inclusive of non-convex characteristics.

1.3 Objectives of the Study

This study embarks on the followings objectives:

- 1. To develop the multi-area economic model considering tie-line limit, generator limit, transmission line losses and power balance as constraints.
- 2. To optimize the model using algorithm of Particle Swarm Optimization (PSO) using two area network with three different case studies.
- To validate the solution quality and computation efficiency by analysing between PSO and GA in producing the generation cost.

1.4 Scope of the Study

This study is carried out by using the following aspects:

- 1. Proposed method to evaluate the convergence curve based on number of iteration as one of the benchmark in determining the solution quality.
- 2. Proposed method to consider duration of convergence time (Sec.) as one of the benchmark in determining the computational efficiency of the system.

- 3. Conduct the optimization of the model using Particle Swarm Optimization (PSO).
- 4. Conduct experiment using test data of four units, six units and forty units system and simulate in MATLAB R2013a.
- 5. Perform the simulation by applying the test data to PSO, after that repeat it using GA. The comparison of result for both algorithm is tabulated.

1.5 Report Outline

In this report, a total of four chapters are presented. First chapter introduce on the background of the problem and the objectives of this study. The limitation and scopes are also explained here. Chapter 2 will look into literature review and method approach of using PSO and other methods as well as approach that has been proposed by other researchers.

Further detailed explanation on the description of research flow activities, steps in solving MAED problem and implementation of MAED in chapter 3. In Chapter 4, result comparison of PSO and GA for all three case studies are discussed. Description of MAED method and also future works are also explained in this chapter. Lastly, it is the conclusion and appendixes.

REFERENCES

- 1. M. Basu, "Artificial bee colony optimization for multi-area economic dispatch", in *Electrical Power and Energy System, Science Direct*, 2013.
- 2. M. K. M. Zamani, et. al., "Multi-Area Economic Dispatch Performance Using Swarm Intelligence Technique Considering Voltage Stability", in *Advanced Science Engineering Information Technology*, Vol 7. 2017.
- 3. G. Zwe-Lee, "Particle Swarm Optimization to Solving the Economic Dispatch Considering the Generator Constraints", 2003.
- 4. M. Pandit, et. al., "Large Scale Multi-area Static / Dynamic Economic Dispatch using Nature Inspired Optimization", *Springer*, 2016.
- 5. I. Ciornei. "Novel Hybrid Optimization Methods for the Solution of the Economic Dispatch of Generation in Power Systems", Dissertation of PhD. University of Cyprus, 2011.
- 6. Z. Jizhong, "Optimization of Power System Operation", *The Institute of Electrical and Electronics Engineers, Inc.* John Wiley & Sons, 2nd Edition, 2015.
- 7. X. Xia, A. M. Elaiw., "Optimal dynamic economic dispatch of generation: A review", in *Electric Power System Research*, 2010.
- 8. D. Attaviriyanupap, H. Kita, E. Tanaka, J. Hasegawa, A hybrid EP and SQP for dynamic economic dispatch with nonsmooth incremental fuel cost function, IEEE Trans. Power Syst. 17 (2) (2002) 411–416.
- 9. T.A.A. Victoire, A.E. Jeyakumar, Reserve constrained dynamic dispatch of units with valve-point effects, *IEEE Trans. Power Syst. 20 (3) 1273-1282*, 2005.
- 10. Yalcinoz T, Short MJ. Neural networks approach for solving economic dispatch problem with transmission capacity constraints. IEEE Trans Power Syst;13(2):307–13, 1998.
- 11. S. S. Kaddah., et. al. "Probabilistic Unit Commitment in Multi-Area Grids with High Renewable Energy Penetration by Using Dynamic Programming Based on Neural Network", *IEEE*, 2015.

- W. Ongsakul, J. Tippayachai, Parallel micro genetic algorithm based on merit order loading solutions for constrained dynamic economic dispatch, Elect. Power Syst. Res. 61 (2) (2002) 77–88.
- 13. A. V. V. Sudhakar, "Differential Evolution for Solving Multi Area Economic Dispatch:, in *International Conference on Advances in Computing, Communications and Infomatics (ICACCI), 2014.*
- S. Titus, A.E. Jeyakumar, A hybrid EP-PSO-SQP algorithm for dynamic dispatch considering prohibited operating zones, Elect. Power Components Syst. 36 (2008) 449–467.
- 15. Jayabarathi T, Sadasivam G, Ramachandran V. Evolutionary programming based multi-area economic dispatch with tie line constraints. Electr Mach Power Syst;28:1165–76, 2000.
- R. Storm and K. Price, "Differential Evolution A simple and efficient heruristic for global optimization over continuous spaces", *Journal of Global Optimization*, 11, 1997, pp. 341-359.
- 17. X. Yuan, et. al, "A modified Differential Evolution approach for dynamic economic dispatch with valve-point effects", *Energy 34 (1)*, 2008.
- 18. M. P. Musau, N. A. O. C. W. Wekesa, "Multi Area Multi Objective Dynamic Economic Dispatch with Renewable Energy and Emissions", in IEEE, 2016.
- 19. V. K. Jaoun, et. al. "Multi-area Economic Dispatch using Improved Particle Swarm Optimization", *The* 7th International Conference on Applied Energy ICAE2015, 2015.
- 20. M. N. Abdullah, et. al. "Economic Dispatch with Valve Point Effect using Iteration Particle Swarm Optimization", *Universiti Tun Hussien Onn Malaysia* (*UTHM*), 2012.
- 21. MATLAB, "Global Optimization Toolbox Genetic Algorithm", Mathworks, 2005.
- 22. B. Brian, "PSOt a Particle Swarm Optimization Toolbox for use with Matlab", 2005.
- 23. M. Zarei, et. al., "Two Area Power Systems Economic Dispatch Problem Solving Considering Transmission Capacity Constraints", in *International Journal of Energy and Power Engineering Vol:1, No:9*, 2007.
- 24. M. Mohammadian, et. al., "Optimization of Single and Multi-areas Economic Dispatch Problems Based on Evolutionary Particle Swarm Optimization Algorithm", ScienceDirect, 2018