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ABSTRACT 

 

 

 

 

Oil palm empty fruit bunch (EFB), a plentiful agricultural waste in Malaysia 

has never been utilized for the production of succinic acid via simultaneous 

saccharification and fermentation (SSF). The presence of lignin and hemicellulose 

makes the biomass difficult to be hydrolysed by enzymes and microbes. Hence, 

effective pretreatment method is required to release cellulose from the crystalline 

complex structure of lignocellulose. The novelty of this study is the production of 

succinic acid via SSF from EFB by a rumen bacteria Actinobaccilus succinogenes 

ATCC 55618. The effect of three different methods; autoclave/alkali (AA), dilute 

acid (DA) and sequential dilute acid microwave/alkali (DA-MwA) pretreatment on 

the physical and chemical properties of EFB were analysed and their influence on 

enzymatic hydrolysis and SSF process were also assessed. Results revealed that 

maximum amount of cellulose (86.8 g/100g) was achieved for DA-MwA as 

compared with AA (53.3 g/100g) and DA (46.7 g/100g). The highest glucose 

concentration among all pretreated EFB was DA-MwA (20.3 gL
-1

) method using 

cellulase enzyme. The effect of different cellulase: cellobiase ratios on enzymatic 

hydrolysis of DA-MwA pretreated EFB showed that ratio of 7:1 produced 34.45 % 

higher glucose as compared when only cellulase was used. Succinic acid 

concentration via SSF from DA-MwA (33.4 gL
-1

) was the highest followed by AA 

(20.9 gL
-1

) and DA (14.4 gL
-1

). The SSF media for the succinic acid production was 

optimized using Full Factorial Design (FFD) by varying the EFB loading (10-70 gL
-1 

), yeast extract (0-20 gL
-1

) and corn steep liquor (0-20 gL
-1

) followed by Face Central 

Composite Design. The best concentration of succinic acid (39.14 gL
-1

) was obtained 

when the values of EFB, yeast extract and corn steep liquor were set at 70 gL
-1

, 30 

gL
-1 

and 10 gL
-1

, respectively. The influence of three independent SSF process 

variables: enzyme loading (10-70 FPU/g), temperature (36-40 
o
C) and pH (5-8) were 

investigated for succinic acid production using FFD. When the enzyme loading was 

set at 40 FPU/g, temperature 36 
o
C and pH 5; the experimental values were in good 

agreement with the predicted Response Surface Methodology model where the best 

succinic acid production of 42.5 gL
-1

 was achieved. The present study revealed that 

using DA-MwA pretreated EFB, cellulose was utilized by cellulase and cellobiase 

enzymes via optimized SSF conditions resulting in optimum production of succinic 

acid. 
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ABSTRAK 

 

 

 

 

Tandan kosong buah kelapa sawit (EFB), adalah sisa pertanian yang banyak 

di Malaysia dan tidak pernah lagi digunakan bagi penghasilan asid suksinik melalui 

penapaian dan pensakaridaan serentak (SSF). Kehadiran lignin dan hemiselulosa 

menjadikan bahan biojisim sukar untuk dihidrolsis oleh enzim dan mikrob. Oleh itu, 

kaedah pra-rawatan adalah diperlukan untuk membebaskon selulosa daripada 

struktur kompleks kristal lignoselulosa. Penemuan baru bagi kajian ini adalah 

penghasilan asid suksinik melalui SSF daripada EFB oleh bakteria rumen 

Actinobaccilus succinogenes ATCC 55618. Kesan daripada tiga kaedah yang 

berbeza; autoklaf/alkali (AA), asid cair (DA), dan siri asid cair gelombang mikro/ 

alkali (DA-MwA) ke atas sifat-sifat fizik dan kimia bagi EFB telah dikaji dan 

pengaruh mereka terhadap proses SSF dan hidrolisis enzim juga telah dinilai. Hasil 

kajian menunjukkan bahawa kuantiti maksima selulosa (86.8 g/100g) diperolehi 

melalui kaedah DA-MwA berbanding AA (53.3 g/100g) dan DA (46.7 g/100g). 

Kepekatan glukosa yang maksima dicapai antara pra-rawatan EFB adalah melalui 

kaedah DA-MwA (20.3 gL
-1

) menggunakan enzim selulase. Kesan dari purata 

berbeza selulase dan selobiase bagi pra-rawatan EFB kaedah DA-MwA memberi 

hasil glukosa yang paling tinggi 34.45 % pada nisbah 7:1 berbanding penggunaan 

selulase sahaja. Kepekatan asid suksinik melalui SSF iaitu daripada DA-MwA (33.4 

gL
-1

) adalah yang tertinggi diikuti oleh AA (20.9 gL
-1

) dan DA (14.4 gL
-1

). Media 

SSF bagi penghasilan asid suksinik telah dioptimum menggunakan Reka bentuk 

Faktor Penuh (FFD) dengan mengubah kuantiti muatan EFB (10-70 gL
-1

), ekstrak yis 

(0-20 gL
-1

) dan likuor tusuk jagong (0-20 gL
-1

), diikuti oleh Reka bentuk Komposit 

Muka Pusat. Kepekatan asid suksinik yang paling optimum (39.14 gL
-1

) telah 

diperoleh apabila kuantiti EFB, ekstrak yis dan likuor tusuk jagong ditetapkan 

masing - masing pada 70 gL
-1

, 30 gL
-1 

dan 10 gL
-1

. Pengaruh pembolehubah bebas: 

muatan enzim (10-70 FPU/g), suhu (36-40
 o

C) dan pH (5-8) telah dikaji untuk 

penghasilan asid suksinik menggunakan FFD. Apabila muatan enzim ditetapkan 

pada 40 FPU/g, suhu 36
 o

C dan pH 5; asid suksinik mencatatkan hasil pada 42.5 gL
-1

 

melalui model ramalan Kaedah Gerak Balas Permukaan. Kajian ini mendedahkan 

bahawa pra-rawatan melalui kaedah DA-MwA, selulosa telah digunakan dengan baik 

oleh enzim selulase dan selobiase melalui pengoptimuman keadaan SSF yang 

menghasilkan pengeluaran asid suksinik yang optimum. 
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1 

CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Overview 

 

 

Succinic acid (C4H6O4), a dicarboxylic acid, was isolated for the first time 

from microbial fermentation in 1546. Its traditional name is amber acid, but it is also 

known as butanedioic acid. It is formed by plants, animals and microorganisms, but 

its maximum production is obtained through anaerobic fermentation by microbes. 

Succinic acid originates from carbohydrate fermentation and is extensively used in 

chemical markets and industries which are producing food, green solvents and 

biodegradable plastics and ingredients used for the stimulation of plant growth 

(Zeikus et al., 1999). Succinate is the feedstock for several industrial products 

including tetrahydrofuran, adipic acid, 1,4-butanediol, and aliphatic esters (Willke 

and Vorlop, 2004). 

 

 

Succinic acids were previously produced from refined sugar, maleic 

anhydride and petrochemicals. The production cost was high because of the 

expensive substrate, so a low price substrate lignocellulosic biomass was used to 

produce a high yield, concentration and productivity of organic acids such as lactic 

acid, succinic acid, acetic acid, citric acid and bioethanol (Fitzpatrick et al., 2010). 

The maleic anhydride price and the environment is adversely impacted, therefore, the 

need has been felt in developing alternative resources and environmentally friendly 

technologies. This lead to the development of alternative cheaper biochemical 
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processes which can complement and replace the conventional chemical methods 

(Pinazo et al., 2015). 

 

 

Lignocellulosic production is about 180 million tons, from terrestrial plants 

1.3 x 10
10 

metric tons and coal is 7 x 10
9 

metric tons per year which are equal to 

fulfill two- thirds of world energy requirements (Demain et al., 2005). 

Lignocellulosic biomass such EFB, oil palm trunks (OPT), oil palm fronds (OPF), 

rice straw, wheat straw, corn stem, corn husk, corn cobs, palm etc. contain high 

amounts of cellulose components. It has been calculated that cellulose production 

from biomass was around 1.5 trillion tons per year. High value-added and 

environmentally friendly product such as succinic acid can be produced from these 

low prices and inexhaustible source of lignocellulosic raw materials (Kim et al., 

2006). In order for the raw material to be considered a good substrate for the 

production of organic acids it must have the following characteristics: available 

abundantly throughout the year, renewable, cheap, produce less amounts or no by-

products formation, stereospecific, high production rate, low level of contaminants 

and no competing food value (John et al., 2006b). 

 

 

Research on lignocellulosic biomass has gained interest because it can 

replace existing expensive raw materials and are abundantly available, renewable and 

cheap (Zhang et al., 2007). Another reason that has made the re-use of 

lignocellulosic more attractive is the environmental issue. Before this lignocellulosic 

biomass especially EFB was burned and produced ash which consists of 30% 

potassium. Due to environmental pollution issue, these open combustion was 

forbidden to minimize emission of greenhouse gases (Suhaimi and Ong, 2001). 

Hence to achieve zero emission of greenhouse gases and maintain a healthy 

environment, production of high value-added products from this lignocellulosic 

biomass such as EFB are also aggressively considered. The utilization of 

lignocellulosic biomass opens a new field for the researchers to utilize it for the 

production of industrially important compounds such as succinic acid. 

 

 

Malaysia is the world second largest producer of oil palm with approximately 

59 million tons/year of the total lignocellulosic biomass agricultural waste. The oil 
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palm biomass comprised of empty fruit bunches (EFBs), oil palm fronds (OPFs), 

palm kernel shells (PKSs) and oil palm trunks (OPTs). These biomass wastes 

constitute 26. 2 million tons of oil palm fronds and 23% of empty fruit bunch (EFB) 

per ton of fresh fruit bunch (FFB), 7.0 million tons of oil palm trunks. In 2010 EFB 

that was processed were about 88.74 MT while palm biomass that was extracted 

from trunks and fronds were approximately 87 MT. There are many studies that 

suggest on the use of lignocellulosic biomass especially empty fruit bunches for the 

production of industrially important organic acids and biofuels (Hamzah et al., 

2009). The amount of biomass waste supply in Malaysia from 2001-2020 (tones per 

year, dry weight) is depicted in Table 1.1. 

 

 

Table 1.1: The amount of biomass waste supply from 2001 to 2020 (tons per 

year of dry weight) in Malaysia (Hassan et al., 1997)  

Year 

Biomass 

Supply 

2001-

2003 

2004-

2006 

2007-

2010 

2011-

2013 

2014-

2016 

2017-

2020 

Empty 

Fruit 

Bunches 

2,870,148 2,860,194 2,823,695 2,830,331 2,906,647 2,863,512 

Oil Palm 

Fronds 

7,412,074 7,025,525 6,890,223 6,803,260 7,044,853 7,141,490 

Oil Palm 

Trunk 

3,933,442 4,020,852 3,234,164 4,283,082 3,583,803 2,971,934 

 

 

Currently, many researchers are working to synthesize succinic acid from 

lignocellulosic biomass to replace expensive pure sugar because of succinic acid 

demand in the world market. Production of succinic acid from corn fiber, corn stalk 

hydrolysate, rapeseed and cane molasses etc. has been studied in detail. The purpose 

of this research is to produce high value added product succinic acid from EFB, 

instead of burning, to solve environmental pollution issue. 

 

 

Production of biosuccinate from renewable resources with the optimized 

condition is a focus point for the last two decades. There are several problems faced 

in biosuccinic acid production such as substrate requirements, auxotrophy and 

complex medium conditions and low production rate (Beauprez et al., 2010). For 
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commercial and economic point of view, biosuccinic process must compete with a 

chemical process. The price of biobased succinic acid is 85 to 1040 € /MT, while that 

produced from maleic anhydride is ∼2550 €/MT. Biobased succinic acid price is 

even lower than maleic anhydride itself which cost 1059 €/MT. Chemical and oil 

industry were highly interlaced with each other in the previous century and this price 

will be tripled in the coming years because of the increasing oil price. Therefore, the 

need will be for the cheaper biobased production of succinic acid from renewable 

sources that will replace the chemical method (Pinazo et al., 2015) 

 

 

Lignocelluloses conversion into the cellulose fraction and the production of 

succinic acid can be done by two methods, separate hydrolysis and fermentation 

(SHF) or simultaneous saccharification and fermentation (SSF). SHF refers to the 

process in which lignocellulosic bioconversion occurs in two steps; enzyme 

hydrolysis followed by fermentation in two different reactors. SSF is a one step 

process where enzymatic hydrolysis and fermentation occur within the same 

bioreactor (Lynd et al., 2005, Xu et al., 2009). Several studies (Mckinlay and Vieille, 

2008) revealed that production of succinic acid from cellulose can be done more 

effectively by combining the two steps: enzymatic hydrolysis and microbial 

fermentation into a single step known as SSF. 

 

 

SSF of lignocellulosic biomass are a novel technique, a time and cost 

effective process and can replace the two step fermentation process SHF, because it 

can reduce costs by replacing high amount of biomass consumption and also achieve 

high productivity by controlling the release of sugar. Process efficiency can be 

enhanced and brings it to the level equal to cellulase enzyme by the use of 

thermotolerant organisms. Also, the effect of glucose inhibition of enzymes is 

minimized (John et al., 2009). Figure 1.1 clearly shows the process for succinic acid 

production through simultaneous saccharafication and fermentation (SSF) and the 

two-step process (SHF). 
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Figure 1.1 Schematic diagram for SHF and SSF of succinic acid production from 

EFB. 

 

 

In SSF, cellulose was hydrolyzed to produce glucose and the glucose formed 

is simultaneously converted to succinic acid. The SSF process eliminates 

saccharafication of fermentable sugars step before fermentation. Hence, it is capable 

to substantially decrease the utilization of the enzyme loading. From the industrial 

view point this is important, as faster saccharification rate can be achieved in a 

reduced reactor volume. Besides, the SSF process also eliminates the use of different 

reaction vessels for both of the process. In SHF, the glucose produced was capable to 

competitively inhibit the cellulase and resulted in a low hydrolysis rate. Findings of 

studies revealed that the saccharification rate in SSF is faster than single 

saccharification process. Consequently, the higher saccharification rate increases 

productivity and reduce reactor volume and capital cost (Zhang et al., 2007). Hence, 

the SSF process is seen to be a more comprehensive yet a simple process for 

utilization of lignocellulosic material. 

 

 

However, it is also observed in SSF process the concentration and 

productivity achieved tend to be lower than SHF. The concentration of succinic acid 

attained using corn fiber as a substrate by A. Succinogenes via SHF process was 70.3 

gL
-1

. However, when the same substrate and bacteria in SSF process was used, the 

succinic acid concentration reduced to 47.4 gL
-1

. However the metabolic engineering 

of the strains and fermentation conditions can solve this problem and increase the 

product concentration in SSF (Chen et al., 2011d). 
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1.2 Problem Statement 

 

 

Typical lignocellulosic biomasses contain 40% - 60% cellulose, 20% - 40% 

hemicelluloses and 10% - 25% lignin. (Mosier et al., 2005). The potential of using 

the lignocellulosic material in this case of EFB as a substrate for organic acid 

production is due to the cellulose content that can be degraded into glucose subunits 

through hydrolysis process. However, due to the presence of lignin and 

hemicellulose which are entwined and closely attached to each other hindered the 

enzymatic hydrolysis and fermentation process. Hence, different pretreatment 

processes need to be performed to disrupt the lignocellulosic structure so as to 

remove maximum hemicellulose and lignin, thus exposing cellulose for enzymatic 

digestion. 

 

 

Several pretreatment processes such as chemical, physical or both were 

performed for lignocellulosic materials and the choice for the process is very 

dependent on the type of lignocellulosic biomass used. Each pretreatment process 

has its advantages and disadvantages; steam pretreatment is effective for hardwoods 

but not for the softwood lignocellulose. Strong acid can produce high sugar yields 

but corrosive and has several disadvantages such as production of furfural (Ramos, 

2003). Thus there is a need to find a suitable pretreatment method for EFB so that a 

high yield of succinic acid is achieved.  

 

 

Succinic acid can be produced by two step process separate enzymatic 

hydrolysis and fermentation (SHF) and single step process simultaneous 

saccharification and fermentation (SSF). SSF process is quite complex and different 

substrates require different media composition, temperature and pH. Many studies 

suggest that enzymatic hydrolysis is favorable in low pH <5 and high temperature > 

45
o
C while, fermentation is favorable at high pH > 6 and temperature below <40

 o
C 

(Chen et al., 2011d, Li et al., 2011, Li et al., 2010, Li et al., 2010b, Liu et al., 2008a, 

Zheng et al., 2009). Thus there is a need to determine the suitable process conditions 

when performing SSF for new substrates such as EFB. 
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1.3 Objective  

 

 

1) To investigate the effect of different pretreatment methods on the morphology 

and chemical composition of EFB. 

 

2) To study the influence of differently pretreated EFB on the enzymatic 

hydrolysis in terms of glucose produced. 

 

3) To determine the effect of different pretreated EFB on succinic acid 

production via SSF.  

 

4) To optimize SSF conditions such as media composition, temperature, pH, 

enzyme and substrate loadings using Design of Experiment. 

 

 

 

 

1.4 Scope of the Study 

 

 

The research was conducted within the following limits: 

  

1) The influence of three different pretreatment methods: i) dilute acid (DA) 

pretreatment, using 8% Sulphuric acid, ii) autoclave alkali (AA) pretreatment 

using 20% NaOH, iii) sequential DA-MwA pretreatment, DA pretreatment 

followed by microwave alkali (MwA) pretreatment on composition of EFB 

were investigated. The morphological tests such as FESEM, XRD and FT-IR 

analysis of differently pretreated EFB samples were thoroughly examined. 

 

2) The effect of differently pretreated EFB on enzymatic hydrolysis was 

investigated using Cellulase enzyme 25 FPU/g. The best pretreated method 

was selected to study different ratios of cellulase and cellobiase (10 CBU/g) 

(1:0, 1:1, 1:2, 2:1, 5:1, 7:1 and 10:1) to evaluate the comparatively glucose 

formation. The enzymatic hydrolysis were carried out in 150ml flasks having 

50 ml of citrate buffer solution at 50°C, pH 4.8, 100 rpm in a water bath with 

70 gL
-1 

of the substrate loading. 
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3) Succinic acid production via SSF was performed using rumen bacteria A. 

Succinogenes in the 150ml flasks containing 50ml of the fermentation 

medium for 48 h. Cellulase and cellubiase (Novozyme 188) were added into 

the fermentation together with A. succinogenes. Samples were taken at 6, 12, 

24, 36 and 48 h for analysis of the products by HPLC.  

 

4) SSF media composition were optimized by varying substrate loading, yeast 

extract and corn steep liquor using full factorial design followed by central 

composite design. SSF process conditions were also optimized based on three 

independent variables like enzyme loading, pH and temperature using full 

factorial design: All factors were statistically judged by analysis of variance 

(ANOVA). The optimal conditions of RSM for succinic acid production were 

validated by confirmation experiments. 

 

 

 

 

1.5 Significance of the Study 

 

 

Oil palm EFB was used for the first time to produce succinic acid via SSF. 

Succinic acid is largely produced from refined sugars, petrochemical and maleic 

anhydride which is quite expensive. EFB an agriculture waste is a suitable substrate 

for the production of succinic acid because it is easily available in the local milling 

area, low price, non-starchy and is rich in cellulose content. 

 

 

The optimal temperature and pH to achieve a high succinic acid production in 

the one step SSF process using rumen bacteria A succinogenes were determined and 

this contribute to scientific research and advancement of data, as no work was 

performed to produce succinic acid from EFB via SSF. The effect of different 

pretreatment methods on the morphology and chemical composition of EFB and 

subsequently a succinic acid yield were disclosed. Similarly, various parameters of 

microwave/alkali (MW-A) pretreatment of EFB will be studied in detail to attain 

high amount of cellulose and remove maximum hemicellulose and lignin. 
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1.6 Organization of the Thesis 

 

 

 Chapter 1 gives a general overview of bioconversion of lignocellulose EFB to 

succinic acid. The chapter also focused on the SSF process, problem statement, 

objectives, scope and significance of the study. Chapter 2 gives a general overview 

of literature related to work done by the previous researchers on conversion of 

lignocellulose to succinic acid via SHF and SSF. The chapter also describes 

importance of succinic acid factor affecting SSF and optimization of SSF. Chapter 3 

describes the methodology used in the study which includes pretreatment, enzymatic 

saccharification, SSF and optimization of SSF conditions. Chapter 4 explains the 

effect of pretreatment on the morphology and chemical composition. The effect of 

enzymatic saccharification of EFB was studied to attain maximum glucose 

accumulation and effect on enzyme kinetics. Chapter 5 briefly explains about SSF 

process, optimization of SSF media, factors affecting SSF. Chapter 6 reveals the 

conclusion of the present study and suggests recommendations for improvement in 

future studies. 
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