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ABSTRACT 

Hyperthermia has opened up key avenues in cancer therapy. Nevertheless, engineering a 
smart and efficient tumor targeting superparamagnetic fluid agent capable of elevating the temperature 
of targeted sites as well as exposing a safe level of biocompatibility remain remarkably demanding 
and challenging. In this study, a novel core-shell tumor-targeting superparamagnetic iron oxide 
nanoparticle-polyethylene glycol-Herceptin (SPIONs-PEG-HER) was developed and evaluated for an 
efficient hyperthermia treatment of HER2+ breast cancer using an alternating magnetic field (AMF). 
Both in vitro and in vivo treatment models using four different cell lines and 7, 12 dimethylbenz (α) 
anthracene (DMBA)-induced balb/c mice were developed, respectively. SPIONs modification was 
carried out by PEGylation to provide biocompatibility and conjugation of Herceptin to add the tumor-
targeting features to the SPIONs. The morphological characterization and physico-chemical analyses 
of SPIONs-PEG-HER, were carried out using transmission electron microscopy (TEM), field 
emission scanning electron microscopy, dynamic light scattering (DLS), x-ray diffraction (XRD), 
Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM) and specific 
absorption rate (SAR). The in vitro biocompatibility confirmation of SPIONs-PEG-HER was 
performed using tetrazolium dye (MTT) assay, Trypan blue staining method and blood compatibility 
tests. The ability of SPIONs-PEG-HER binding to HER2+ cell line (SK-BR-3) was measured 
comparatively to HER2- cell lines (HSF 1184, MDA-MB-231, MDA-MB-468) via in vitro binding 
studies. The qualitative and quantitative data were obtained using Prussian blue staining, TEM assay 
and atomic absorption spectroscopy (AAS) analysis. The comparison on the changes in growth 
inhibition rates in HSF 1184, MDA-MB-231, MDA-MB-468 and SK-BR-3 cell lines at different 
temperatures (40 °C, 42 °C, and 45 °C) were studied using a post-hyperthermia MTT assay. Then, 
post-hyperthermia morphological investigations were performed via inverted microscope and acridine 
orange/ethidium bromide (AO/EB) staining method. The in vivo model using DMBA-induced balb/c 
mice were injected with SPIONs-PEG-HER via tail vein. The biodistribution of SPIONs-PEG-HER at 
tumor site as well as in vital organs were qualitatively and quantitatively measured using colorimetric 
methods (AAS and TEM). Finally, the survival rate of the DMBA-induced balb/c mice injected with 
SPIONs-PEG-HER was measured in the presence and absence of AMF and the daily monitoring of 
the weight of the treated DMBA-induced babl/c mice during the treatment period was carried out. The 
morphological characterization and physico-chemical analyses revealed that the synthesized SPIONs-
PEG-HER had a size of almost 17 nm and possessed a nearly spherical appearance as well as greater 
hydrodynamic diameter (~84 nm) and a wider distribution compared to the bare SPIONs. Moreover, 
XRD and FT-IR analyses confirmed that the processes of PEGylation and conjugation were 
successfully accomplished while the VSM and SAR analyses showed that the SPIONs-PEG-HER 
possess efficient magnetic properties to be used as a hyperthermia fluid agent.  SPIONs-PEG-HER 
showed relatively low levels of toxicity even at the extremely high concentration of 1000 µg/ml. The 
results of the binding studies indicated that the SPIONs-PEG-HER could selectively bind to the 
HER2+ cancer cells. The results obtained from the post-hyperthermia MTT assay indicated that 
exposing the HER2+ cells to the temperature of 45 °C for 20 minutes inhibited the growth of the cells 
by 90% where they did not regain their normal proliferation like the HER2- cell lines which 
corroborates the results obtained through post-hyperthermia morphological analyses where it was 
shown that the temperature of 45 °C induced significant apoptosis compared to the other temperatures. 
Through morphological alteration studies by inverted microscope and AO/EB staining method, it was 
disclosed that the SK-BR-3 cells had undergone apoptosis since apoptotic signs such as shrunk cells 
as well as apoptotic bodies were obviously seen. The results of biodistribution studies showed 
significantly higher accumulation of the SPIONs-PEG-HER in the tumor site compared to SPIONs-
PEG. Based on the results obtained through hyperthermia treatment of DMBA-induced balb/c mice, it 
was revealed that the survival rate in the experimental group treated with SPIONs-PEG-HER in the 
presence of AMF was much higher than other experimental groups where 50% of the DMBA-induced 
balb/c mice survived and maintained their average body weight. Findings in this study illustrated that 
SPIONs-PEG-HER-mediated hyperthermia is a potent breast cancer treatment.
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ABSTRAK 

Hipertermia telah membuka ruang utama dalam terapi kanser. Walau bagaimanapun, 
pembentukan tumor yang pantas dan berkesan menyasarkan ejen cecair super paramagnet yang mampu 
meningkatkan suhu asas yang disasarkan serta mendedahkan tahap selamat kesesuaian-bio agar kekal 
sebagai sesuatu yang amat mencabar. Dalam kajian ini, rangkaian teras-kelompang tumor mensasarkan 
partikel nano ferum oksida super paramagnet-polietilena-Herceptin (SPIONs-PEG-HER) telah 
dibangunkan dan dinilai untuk rawatan hipertermia HER2+ kanser payudara dengan menggunakan medan 
magnet selang-seli (AMF). Kedua-dua in vitro dan model rawatan in vivo menggunakan 4 baris sel yang 
berbeza dan 7, 12 dimetilbenz (α) antrasena (DMBA) yang disebabkan tetikus balb/c telah dibangunkan. 
Pengubahsuaian SPIONs telah dijalankan oleh PEGylation untuk menyediakan kesesuaian-bio dan 
hubungan antara HER untuk menambah ciri-ciri tumor yang disasarkan ke atas SPIONs. Pencirian 
morfologi dan analisis fiziko-kimia SPIONs-PEG-HER telah dijalankan dengan menggunakan mikroskopi 
pancaran elektron (TEM), mikroskop elektron pengimbas pancaran medan, penyerakan cahaya dinamik 
(DLS), pembelauan sinar-x (XRD), spektroskopi inframerah transformasi Fourier (FT-IR), magnetometer 
sampel bergetar (VSM) dan kadar penyerapan tertentu (SAR). Pengesahan kesesuaian-bio in vitro daripada 
SPIONs-PEG-HER dilakukan dengan menggunakan asai pewarna tetrazolium (MTT), kaedah pewarnaan 
biru Trypan dan ujian keserasian darah. Keupayaan SPIONs-PEG-HER mengikat sel garisan HER2+ (SK-
BR-3) telah diukur secara perbandingan dengan rangkaian sel HER2- (HSF 1184, MDA-MB-231, MDA-
MB-468) melalui kajian ikatan in vitro. Data kualitatif dan kuantitatif telah diperoleh dengan menggunakan 
pewarnaan biru Prussian, asai TEM dan analisis spektroskopi penyerapan atom (AAS). Perbandingan 
terhadap perubahan dalam kadar pertumbuhan perencatan dalam HSF 1184, MDA-MB-231, MDA-MB-468 
dan SK-BR-3 baris sel pada suhu yang berbeza (40 °C, 42 °C dan 45 °C) dikaji dengan menggunakan asai 
MTT pasca hipertermia. Setelah itu, kajian morfologi pasca hipertermia telah dijalankan melalui mikroskop 
songsang dan kaedah pewarnaan oren akridina/etidium bromida (AO/EB). Model in vivo menggunakan 
DMBA yang disebabkan oleh tetikus balb/c telah disuntik dengan SPIONs-PEG-HER melalui hujung salur 
darah. Taburan-bio daripada SPIONs-PEG-HER ke atas tumor asas dan juga di organ-organ penting telah 
diukur secara kualitatif dan kuantitatif menggunakan kaedah kolorimetri (AAS dan TEM). Akhir sekali, 
kadar hayat DMBA yang disebabkan oleh tetikus balb/c disuntik dengan SPIONs-PEG-HER telah diukur 
dengan kehadiran dan ketiadaan AMF dan pemantauan harian ke atas berat DMBA yang disebabkan oleh 
tetikus babl/c dirawat semasa tempoh rawatan telah dijalankan. Analisis pencirian morfologi dan fiziko-
kimia mendedahkan bahawa SPIONs-PEG-HER yang telah disintesis mempunyai saiz hampir 17 nm dan 
mempunyai penampilan yang hampir setara serta diameter hidrodinamik yang lebih besar (~ 84 nm) dan 
pengedaran yang lebih luas berbanding dengan pendedahan SPIONs. Selain itu, analisis XRD dan FT-IR 
mengesahkan bahawa proses PEGylation dan hubungan antaranya telah berjaya dicapai manakala analisis 
VSM dan SAR menunjukkan bahawa SPIONs-PEG-HER memiliki sifat-sifat magnet berkesan untuk 
digunakan sebagai ejen cecair hipertermia. SPIONs-PEG-HER menunjukkan tahap ketoksikan yang rendah 
walaupun pada kepekatan yang sangat tinggi 1000 µg/ml. Keputusan kajian menunjukkan bahawa SPIONs-
PEG-HER terpilih boleh mengikat kepada HER2+ sel-sel kanser. Keputusan yang diperoleh dari asai MTT 
pasca hipertermia menunjukkan bahawa pendedahan HER2+ sel-sel dengan suhu 45 °C selama 20 minit 
menghalang pertumbuhan sel-sel sebanyak 90% di mana mereka tidak mendapatkan semula percambahan 
normal mereka seperti bahagian-bahagian sel HER2- yang menguatkan keputusan yang diperoleh melalui 
analisis pasca hipertermia morfologi di mana ia telah menunjukkan bahawa suhu 45 °C secara signifikan 
amat ketara berbanding dengan suhu lain. Melalui kajian perubahan morfologi oleh mikroskop songsang 
dan kaedah pewarnaan AO/EB, telah dinyatakan bahawa sel-sel SK-BR-3 telah menjalani apoptosis sejak 
tanda-tanda apoptotik seperti kemerosotan sel-sel serta badan-badan apoptotik telah jelas dilihat. Dapatan 
kajian taburan-bio mendedahkan bahawa pengumpulan SPIONs-PEG-HER di dalam laman tumor jauh 
lebih tinggi berbanding SPIONs-PEG. Berdasarkan keputusan yang diperoleh melalui rawatan hipertermia 
daripada DMBA yang disebabkan oleh tetikus balb/c, telah mendedahkan bahawa kadar hayat dalam 
kumpulan eksperimen yang dirawat dengan SPIONs-PEG-HER di hadapan AMF adalah lebih tinggi 
daripada kumpulan eksperimen lain di mana 50% daripada DMBA yang disebabkan oleh tetikus balb/c 
terselamat dan mengekalkan berat badan purata mereka. Penemuan dalam kajian ini menggambarkan 
bahawa hipertermia SPIONs-PEG-HER-pengantara adalah rawatan kanser payudara yang mujarab.. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background of Study   

Breast cancer is the most commonly diagnosed cancer among American 

women and it is the second leading cause of cancer death. In 2012, an estimated 

226,870 new cases of invasive breast cancer and 39,510 breast cancer deaths were 

expected to occur among American females. Breast cancer rates vary largely by 

race/ethnicity and geographic region. Historically, breast cancer was known as a 

disease in western countries. However, over the past two decades, breast cancer 

incidence and mortality rates have been growing up rapidly in economically less 

developed regions too. According to 2012 GLOBOCAN estimates, 52.6% of the new 

worldwide breast cancer cases (882,900) and 62.1 % of the breast cancer deaths in 

women (324,300) occurred in developing countries [1].  

Among Malaysians in Peninsular Malaysia, approximately, a total 18,219 

new cancer cases were diagnosed in 2007 according to a report published in February 

2011 by National Cancer Registry (NCR), Malaysia. Breast the first most common 

cancer among population regardless of sex in Malaysia. There were 3,242 female 

breast cancer cases diagnosed in 2007 and reported to NCR, accounted for 18.1% of 

all cancer cases reported and 32.1% of all female cases [2]. 
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Nowadays, cancer rate is increasing and it is predicted that the number of 

cancer patients will reach to just over 15 million until the year 2020 [3]. Breast 

cancer is known as the most frequently diagnosed cancer among women all over the 

world. Different common treatment methods including partial or radical mastectomy, 

chemotherapy and radiotherapy are not completely successful and induce unwanted 

side effects on healthy tissues in the body. So, novel treatment methods are highly 

required to be invented and designed [4].  

“To do no harm” has always been the physician’s faith. Although, the 

harmful side effects of cancer treatments is known as a great paradox since chemicals 

or radioactive agents used in cancer treatments has the potential to adversely affect a 

patient’s overall health. The cancer treatment complication is due to the alterations 

and deviations in the function of the genes and the pathways controlling the cell 

cycles. It is clear to the world that acute and chronic side effect are always associated 

with the current cancer treatments. In addition, over the last thirty years, the rate of 

successful therapies for the majority of human cancers has marginally improved. 

Therefore, it is so clear that advances in cancer therapies are required especially the 

advances in the treatments during which not only a patient’s health is highly 

improved, but also the adverse side effects are minimized. Targeted cancer treatment 

has been exclusively developed to specifically affect the tumors and cancerous cells 

while the other surrounding tissues are spared throughout the chemotherapy 

procedure. Achieving this goal, the characteristics of the cancer cells must be 

distinguished amongst trillions of normal cells in the body so that the therapeutic 

agent can be specifically delivered to the cancer cells and destroy them while the 

surrounding tissues are remained unaffected. The idea of targeted cancer treatment 

has been actively followed up for many years aiming to improve the survival rate of 

the cancer patients. To implement such a complicated task, many advances are 

needed for the detection and the treatment of the cancer; and nanotechnology is 

considered as a key knowledge to resolve the challenging and problem of tracking 

and treating the cancer cell-by-cell [5]. 

Surgery, systemic therapy and radiation therapy are the most practiced breast 

cancer treatment methods. Since the natural history of breast cancer and the 
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understanding of the molecular biology have improved, an evolution in the breast 

cancer surgery has been seen over the past few decades. However, historically, 

aggressive nature of breast cancer surgery has always been a key issue since the 

breast and the surrounding tissues undergo removal [6].  

Radiation therapy is practiced subsequent to the modern breast-conserving 

surgical treatments in order to control the cancer recurrences in the breast. Radiation 

is mostly practiced subsequent to the tumor removal (mastectomy) once the tumor 

size exceeds 5 cm or when the cancer is seen in lymph nodes. In under-developed 

regions, radiation therapy is mostly utilized to control the cancer symptoms and not 

used to cure the cancer since the majority of the patients present in the hospitals with 

a metastatic disease at its advanced stages. Radiation is exclusively effective to 

control the painful symptoms resulted from bone metastases [6]. 

Hormone therapy, chemotherapy and targeted biological therapies fall under 

category of systemic therapies. The advantages of chemotherapy depend on multiple 

factors: cancer size, the number of lymph nodes involved, the existence of hormone 

receptors, and the amount of human epidermal growth receptor 2 (HER2) protein 

overexpressed on the cancer cells. According to the availability of the resources, 

different agents are utilized. Hormone therapy like tamoxifen can be given to the 

patients with HER2+ breast cancer. However tamoxifen is known as an affordable 

treatment, sufficient pathology services are not accessible in order to monitor status 

of the hormone receptors in the lower-resource settings. Moreover, carrying out an 

appropriate tissue handling and processing is inevitable for valid hormone test 

results. The utilization of the HER2-targeted monoclonal antibody-based treatment 

herceptin together with chemotherapy has shown high effectiveness in curing 

HER2+ cancer, but is cost-prohibitive in most of the world. Herceptin has been 

considered for inclusion in the World Health Organization (WHO) Essential 

Medicine list, sparking a debate about how health care systems can and should 

balance high cost against proven curative benefits [6].  
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1.2 Problem Statement 

Conventional cancer therapies including surgery, radiotherapy, and 

chemotherapy are not so effective in the treatment of certain cancers such as breast 

cancer since normal tissues surrounding the cancerous tissues are also adversely 

affected. Thus, a novel and effective method of treatment is required. Hyperthermia 

is a promising therapy for cancers such as breast cancer. Hyperthermia therapy is 

based on the fact that cancer cells are much more sensitive to heat than normal cells. 

However, the difficulty of delivering the necessary selective heating remains an 

important technical problem to be resolved [7]. 

1.3 Research Objectives 

The aim of this study is to develop a stable and biocompatible magnetic 

tumor-targeting hyperthermia complex “SPIONs-PEG-HER” and assess its 

effectiveness via in vitro and in vivo evaluations. Thus, the objectives of the study 

were phrased as follow: 

1. To develop SPIONs-PEG-HER targeting complex which include 

stabilization and vectorization of iron oxide nanoparticles (ᵧ-Fe2O3). 

2. To perform physico-chemical characterization of the synthesized 

SPIONs-PEG-HER. 

3. To investigate the effectiveness of magnetic targeted hyperthermia in 

vitro. 

4. To investigate the effectiveness of targeted hyperthermia in vivo. 

1.4 Scope of Research 

In order to achieve the goals of this study, the scope of the research is as 

follows. 
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i) Superparamagnetic iron oxide nanoparticles/maghemite (ᵧ-Fe2O3) was 

stabilized by PEG (MW 2000) in order to increase the 

biocompatibility, solubility and stability in aqueous solution as well as 

in physiological saline. 

 

ii) Then, HER (monoclonal anti-her2 antibody/herceptin) was conjugated 

to the previously coated SPIONs through EDC/NHS click chemistry 

method for detection of HER2/neu antigen on HER2+ breast cancer 

cells. 

 

iii) Investigation of stability level of SPIONs-PEG-HER in the blood 

compartment was the next step during the experimental work to 

assure that the synthesized complex is stable and do not aggregate 

when exposed to the physiological conditions. 

 

iv) SK-BR-3 cell line (human breast cancer cell line that over expresses 

HER2) was used as targeted cells while HSF-1184 cell line (human 

skin fibroblast cell line), MDA-MB-231 cell line (human breast 

cancer cell line that does not over express HER2) and MDA-MB-468 

cell line (human breast cancer cell line that does not over express 

HER2) were used as control cells.  

v) Attachment of SPIONs-PEG-HER to HER2+ cells were investigated 

prior to proceed to the in vitro evaluation. Then, magnetic 

hyperthermia using SPIONs-PEG-HER was performed to investigate 

the treatment effects of the proposed treatment method on the 

nominated cells.  

vi) Finally, treatment effects of the in vivo magnetic tumor-targeting 

hyperthermia on the tumor bearing balb/c mice were investigated. 
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In brief, successful synthesis of SPIONs-PEG-HER and magnetic tumor-

targeting hyperthermia treatment effects using SPIONs-PEG-HER as the targeting 

agent on HER2+ cells and tumor bearing balb/c mice were focused in this study. 

1.5 Significance of Study 

Advances in new technologies such as molecular biomarkers and 

nanoparticles are considered as highly qualified tools to diagnose and effectively 

treat the breast cancer. During the breast cancer improvement stages, genetic 

mutations occur and create certain molecular effects that can be used as biomarkers. 

Attaching the nanoparticles to the specific biomarkers of breast cancer has the 

potential to follow and limit the cancer cells with higher sensitivity and selectivity 

[8]. There are many advantages in using the targeted iron oxide nanoparticles 

combined with intracellular hyperthermia as targeted treatment in chemotherapy, 

radiotherapy, conventional hyperthermia, immunotherapy and mastectomy [9]. These 

advantages are explained as the matters of significance in this study.  

Possibility of treatment of metastasis is the first advantage. Metastasis is the 

growth of secondary malignant cells at a distance from a primary site of cancer. One 

of the most important obstacles in treatment of cancerous tumors is the unsuccessful 

treatment of metastasis. Tumor itself can be treated by mastectomy or the other 

treatment methods, but metastasis does not appear at first or cannot be treated by the 

conventional methods. In the proposed targeted treatment with iron oxide 

nanoparticles, monoclonal antibody against a specific antigen is attached to the 

nanoparticles and detects the antigen wherever it is and attaches to it. Then, after the 

heat is induced by iron oxide nanoparticles using magnetic hyperthermia, cancer 

cells and metastasis are effectively treated [4],[9]. 

Minor systemic side effects compared to chemotherapy, radiotherapy and 

conventional hyperthermia is the second advantage. In the conventional methods, 

radiation dose absorbed by the skin, heat absorbed by the surrounding tissues and 
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organs on the way towards the tumor are the issues forcing the dosage of the 

treatment to be highly increased. But, in the targeted treatment of breast cancer via 

coated nanoparticles (biocompatible and far less toxic) attached to specific 

monoclonal antibodies, nonspecific heating of the surrounding tissues is eliminated 

and the dosage of the monoclonal antibody as a drug is significantly reduced which 

is so cost effective and less harmful. Moreover, iron oxide nanoparticles are only 

accumulated in the tumor area in its metastasis so that only these areas are under the 

influence of magnetic field. So, the surrounding tissues remain healthy and 

unaffected [4],[9]. 

Reduction of immune system response compared to unaccompanied 

immunotherapy is the third advantage of the proposed treatment. In some situations, 

immunotherapy is practiced to treat the cancer. In this case, not only super expensive 

cost of treatment is imposed to the patient, but also severe response of the immune 

system is faced due to the injection of large amounts of antibody. Normally immune 

system should be suppressed in this case but the amount of antibody used in the 

proposed treatment is highly reduced compared to the unaccompanied 

immunotherapy. So, this problem is solved by the proposed targeted treatment [4]. 

The proposed treatment method by SPIONs-PEG-HER by magnetic tumor 

targeting hyperthermia has never been studied anywhere else in the world. So, 

applying hyperthermia using magnetic coil where SPIONs-PEG-HER are injected 

intravenously to target the tumor cells and turn the magnetic energy to heat is 

introduced as the novelty of this study.  

1.6 Thesis Organization  

This thesis includes five chapters. The first chapter describes the key 

information of the study: research background, problem statement, significance of 

study, research objectives, scope of research. 
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The second chapter comprehensively reviews the literature regarding the 

topic of the study. The introduction to the breast cancer treatments, the nature of 

SPIONs, the stabilization of SPIONs, the vectorization of the SPIONs and magnetic 

tumor-targeting hyperthermia are critically discussed and reviewed.  

The third chapter describes the methodology in this study. This chapter 

elaborates the step-by-step synthesis of SPIONs-PEG-HER, physico-chemical 

characterization of the engineered system, in vitro and in vivo evaluation of the 

SPIONs-PEG-HER.  

The fourth chapter of this thesis illustrates and discusses the obtained results 

of the experiments. It discusses on the properties of the developed SPIONs-PEG-

HER and its effectiveness. 

The entire findings of the research are concluded in chapter five. This chapter 

recommends the future works regarding this research. 
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