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ABSTRACT 

 

Thermoluminescent dosimetry (TLD) has become a reliable and promising 

method used in ionizing radiation-dose measurements nowadays. There are wide range 

of TLD materials in use and among them the glassy matrix structure represents a 

potentially attractive system due to the outstanding properties such as good thermal 

stability, human tissue equivalent properties, relatively low cost, easily shaped and 

good ability to host luminescent activators in elevated concentrations. Many efforts 

have been devoted to develop tissue equivalent suitable glassy scintillator materials 

for ionizing radiation measurements. The aim of the present studies was to determine 

the influences of dopant (SrCO3) and co-dopant (Cu2O, Mg2O, Na2O, P2O2) on 

lithium-borate (LB) glasses upon their physical, structure, thermal and TLD properties. 

Six series of glass compositions xLi2CO3–(100-x)H3BO3, 15Li2CO3–(85–y)H3BO3–

ySrCO3,15Li2CO3–(83–z)H3BO3–2SrCO3–zCu2O, 15Li2CO3–(83–u)H3BO3–2SrCO3–

uMg2O, 15Li2CO3–(83–v)H3BO3–2SrCO3–vNa2O and 15Li2CO3–(83–w)H3BO3–

2SrCO3–wP2O2 with varying concentrations of x, y, z, u, v, w (in mol%) were 

synthesized using melt quenching technique. The amorphous phase, structure, 

composition, morphologies, thermal and physical properties of synthesized glass 

samples were characterized using X-ray diffraction (XRD), Fourier transform infrared 

(FTIR), Energy-dispersive X-ray (EDX) spectroscopy, Field emission scanning 

electron microscope (FESEM) and Differential thermal analysis (DTA) respectively. 

The TLD properties were measured in terms of thermoluminescence (TL) response, 

sensitivity, linearity, fading, reusability, minimum detectable dose, and Z-effective. 

These synthesized glass systems were exposed to various types of ionizing radiations 

such as Co-60 gamma ray, 6 and 10 MeV electrons, 6 and 10 MV X-ray photons. The 

XRD patterns confirmed the true amorphous state of all prepared glass samples. The 

FTIR results show that the structure of the glass samples is that of LB glass. The dopant 

(SrCO3) and co-dopant (Cu2O) in LB glass were not changing the main feature of the 

structure. The EDX analyses of samples show that the composition of the glasses is 

that of LB, its doped and co-doped. The FESEM results show homogeneous 

morphology. The DTA shows that the prepared glass samples are physically and 

thermally stable. Samples doped with 2.0 mol% of SrCO3 and 0.01 mol% of Cu2O 

concentration showed the highest TL efficiency. Furthermore, the co-doped glasses 

exhibited very significant TL properties such as linear dose response, good reusability, 

low minimum detectable dose and high sensitivity. The samples also showed good 

dose linearity characteristic and TL sensitivity in the dose range of 0.5-4.0 Gy when 

irradiated with 10 MeV electrons. The achieved effective atomic number of glass 

samples was found to be 9.69 and 11.08 for LB doped with 2.0 mol% of SrCO3 and 

co-doped with 0.01 mol% of Cu2O, respectively. The relative energy response of both 

doped and co-doped samples have been calculated theoretically and the results 

obtained are in good agreement with the experimental ones. In conclusion, the studied 

glass samples were found to have excellent properties required in TLD applications. 
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ABSTRAK 

 

Dosimetri pendarcahaya terma (TLD) telah menjadi satu kaedah boleh percaya 

dan berpotensi dalam pengukuran dos sinaran mengion kini. Terdapat pelbagai jenis 

bahan TLD telah digunakan dan antaranya struktur matriks berkaca, merupakan satu 

sistem berpotensi yang menarik berdasarkan cirinya yang menonjol seperti kestabilan 

terma yang baik, sifat kesetaraan tisu manusia, kos yang agak rendah, mudah dibentuk, 

kemampuan yang baik untuk menjadi hos pengaktif pendarcahaya pada kepekatan 

tinggi. Banyak usaha ditumpukan untuk membangunkan bahan pengerdip berkaca 

yang sesuai serta setara tisu untuk pengukuran sinaran mengion. Tujuan kajian ini 

adalah untuk menentukan pengaruh dopan (SrCO3) dan kodopan (Cu2O, Mg2O, P2O5, 

Na2O) ke atas kaca litium-borat (LB) terhadap sifat fizikal, struktur, terma, dan TLD. 

Enam siri komposisi kaca xLi2CO3–(100-x)H3BO3, 15Li2CO3–(85–y)H3BO3–ySrCO3, 

15Li2CO3–(83–z)H3BO3–2SrCO3–zCu2O, 15Li2CO3–(83–u)H3BO3–2SrCO3–uMg2O, 

15Li2CO3–(83–v)H3BO3–2SrCO3–vNa2O, dan 15Li2CO3–(83–w)H3BO3–2SrCO3–

wP2O2 dengan kepekatan x, y, z, u, v, w (dalam mol%) yang berbeza telah disintesis 

menggunakan teknik pelindapan cair. Fasa amorfus, struktur, komposisi, morfologi, 

sifat terma dan fizikal sampel kaca tersintesis telah dicirikan masing-masing 

menggunakan pembelauan sinar-X (XRD), inframerah transformasi Fourier (FTIR), 

spektroskopi serakan tenaga sinar X (EDX), mikroskop elektron imbasan pancaran 

medan (FESEM), dan analisis terma pembeza (DTA). Sifat TLD diukur dari segi 

tindak balas pendarcahaya terma (TL), kepekaan, kelinearan, kelunturan, 

kebolehgunaan semula, dos pengesanan minimum, dan Z-efektif. Sistem kaca 

tersintesis ini didedahkan kepada pelbagai jenis sinaran mengion seperti sinar gama 

Co-60, elektron bertenaga 6 dan 10 MeV, dan foton sinar X bertenaga 6 dan 10 MV. 

Pola XRD mengesahkan fasa amorfus sebenar semua sampel kaca yang disediakan. 

Keputusan FTIR menunjukkan struktur utama sampel kaca ialah kaca LB. Dopan 

(SrCO3) dan kodopan (Cu2O) dalam kaca litium borat tidak mengubah sifat utama 

struktur. Analisis EDX terhadap sampel menunjukkan komposisi sampel ialah 

komposisi LB, dopan dan kodopan. Keputusan FESEM menunjukkan morfologi yang 

homogen. DTA menunjukkan sampel kaca disediakan adalah stabil dari segi fizikal 

dan terma. Sampel didop dengan kepekatan 2.0 mol% SrCO3 dan 0.01 mol% Cu2O 

menunjukkan kecekapan TL paling tinggi. Tambahan pula, kaca dikodopkan 

menunjukkan sifat TL yang ketara seperti tindak balas dos yang linear, kebolehgunaan 

semula yang baik, dos pengesanan minimum yang rendah dan sensitiviti yang tinggi. 

Sampel juga menunjukkan ciri kelinearan dos dan kepekaan dos yang baik dalam julat 

dos 0.5-4.0 Gy apabila disinarkan dengan elektron bertenaga 10 MeV. Nombor atom 

berkesan sampelkaca yang diperolehi ialah 9.69 dan 11.08 masing-masing  bagi LB 

yang didopkan dengan 2.0% SrCO3 dan dikodopkan dengan 0.01 mol% Cu2O. Respon 

tenaga relatif bagi kedua-dua kaca LB terdop dan  terkodop dikira secara teori dan 

hasil yang diperoleh bersesuaian dengan hasil eksperimen yang dijalankan. 

Kesimpulannya, sampel kaca yang dikaji didapati mempunyai ciri terbaik yang 

diperlukan dalam aplikasi TLD. 
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CHAPTER 1  

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Study Background  

 

 

In radiation safety related health physics, the term so called radiation dosimetry 

(RD) refers to the determination of the radiation dosage that is received by any matter 

including tissue upon exposing it to direct or indirect ionizing radiation.  It indeed 

measures and evaluates directly or indirectly the amount of exposure in terms of 

equivalent or absorbed effective dose or some other quantities related to ionization 

radiation.  The dosimetric dose range of interest depends on the source and nature of 

radiation.  The specification provided by International Commission of Radiation Units 

(ICRU) are for personal dosimetry it ranges from 0.01 - 1.0 mSv, for X-ray diagnosis 

the range is 0.1 - 100 mGy and for radiotherapy it varies between 1 - 5 Gy [1]. 

 

 

Radiation monitoring devices are the only way to detect and measure the 

presence of radiation, which cannot be detected by sensor.  In the environmental and 

medical dosimetry, different types of radiation detectors are used for quantifying the 

radiation dose.  However, a single detector cannot measure all kinds of radiation or 

useful in all situations.  The most popular dosimeters used for detecting ionization  
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radiation include ionizing chamber, film, luminescent and semiconductor materials.  

Other devices that are also used for this purpose are diamond dosimeter, plastic 

dosimeter, gel dosimeter etc. 

 

 

Borate glass system is an interesting and potential material in radiation 

dosimetry. This glass system was first used for precious metal working and later in 

ceramic industries.  It is well known that Boron and its compounds find extensive 

applications from glass to fibers, flame-retardants to nuclear applications and several 

others.  Present developments in the area of radiation dosimetry for the protection from 

radiation exposure allowed the researchers to exploit borate glass as a novel 

thermoluminescence (TL) material, which is greatly potential for ionizing radiation 

dose measurement.  Borate glasses are chemically stable compounds and can easily be 

doped with impurities such as rare earths, transition and alkaline metals.  Such doped 

materials exhibit high sensitivity, linearity and good fading properties suitable for dose 

measurement [2].  In this regard, lithium borate (LB) is one of the appropriate materials 

for radiation dosimetry, particularly for clinical and radiation therapeutic application.  

It is because, the effective atomic number (Zeff = 7.3) of LB system is nearly equivalent 

to human tissue and easy to handle.  

 

 

The LB based TL detectors are first commercially developed in 2001 [3].  The 

dosimetric properties of these materials (Li2B4O7: Cu, In, Ag and Li2B4O7: Cu) in the 

sintered pellet form are widely studied to determine their potential as tissue equivalent 

TLDs.  These materials revealed glow curves with prominent dosimetric peaks and 

higher TL sensitivity.  Furetta [4] examined the dosimetric properties of LB systems 

based TLDs.  The annealing procedure of Li2B4O7: Cu system is thoroughly examined.  

In addition, the TL sensitivity, glow-curve shape, minimum detectable dose, photon 

dose response, relative photon energy response, fading, reproducibility and precision 

of dose measurements of such material is inspected.  Numerous natural and synthetic 

borates are exploited for diverse industrial applications.  Generally, natural borates are 

cleaned from their impurities in processing plants and further treated to more qualified 

end products including anhydrous borax, anhydrous and hydrous boric acid, borax 

penta- and deca-hydrate, as well as sodium per-borate in re-crystallization process.  
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Inconsistency of borate chemistry [5], allows researchers to synthesize numerous 

borate structures usable in high technology areas.  Despite all these several shortfall in 

terms of efficiency, stability and accuracy remain utter challenges to overcome. 

 

 

The choice of dosimetric materials critically depend on their several essential 

characteristics such as the good sensitivity and linearity between dose and TL 

response, low fading rate, inexpensive to manufacture, good stability through multiple 

readout cycles and a near-tissue equivalent of effective atomic number (Zeff).  The later 

one is very important because materials with higher or lower Zeff than human tissue 

may misjudge the contributions of high energy photons leading to radiation damage.  

The search for the best material in terms of these characteristics added further impetus 

to the discovery and testing of a number of various novel glass compounds.  

 

 

Radiation dose measuring instruments are essential for any environment 

having existing ionizing radiation.  Apart from the specific properties possessed by TL 

materials for a particular application, some other basic and general conditions must 

fulfill.  These include isolated glow curve around 200 °C (180 – 250 °C), Zeff  near to 

the human tissue, high signal per unit of dose, low fading characteristics, good linear 

dose response, easy annealing procedure, stability to chemical and environmental 

effects, non-toxicity, abundance and cheap composite materials.  To date, a promising 

TL phosphor fulfilling all of the above mentioned characteristics is far from being 

achieved.  Although several TL materials are developed and some reached the 

commercial level but they suffer from many disadvantages.  Continuous efforts are 

made to either develop a new phosphor with an enhanced TL characteristics for 

improving the already existing TL material.  This is achieved by modifying the host 

with other elements, changing or varying the doping element or co-doping the 

phosphor with new impurities. 
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Complex TL materials processing and lack of reusability has discouraged the 

use of film in radiation dosimetry [6].  Studies on lithium flouride (LiF) by Harshaw 

Company revealed a very small TL sensitivity of this material due to the removal of 

unknown impurities during the processing procedure of the crystal.  Titanium was 

found to be one of these impurities and was incorporated in this mateial to fabricate a 

phosphor having enhanced TL response.  LiF is now considered as the standard TL 

phosphor known as ‘TLD-100’.  However, LiF phosphor has the disadvantage of 

complex annealing procedure and supra-linearity trend after the first 10 Gy dose [7, 

8]. 

 

 

Over the years, several techniques are developed to prepare glassy TL host.  

Melt quenching technique is a promising method for preparing high quality glass easily 

and economically.  This method is based on the melting process and subsequent rapid 

quenching of a metal oxide, where the viscosity is increased very quickly to a high 

value without forming the crystalline phase.  Upon increasing the temperature in dark 

some minerals emit a transient glow called TL.  It is this TL process that is exploited 

in radiation dosimetry.  Denial et al. used these TL phenomena and measured the 

amount of radiation exposure on LiF.  They acknowledged that this material is the 

most suitable phosphor for assessing the ionizing radiation exposure [9].  Currently, 

borate glass system owing to their lower fabrication cost, high sensitivity and easy 

availability received focused industrial attention for developing TL products.  

 

 

Inspired by these notable attributes of LB phosphor, this work intends to 

develop a new Sr doped LB glass dosimeter for the precise measurement of ionizing 

radiation dosage.  The TL properties of strontium (Sr) doped lithium borate glass and 

co-doped with copper (Cu), phosphorous (P), sodium (Na) and magnesium (Mg) are 

thoroughly examined.  This is achieved by synthesizing a series of LB glasses via melt 

quenching method.  The composition of co-doped LB: Sr, M (where M: Cu, P, Na and 

Mg) glass system are optimized and the prepared glasses are characterized to 

determine the effects of Sr contents on their structural and TL properties.  Attempts 

are made to determine a relationship between co-dopants concentration and TL 
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response of the synthesized TLD.  Experimental results are analyzed, interpreted and 

compared with other findings.  

 

 

 

1.2 Problem Statement  

 

 

Commercially available TLD-100 has some problem such as complex 

annealing procedure and supra-linearity trend at 10 Gy dose of exposure.  Literature 

showed that the dosimetric properties of lithium borate system with Sr /Cu co-doping 

are not widely studied.  Furthermore, the hygroscopic nature of lithium borate based 

glass system as well as the quenching effect, less sensitivity and fading behavior of the 

doping materials contributed to the setback of earlier developed phosphor.  Thus, as a 

possible solution to the existing limitations the modification of strontium doped 

lithium borate system with copper co-doping is proposed. 

 

 

 

 

1.3 Objectives of the Study 

 

 

The main goal is to determine the fundamental TLD properties of Sr-Cu, Sr-

Mg, Sr-Na and Sr-P co-doped Lithium borate glass system.  Based on the problem 

statement the following objectives are set:  

 

1) To evaluate the effects of Sr doping and Cu co-doping on the structure, 

chemical composition, thermal, morphological, TL and physical properties of 

Lithium borate glass systems.  

 

2) To determine the influence for annealing temperature, annealing time and 

heating rate on the TL intensity of synthesized co-doped Lithium borate glass 

systems as proposed TLD.  
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3) To optimize the concentration of the Sr dopant and Cu, P, Na and Mg co-

dopants in the Lithium borate glass best in TL intensity. 

 

4) To determine the influence of TL properties of the Sr-Cu co-doped of Lithium 

borate glass system subjected to different types of irradiations (photons, 

electrons and cobalt-60 gamma) useful for TLD. 

 

 

 

 

1.4 Scope of the Study  

 

 

A new LB glass system doped with Sr and co-doped with Cu, P, Na and Mg 

are synthesized via melt-quenching method to evaluate their TL performance.  These 

glasses are subjected to various photons, electrons and cobalt-60 gamma irradiations.  

The amorphous nature of all the un-doped, doped and co-doped glass are confirmed 

by X-ray diffraction (XRD) analysis.  Glass morphology is analyzed using field 

emission scanning electron microscope (FESEM), where the fractional percentage of 

the composite elements is determined for effective atomic number of the proposed 

TLD.  Thermal properties in terms of glass stability, transition temperatures and Hruby 

parameter are determined using differential thermal analyzer (DTA).  The 

identification of elemental traces is performed using energy dispersive X-ray (EDX) 

measurement.  The weight fraction obtained via EDX is further used for the calculation 

of effective atomic number.  The effect of the modifier and the co-dopant concentration 

variation on the structure (bonding vibrations) of the proposed dosimeters is 

investigated by Fourier transform infrared (FTIR) spectroscopy.  Physical properties 

including glass density, molar volume, ion concentration, polaron radius, inter-nuclear 

separation and field strength are calculated.  
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The TL measurements involves the determination of the dosimetric properties 

of Sr doped LB glass system co-doped with Cu, P, Na and Mg.  The optimum 

concentration for doping and co-doping is evaluated in terms of TL response of this 

glass system.  These optimum glass compositions are further selected to evaluate their 

dosimetric properties.  The best combination of TL set up (annealing procedure, time 

in the rang 15-60 minutes and Annealing temperature in the range 100-400 oC, heating 

rate in the range 1-7 oC/s) are determined using the optimized Sr doped and Cu co-

doped glass sample that give higher response compared to other compositions.  These 

TL parameters remained constant throughout all TL characterization.  The TL 

properties such as glow curve, dose response, sensitivity, fading, minimum detection 

dose, reproducibility, relative energy response, bleaching, accuracy of dose 

performance are evaluated under the exposure of various irradiations.  The kinetic 

parameters including the activation energy and frequency factor are estimated using 

peak shape method and initial rise method for understanding of TL phenomenon.  This 

method is shown to better justify the trap nature of the present glass system. 

 

 

 

 

1.5 Significance of the Study  

 

 

The proposed new materials can be used as good TLD system for clinical, 

personal and environmental dose monitoring applications.  The performance of these 

TLD materials would ensure the dose delivered to the patients and workers more 

accurately in order to improve the level of safety in line with the guidance by the 

International Commission on Radiological Protection (ICRP). 

 

 

The current study is expected to promote a better understanding on:  

 

1) New material properties with optimize composition for accurate dose 

measurement leading to human safety.  
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2) Influence of co-doping and strontium on the TL properties of newly proposed 

glass system will be understood.  

3) New glass composition may have commercial potential.  

4) Fundamental understanding of the TL response.  

5) Easy glass preparation, simple composition and low cost material would help 

large scale industrial production. 

6) Accurate and efficient dose measurement using dosimeter based on this new 

composition.   

 

 

 

 

1.6 Thesis Organization  

 

 

This thesis is organized into seven chapters.  Chapter 1 highlights the 

background of the study and the research gap to justify the need of this research.  It 

includes the hypothesis and research question, research objectives, scope and 

significance of the study.   

 

 

Chapter 2 provides a critical literature review relevant to this study.  The 

general concept of luminescence and TL in particular as well as the theories and 

models associated with TL are emphasized.  The dosimetric properties of TL phosphor 

are also discussed. 

 

 

Chapter 3 describes the detail methodology and procedures in terms of 

instrumentation and analysis that are needed to fulfill the proposed objectives.  It 

encloses the identification of material, glass sample preparation and description of 

sample characterizations.  
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Chapter 4 provides the results of various characterizations on thermal, 

physical, morphological and structural properties towards the fulfillment of the 

proposed objectives.   

 

 

Chapter 5 presents the experimental results and analysis.  The evaluation of TL 

properties, discussion, interpretation and comparisons.  The results obtained from the 

characterization, temperature time profile settings and optimization of dopants and co-

dopants are discussed in depth.  

 

 

Chapter 6 depicts the main dosimetric properties of the proposed TLDs and 

their analysis in terms of various mechanisms.  

 

 

Chapter 7 concludes the thesis with further information of this research in terms 

of recommendations for future work. 
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