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ABSTRACT 

Bone healing is a challenge in orthopaedics and dentistry.  An occlusive 
membrane is used for the reconstruction of bone defects in guided bone regeneration 
(GBR) technique.  Infection is the major cause for GBR membrane failure in which 
multiple antibiotics have been used to prevent bacterial colonisation in regenerative 
clinical practice.  An anti-infective membrane with alternative antimicrobial agent to 
substitute antibiotics is paramount to overcome the incidence of bacterial resistance 
and side-effects.  In this study, a composite membrane was developed by 
incorporating lauric acid (LA), a naturally derived antimicrobial substance.  
Poly(lactic-co-glycolic acid) (PLGA) based composite membrane was successfully 
fabricated using a combination of solvent casting-thermally induced phase separation 
(TIPS)-solvent leaching technique.  The triple-layered membrane structure was 
attained via solvent casting of the composite solutions which then immediately phase 
separated by freezing at -18±1°C for 24 h.  Then, the solvent in phase separated 
membrane was removed by immersing in precooled water at 3±1°C for 26 h, after 
which the membrane was air dried at 25°C for 3 days.  The triple-layered construct of 
the PLGA composite membrane was developed with a gradient structure of LA and 
non-stoichiometric nanoapatite (NAp), to deliver the antimicrobial and 
osteconductive properties, respectively.  The surface morphology and phase 
composition of the membrane were examined using scanning electron microscopy 
(SEM) and X-ray diffraction (XRD), respectively.  The resulting graded membrane 
consisted of small pore size layer-1 containing 10wt% NAp + 1-3wt% LA, an 
intermediate labyrinth layer-2 with 20-50wt% NAp + 1wt% LA, and a large pore 
size layer-3 containing 30-100wt% NAp without LA.  The existence of chemical 
interaction between PLGA, NAp and LA was identified using Fourier transform 
infrared spectrophotometry (FTIR) analysis.  The synergistic effects of 10-30wt% 
NAp and 1wt% LA in dry membranes demonstrated higher tensile strength 
(0.61±0.17 MPa) and elastic modulus (23.15± 6.19 MPa).  However, a more pliable 
behavior with a decrease in elastic modulus (12.50± 4.32MPa) was observed in 
3wt% LA added membrane compared to the pure PLGA (20.17±2.21 MPa).  The 
addition of LA resulted in a plasticizing effect at 3wt% due to weak intermolecular 
interactions in PLGA chains, caused by LA (-OH) and PLGA (C-O) bondings.  
These results were corroborated by the FTIR peak shift (1-3 cm-1) and glass 
transition temperature (Tg) reduction as detected using differential scanning 
calorimeter (DSC).  The composite membrane retained its structural integrity with 
only 22% weight loss after incubation for 24 weeks in phosphate buffered saline 
(PBS), which indicates its potential use as a physical barrier.  The 1-3wt% LA loaded 
composite membranes had good cell viability toward mouse fibroblasts and showed 
increased bacterial reduction with increased LA loadings against S. aureus.  These 
results demonstrate the potential of LA loaded biocomposite membrane to provide 
anti-infective surfaces, useful in clinical applications.   
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ABSTRAK 

 Penyembuhan tulang adalah satu cabaran dalam bidang ortopedik dan 
pergigian. Pertumbuhan semula tulang berpandukan (GBR) telah digunakan untuk 
pembinaan semula kecacatan tulang dengan menggunakan membran penghalang.  
Jangkitan adalah punca utama kegagalan membran tersebut di mana beberapa 
antibiotic telah digunakan untuk menghalang pertumbuhan bacteria dalam amalan 
klinikal.  Agen antibakteria alternatif adalah perlu untuk mengatasi kesan sampingan 
dan rintangan bakteria yang dihasilkan oleh antibiotik.  Dalam kajian ini, membran 
komposit telah dibangunkan melalui penggabungan asid laurik (LA) yang 
mempunyai sifat antibakteria.  Membran komposit berasaskan asid poli(laktik-co-
glycolic) (PLGA) telah berjaya direka dengan menggunakan gabungan teknik-teknik 
pelarut tuangan-pemisahan fasa haba teraruh-larut lesap pelarut.  Struktur membran 
tiga-lapis telah dihasilkan melalui pelarut tuangan komposit yang telah melalui 
pemisahan fasa haba teraruh pada suhu -18±1°C selama 24 jam.  Kemudian, pelarut 
membran telah dibuang dengan merendamkannya dalam air sejuk pada suhu 3±1°C 
selama 26 jam. Setelah itu, membran telah dikeringkan di udara pada 25°C selama 3 
hari.  Membran komposit PLGA tiga-lapis ini telah difabrikasi dengan struktur 
kecerunan melalui penambahan LA dan apatitnano bukan stoikiometrik (NAp) yang 
memainkan peranan sebagai antimikrob dan penggalak pertumbuhan tulang.  
Morfologi permukaan dan fasa komposisi membran telah diperiksa dengan 
menggunakan mikroskopi elektron imbasan (SEM) dan pembelauan sinar-X (XRD).  
Membran ini terdiri daripada lapisan-1 dengan saiz liang kecil yang mengandungi 
10% berat NAp + 1-3% berat LA, lapisan-2 sebagai lapisan perantaraan dengan 20-
50% berat NAp + 1% berat LA dan akhirnya lapisan-3 dengan saiz liang besar yang 
mengandungi 30-100% berat NAp tanpa LA. Kewujudan interaksi kimia antara 
PLGA, NAp dan LA telah dikenalpasti dengan menggunakan analisis spektrometer 
inframerah (FTIR).  Kesan sinergi diantara 10-30% berat NAp dan 1% berat LA 
dalam membran komposit kering menunjukkan kekuatan tegangan (0.61± 0.17 MPa) 
dan modulus elastik (23.15±6.19 MPa) yang tinggi manakala membran mudah 
bentuk diperolehi dengan penurunan dalam modulus elastik (12.50±4.32 MPa) 
selepas penambahan 3% berat LA berbanding membran PLGA tulen (20.17±2.21 
MPa).  Penambahan 3% berat LA mengakibatkan kesan liat disebabkan interaksi 
lemah dalam rantaian PLGA melalui ikatan LA (-OH) dan PLGA (-CO).  Ini telah 
dibuktikan melalui perubahan puncak FTIR (1-3 cm-1), dan juga penurunan suhu 
peralihan kaca (Tg) yang dikesan melalui kalorimeter pengimbas kebedaan (DSC).  
Membran komposit mengekalkan struktur integriti dengan penurunan berat sebanyak 
22% selepas rendaman selama 24 minggu di dalam PBS dimana ianya mempunyai 
potensi sebagai penghalang fizikal.  Membran komposit yang mengandungi 1-3% 
berat LA menunjukkan pertumbuhan sel-sel fibroblas tikus dan juga pengurangan 
bacteria S. aureus dengan peningkatan kandungan LA.  Keputusan ini menunjukkan 
potensi membran komposit yang mengandungi LA sebagai membran anti-jangkitan 
untuk kegunaan dalam aplikasi klinikal. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Rapid bone defect filling with normal bone is a challenge in the fields of 

orthopaedic and dentistry [1].  The bone has limited regeneration capability due to 

insufficient blood supply, large defects and invasion of highly proliferative 

nonosteogenic tissues that can impair bone repair [2,3].  Bone grafting is an 

established treatment to restore bone tissue.  However, problems such as redundant 

fibrous connective tissue growth surrounding implanted bone graft and the 

movement of bone graft particles are still remain to be solved [1].  GBR has become 

an area of increasing interest in bone restorative procedures for guiding bone healing 

and regeneration [2,3] due to its success in curing cranial, maxillofacial and alveolar 

bone defects [4,5].  The concept of GBR is to cover the bone defect using a barrier 

membrane that enhances new bone ingrowth while preventing the ingrowth of 

fibrous tissue into the grafted site [6].  Hence, the bone regenerative approaches 

using GBR membranes have been extensively investigated to reveal their clinical 

potential [7,8,9].    

GBR membranes have been widely studied as they are useful for bone repair 

in oral and maxillofacial surgery where limited mechanical loading exists [5,10].  

The commercially available GBR membranes are made of non-resorbable and 

resorbable polymers.  The non-resorbable polytetrafluoroethylene (PTFE) 

membranes have exhibited significant disadvantages such as requirement for second 

surgery and increased risk of infection leading to early removal of the membrane [9].  
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Collagen based resorbable membranes are widely used in clinical therapies.  Since 

majority collagen membranes are animal derived, these membranes carry the risk of 

potential transmission of infectious agents, including the inappropriate immune 

responses in patients [7].  The synthetic resorbable membranes have found 

widespread use in clinical medicine as they are totally degradable, thus not requiring 

second surgery [8,9].  Poly(lactic-co-glycolic acid) (PLGA) is a FDA approved 

synthetic resorbable material and widely used in GBR applications [11,12].  

Nonetheless, an inflammatory reaction by the accumulation of acidic degradation 

products in resorbable membranes has been reported [4,13].  The combination of 

calcium phosphate (CaP) with resorbable polymeric membranes is expected to 

neutralize the acidic degradation products from the membranes; which is intended to 

overcome inflammatory reaction in vivo [13,14,12,15,16].  Moreover, CaP particles 

in polymeric membranes has been also reported to improve structural integrity, 

flexibility and bone regeneration in vivo [17,15,18,14].  The aforementioned studies 

emphasises the need for incorporation of CaP particles to improve physical and 

mechanical properties of the resorbable polymeric membrane.     

Currently, biomaterial-associated infection is regarded as a devastating 

complication in clinical surgery.  Therefore, anti-infective biomaterials need to be 

developed as the main strategy to prevent infection in clinical applications [19]. A 

bacteria-free environment is highly important to regenerate bone tissues in GBR 

strategies [20].  Recently, the antibiotics incorporated GBR membranes have been 

developed for local delivery of antimicrobial agents [21]. Nonetheless, the increasing 

bacterial resistance prompted the development of alternative antimicrobial agent 

incorporated GBR membranes [22,23,20,24].  In light of this, a naturally derived 

antimicrobial agent to substitute the use of antibiotics is sought after to develop a 

new antimicrobial membrane for clinical applications.  

 The antimicrobial properties of naturally found fatty acids have been 

recognized for many years.  Lauric acid (LA) is naturally found in coconut oil [25] 

and has been recognized to possess broad-spectrum with effective antimicrobial 

activity against gram-positive bacteria [26,27].  Unlike antibiotics, fatty acids and 

their derivatives have diverse modes of action that appear to be non-specific and 
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development of resistance to these compounds has not been reported [28].  It is 

suggested that LA kills Gram-positive bacteria by separating their inner and outer 

membranes, resulting in cytoplasmic disorganization of the bacteria [25].  Thus, it is 

envisaged that incorporating LA in composite membranes for anti-infective bone 

regeneration purposes could possibly overcome clinical complications caused by the 

administration of antibiotics. 

The development of functionally graded and multiple layered membrane is to 

enhance the features required for GBR, namely a combination of physical, 

mechanical, biological and antimicrobial properties [13,23].  Also, the incorporation 

of functional gradients in a multilayered membrane structure offers the possibilities 

to overall usefulness to the membrane.  Solvent casting technique offers the 

formation of layered membrane structure [16] whereas porous network formation is 

attainable through thermally induced phase separation (TIPS) [29] of the polymeric 

materials.  The presence of residual toxic organic solvent is a major concern in 

solvent based fabrication technique.  Thus, it is vital to include solvent removal step 

to reduce possible toxicity by solvent residues in fabricated membranes [30].  In this 

study, a new modified solvent casting-TIPS-solvent leaching technique is proposed 

to fabricate triple layered and graded composite PLGA membrane.  Collectively, it is 

suggested that a new combination of CaP nanoparticles and LA as an antimicrobial 

agent being graded and layered in PLGA matrices can potentially function as an 

antimicrobial barrier membrane.  This thesis will advance the knowledge in the area 

of antimicrobial composite membrane development for potential use in cranial, 

maxillofacial and dental applications.  A new technique to establish the fabrication of 

multilayered and graded composite membrane utilizing solvent casting-TIPS-solvent 

leaching technique will be developed in this study.  The fabrication and structural 

properties of the triple-layered PLGA membrane, graded with various amounts of 

LA and CaP nanoapatite will be studied.  The effects of LA and CaP addition on the 

physical, chemical, mechanical, biological and antimicrobial properties of the PLGA 

composite membrane will also be explored.  This membrane will deliver 

antimicrobial and osteoconductive properties by the incorporation of LA and CaP 

nanoapatite, respectively.       
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1.2 Problem statements  

 
 
The major concerns in GBR surgical intervention are the problems related to 

the increasing bacterial resistance and side effects caused by antibiotics [31,32].  

Multiple antibiotics are currently used to protect the bone defect from bacterial 

invasion, increasing the risks of bacterial resistance and side effects [33,22,31].  

Hence, an alternative antimicrobial agent to substitute antibiotics is sought after.  LA 

has been exhibiting effective antimicrobial activity against gram-positive bacteria 

that eliminates the need for multiple antibiotics to prevent bacteria colonization 

[26,27].  Therefore, the incorporation of antimicrobial LA in the composite 

membrane and its controlled release is proposed to circumvent the above mentioned 

drawbacks. 

 
 
Apart from antimicrobial property, other important membrane characteristics 

such as surface morphology, pore size, membrane degradability, mechanical 

properties and cytocompatibility should be equally evaluated.  Hence, appropriate 

materials selection and membrane design for GBR applications are highly 

indispensable for a successful bone defect treatment [7].  Poly(lactic-co-glycolic 

acid) (PLGA) is a FDA approved synthetic resorbable material which is widely used 

in GBR applications [11,12].  However, the accumulations of acidic degradation 

products from the synthetic bioresorbable membranes have been reported to cause 

inflammatory reaction in vivo [8,9].  Hence, the combination of synthetic polymers 

with CaP has been reported to neutralize the acidic degradation products from the 

polymers using ionic interactions [13,14,12,15,16].  Moreover, CaP incorporation 

improves structural integrity, flexibility and bone regeneration of the resorbable 

membranes [17,15,18,14].  Therefore, the current clinical disadvantage of using pure 

synthetic polymeric material as a GBR membrane could be overcome by 

incorporating CaP particles to reduce the potential inflammatory reactions.  Thus, in 

this study, multiple ions substituted nanoapatite (NAp) powder which has close 

resemblance to natural bone mineral composition will be synthesized and 

incorporated into the PLGA matrices to form composite membranes.   
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Incorporating multiple additives in a composite membrane is a challenge as it 

requires the development of multilayered and graded membrane structure [13,16,34].  

In order to address GBR applications, two functional surface layers are required.  

One of the surfaces with porous morphology allows bone ingrowth whereas the other 

dense surface prevents fibrous tissue penetration [16,13].  Therefore, in this study a 

triple-layered composite membrane with new combination of porous/dense layers 

will be developed.  The NAp particles and LA will be graded in each layer to deliver 

osteoconductive and antimicrobial properties, respectively.   

 
 
In order to develop a multilayered and graded composite membrane, an 

appropriate technique is indispensable to achieve the desired membrane structure.  

Currently, solvent casting [16] and TIPS [29] techniques have been employed to 

fabricate composite membranes.  However, there are two disadvantages of using 

solvent casting method: i) toxic organic solvents application [15,18] that requires 

critical attention especially on its exposure in biomedical applications, ii) CaP 

particles can spontaneously precipitate from the polymer solution due to poor affinity 

and can cause non-uniform dispersion of CaP in polymer matrix [18].  Hence, these 

drawbacks could be overcome by freezing the CaP dispersed polymer matrix 

structure through TIPS technique.  Moreover, solvent removal from the fabricated 

membrane is another important step to reduce toxic solvent residues [30,35].  Hence, 

in this study, composite membranes will be fabricated utilizing a new combination of 

solvent casting-TIPS-solvent leaching technique to address the formation of layered 

and graded membrane, dispersed with CaP particles and removal of toxic solvent 

from the membrane.  The new modified technique is envisaged to form a composite 

membrane with graded porous/dense structure that has functional gradients, i.e., NAp 

and LA. 

1.3 Objectives of the study 

This work explores a novel fabrication technique, structure and design of a 

polymer-ceramic composite membrane incorporating LA as an antimicrobial agent.  

The goal is to design a functionally graded triple layered barrier membrane with 
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antimicrobial property using solvent casting-TIPS-solvent leaching techniques.  In 

order to achieve the main objective, the following specific objectives were executed.     

a) To synthesise multiple ions substituted non-stoichiometric nanoapatite (NAp) 

powder. 

b) To establish a combined solvent casting-TIPS-solvent leaching techniques for the 

formation of triple-layered PLGA composite membranes graded with LA and 

NAp powder. 

c) To determine the physical, chemical, mechanical and in vitro degradation 

properties of the membrane. 

d) To evaluate the cytocompatibility and antimicrobial efficacy of the membrane. 

1.4 Research hypothesis 

It is possible to achieve an antimicrobial composite membrane by 

incorporating antimicrobial agents, in order to prevent biomaterial-associated 

infection in GBR applications.  Therefore, it is envisaged that incorporating LA in 

the composite membrane could impart antimicrobial property which could prevent 

bacterial infection associated to the membrane.  Furthermore, a resorbable composite 

membrane is desired to achieve less in vivo inflammation by reducing acidic 

degradation products through the addition of CaP particles [8,9].  Moreover, the 

combination of synthetic resorbable membranes with CaP is expected to deliver 

improved mechanical strength to the composite membranes [17,15,18,14].  Hence, in 

this study, it is hypothesised that varying the NAp and LA contents in PLGA 

matrices can significantly alter the physico-chemical, mechanical and antimicrobial 

properties of the membrane.     

The GBR membrane is designed to have a smooth surface on one face to 

inhibit soft tissue penetration while the opposite porous face is capable of 

accommodating bone tissue ingrowth in vivo [16,36].  The dense/porous network 

formation through TIPS [29] technique is easily attainable whereas a multilayered 

membrane structure via solvent casting and the removal of solvent [30] could 

translate a safer membrane fabrication technique for clinical practice.  The solvent 
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casting-TIPS-solvent leaching technique will be used to test the hypothesis that one 

can tailor the properties of the different layers to form a functionally graded 

composite membrane to retain its structural, dimensional and mechanical properties 

for bone regeneration.  Figure 1.1 demonstrates the importance of incorporating LA 

in composite membrane which may prevent bacterial infection on the membrane 

surface.  In addition, formation of dense membrane surface also excludes fibroblast 

penetration into the barrier membrane.    

 

 

Figure 1.1: LA incorporation into barrier membrane as an antimicrobial agent for 

adjunct treatment in GBR procedures to inhibit bacterial infection. 

1.5 Scope of the study 

A new design of triple-layered and graded PLGA composite membrane has 

been fabricated.  The triple layered membrane is comprised of PLGA matrix, graded 

with non-stoichiometric NAp and LA at each layer.  PLGA with a lactic acid to 

glycolic acid ratio of 85:15 degrade over 2–6 months [37] and have the ability to 

deliver drugs locally in a controlled manner.  These properties are making it suitable 

for use as a GBR barrier membrane.  Besides improving mechanical strength of the 

membranes, the incorporation of CaP particles should be merely targeted for its 

Barrier membrane  

LA incorporated surface

Prevention of 
bacterial infection

Dense barrier surface excludes 
fibroblast penetration 
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osteoconductivity and hydrophilic nature to enhance bone growth into the polymer 

surfaces [38].  NAp powder is synthesized by introducing substituents within 

1.84wt% (Na), 1.46wt% (Mg), 0.06wt% (K) and 4.80wt% (CO3
2-) to closely mimic 

natural bone apatite.  The NAp powder is incorporated to enhance bioactivity and 

osteoconductivity of the membrane.  LA is added to introduce antimicrobial 

properties to the composite membrane to prevent bacterial infection as it is known to 

possess effective antimicrobial activity against gram-positive bacteria [26,27].  The 

composite membrane is fabricated by employing a modified solvent casting-TIPS-

solvent leaching technique.  The solvent casting facilitated lamination of multiple 

layers of graded LA and NAp in PLGA matrices whereas TIPS used to form 

porous/dense layers in the membrane structure.  Solvent leaching is performed to 

remove toxic solvent residues.   

1.6 Significance of the study 

LA, as a substitute for antibiotics is identified and incorporated in the 

composite membrane which is to be used as a potential antimicrobial membrane for 

clinical applications.  Prevention of bacterial infection is a promising strategy 

whereby LA imparts antimicrobial activity on the membrane surface.  This would 

render an antimicrobial barrier membrane appropriate for adjunctive treatment in 

guiding bone regeneration.  This work also reports the fabrication of PLGA-NAp-LA 

composite membrane using solvent casting-TIPS-solvent leaching technique.  This 

new technique largely eliminates the solvent residue in the fabricated membrane 

through solvent leaching step using water as the exchanging medium.  

1.7 Thesis outline 

Chapter 1 is the introduction to the study of this thesis.  The entire outline of 

the thesis is illustrated in Fig. 1.2. 
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 Chapter 2 describes the review of literatures related to the development and 

application of commercially available GBR membrane that has been related to its 

profound improvement through current research to overcome clinically reported 

shortcomings.  Moreover, selection criteria for PLGA, LA and NAp are also 

reviewed to ensure the fabricated composite membrane is more likely to possess 

appropriate physical, structural, dimensional, mechanical, antimicrobial and 

biological properties for potential use in bone regeneration procedures.   

 Chapter 3 deals with the materials and methods used to investigate the 

appropriate parameters, experimental set-up, test conditions, characterization using 

analytical equipment and material evaluation involved in the fabrication and 

evaluation of the composite membranes.  The synthesis of NAp powder is reported in 

the first part of the chapter.  Subsequently, the development of PLGA based NAp-LA 

composite membrane through a new fabrication technique using solvent casting-

TIPS-solvent leaching is reported.  This is followed by the development of methods 

to test on the membrane’s properties such as physico-chemical, mechanical, in vitro 

degradation profile over six months duration, quantification of LA release and 

finally, LA release mechanism; since the effects of NAp and LA additions in the 

PLGA membranes are highly imperative to meet the design criteria of membranes 

for GBR applications.       

 Chapter 4 elaborates the outcome of NAp synthesis, fabrication of composite 

membranes, degradation profiles for composite membranes, mechanical evaluation 

of membranes in dry and wet condition, released LA concentration and its release 

mechanism.  Synthesis of NAp with the highest substitutent composition, the 

morphology of triple layered membrane, phase composition, physical changes in 

amorphous/crystalline state of LA, interaction mechanisms between PLGA-NAp-LA 

in composite membranes, weight loss and water absorption of membranes, and 

finally the quantification of LA release and its release mechanism from composite 

membranes for sufficient antimicrobial effects while maintaining its 

cytocompatibility are discussed.  The cytocompatibility of synthesized NAp powder 

and composite membranes along with antimicrobial evaluation on the effects of LA 

addition in composite membranes were discussed.   
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 Chapter 5 concludes structural, dimensional and mechanical integrity of the 

layered and graded composite membrane.  The effects of LA and NAp addition on 

physico-chemical, mechanical and antimicrobial properties are also described.   

Publications and presentations at conferences: This section forms part of the 

thesis, which described the synthesis of NAp powder and the fabrication of 

composite membranes published in peer reviewed impact factor journals and 

presented at international conferences as listed in Appendix A.  
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Figure 1.2: Representation of thesis outline. 
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