
  
Abstract—Predicting protein-protein interactions represent a key 

step in understanding proteins functions. This is due to the fact that 
proteins usually work in context of other proteins and rarely function 
alone. Machine learning techniques have been applied to predict 
protein-protein interactions. However, most of these techniques 
address this problem as a binary classification problem. Although it 
is easy to get a dataset of interacting proteins as positive examples, 
there are no experimentally confirmed non-interacting proteins to be 
considered as negative examples. Therefore, in this paper we solve 
this problem as a one-class classification problem using one-class 
support vector machines (SVM). Using only positive examples 
(interacting protein pairs) in training phase, the one-class SVM 
achieves accuracy of about 80%. These results imply that protein-
protein interaction can be predicted using one-class classifier with 
comparable accuracy to the binary classifiers that use artificially 
constructed negative examples. 
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I. INTRODUCTION 
HE completion of the Human Genome Project (HGP) 
(1990-2003) brought a revolution in biological and 

bioinformatics research. Currently, researchers have in hand 
the complete DNA sequences of genomes for many 
organisms—from microbes to plants to humans. Proteomics 
research is emerging as the “next step” of genomics. 

The proteomics research is extensively concerned with the 
elucidation of the structure, interactions, and functions of 
proteins that constitute cells and organisms. Genomics 
research has already produced a massive quantity of molecular 
interaction data, contributing to maps of specific cellular 
networks. In fact, large-scale attempts have explored the 
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complex network of protein interactions in the Saccharomyces 
cerevisiae [1] - [3].  

Meanwhile, the recent studies of proteomics and molecular 
biology led the researchers to recognize that protein-protein 
interactions (PPI) affect almost all processes in a cell [4], [5]. 
It has been reported that even simple single-celled organisms 
such as yeast have about 6000 proteins interact by at least 
three interactions per protein, i.e. a total of 20,000 interactions 
or more [6]. It is also estimated that, there may be nearly 
100,000 interactions in the human body. 

Prediction of protein–protein interaction is an important 
problem because it helps to understand the basis of cellular 
operations and other functions. It has been shown that proteins 
with similar functions are more likely to interact [5]. If the 
function of one protein is known then the function of its 
binding partners is likely to be related. This helps to 
understand the functional roles of unannotated protein by 
knowing its interaction partners. Drug discovery is another 
area where protein–protein interaction prediction plays an 
important role. 

For that reasons, identifying protein-protein interactions 
represents a crucial step toward understanding proteins 
functions. In the last few years, the problem of 
computationally predicting protein-protein interactions has 
gain a lot of attention. Methods based on the machine learning 
theory have been proposed [7]-[9]. Most of these methods 
address this problem as a binary classification problem. 
Although, constructing a positive dataset (i.e. pairs of 
interacting proteins) is relatively an easy task by using one of 
the available databases of interacting proteins, there is no data 
on experimentally confirmed non-interacting protein pairs 
have been made available. To cope with this problem, some 
researchers created an artificial negative protein interaction 
dataset for S. cerevisiae by randomly generating 100,000 
protein pairs from this organism that are not described as 
interacting in the Database of Interacting Proteins (DIP) [10] 
without putting any further restrictions on such pairs, as in 
[11].  

Since only data of interacting proteins pairs (positive data) 
are available and sampled well, the problem of predicting 
protein-protein interactions is essentially a one class 
classification problem. In this respect, we propose a recent 
method, one-class support vector machines (OCSVM) for 
protein-protein interactions predictions. 
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II. RELATED WORKS 
Most of the protein-protein interactions data were identified 

by high-throughput technologies like the yeast two-hybrid 
system, which are known to yield many false positives [12]. 
The comparison of the main three high-throughput datasets 
[1]–[3], shows that the overlap of the detected interactions 
obtained in these three studies is very small (Fig. 1). The 
numbers shown in Fig. 1 are the numbers of proteins 
interactions. Each oval represents a high throughput study, 
and the overlaps between the studies are given at the 
intersections. In addition to the problem of false positive in 
the high-throughput technology, the in vivo small scale 
experiments that identify protein-protein interaction are still 
time-consuming and labor-intensive; besides, they identify a 
small number of interactions. As a result, methods for 
computational prediction of protein-protein interactions based 
on sequence information are becoming increasingly important. 

Several well-known computational methods of predicting 
protein–protein interaction have been studied and described in   
[13]. An important computation method based on 
phylogenetic profiles uses similarity of genes to predict the 
interactions [14], [15], where the similarity of genes is 
calculated based on presence or absence of genes in different 
species. Different method based on conservation of gene 
neighborhoods was employed in bacteria for prediction based 
on adjacency of genes in different species [16]. However, one 
of the problems that exist in the previous methods is that these 
methods need complete genomes for many species to produce 
good results. Gene fusion method traces a single protein in 
other domains where the interacting proteins are same at some 
point [17]. However, this method is only applicable to 
proteins with shared domains. 

There are many protein sequence features that can be used 
to facilitate the computational prediction of protein-protein 
interactions (e.g. domain structure, amino acids 
hydrophobicity and sub-cellular localization).  The most 
common sequence feature that has been used for this purpose 
is the protein domains structure. The motivation for this 

choice is that molecular interactions are typically mediated by 
a great variety of interaction domains [18]. Therefore it is 
logical to assume that the patterns of domain occurrence in 
interacting proteins provide useful information for training the 
prediction methods. In a recent study [19], the notion of 
potentially interacting domain pair (PID) was introduced to 
describe domain pairs that occur in interacting proteins more 
frequently than would be expected by chance. Accordingly, 
the protein domain structure is informative enough to facilitate 
the computational prediction of protein-protein interactions.   

From the literature, it is noticeable that most of the work 
that has been done to solve protein-protein interactions 
prediction problem considers it a binary classification 
problem. However, this assumption is not reflecting the reality 
of the problem where only data of interacting proteins pairs 
(positive dataset) are available and sampled well [10] and so 
far there is no data on experimentally confirmed non-
interacting protein pairs have been made available [20]. Many 
researchers cope with this difficulty by artificially creating a 
negative protein interactions dataset using randomly generated 
protein pairs that are not described as interacting in the 
databases of interacting proteins without putting any further 
restrictions on such pairs [7]–[9]. One problem with this 
approach is that in many cases selected “non-interacting” 
protein pairs will possess features that are substantially 
different from those typically found in the positive interaction 
set. This effect may simplify the learning task and artificially 
raise classification accuracy for training data. There is no 
guarantee, however, that the generalized classification 
accuracy will not degrade if the predictor is presented with 
new, previously unseen data which are hard to classify. 

The Support Vector Machines (SVM), which can perform 
binary classification and regression estimation tasks, have 
been commonly used as a binary classifier to predict protein-
protein interactions [7]–[9]. SVM were first proposed by 
Vapnik [21] and have recently been used in a range of 
problems including pattern recognition, bioinformatics, and 
text categorization. Schölkopf in [22] points out that a 
particular advantage of SVM over other learning algorithms is 
that it can be analyzed theoretically using concepts from 
computational learning theory and at the same time can 
achieve good performance when applied to real problems.  

The SVM classifies data with different class labels by 
determining a set of support vectors that are members of the 
set of training inputs that outline a hyperplane in the feature 
space. The algorithm is chosen in such a way to maximize the 
distance from the closest patterns, which is called the margin. 
SVM aims to minimize an upper bound of generalization error 
through maximizing the margin between the separating 
hyperplane and data. On the contrary, the traditional methods 
minimize the empirical training error by mapping the input 
data space to high-dimensional feature data set and apply the 
structure risk minimization [23]. SVM has a good 
performance of classification in large data set and complex 
patterns processing such as text categorization [24], face 
detection [25], and object detection in machine vision [26].  
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Fig. 1 Protein-protein interactions as detected in independent studies

International Journal of Biological and Medical Sciences 1:2 2006

121



SVM has the following advantages to process biological 
data [27]: (i) SVM is computationally efficient and it is 
characterized by fast training which is essential for high-
throughput screening of large protein datasets. (ii) SVM is 
readily adaptable to new data, allowing for continuous model 
updates in parallel with the continuing growth of biological 
databases. (iii) SVM provides a principled means to estimate 
generalization performance via an analytic upper bound on the 
generalization error. This means that a confidence level may 
be assigned to the prediction, and avoids problems with 
overfitting inherent in neural network function approximation. 

In this paper we propose to solve the problem of predicting 
protein-protein interactions as a one-class classification 
problem. In this respect we propose a recent method, one-
class support vector machines (SVM) for predicting protein-
protein interactions.   

III. ONE-CLASS SUPPORT VECTOR MACHINES 
One-class classification problem is a special case from the 

binary classification problem where only data from one class 
are available and sampled well. This class is called the target 
class. The other class which is called the outlier class, can be 
sampled very sparsely, or can be totally absent. It might be 
that the outlier class is very hard to measure, or it might be 
very expensive to do the measurements on these types of 
objects. For example, in a machine monitoring system where 
the current condition of a machine is examined, an alarm is 
raised when the machine shows a problem. Measurements on 
the normal working conditions of a machine are very cheap 
and easy to obtain. On the other hand, measurements of 
outliers would require the destruction of the machine in all 
possible ways. It is very expensive, if not impossible, to 
generate all faulty situations [28]. Only a method trained on 
just the target data can solve the monitoring problem.  

Basically, one-class SVM treats the origin as the only 
member of the second class (see Fig. 2). Then using relaxation 

parameters, it separates the members of the one class from the 
origin. Then the standard binary SVM techniques are 
employed. 

The OCSVM algorithm maps input data into a high 
dimensional feature space (via a kernel) and iteratively finds 
the maximal margin hyperplane which best separates the 
training data from the origin. The OCSVM may be viewed as 
a regular two-class SVM where all the training data lies in the 
first class, and the origin is taken as the only member of the 
second class. Thus, the hyperplane (or linear decision 
boundary) corresponds to the classification function: 

 
bxwxf +〉〈= ,)(   (1) 

 
where w is the normal vector and b is a bias term. The 
OCSVM solves an optimization problem to find the function f 
with maximal geometric margin. We can use this 
classification function to assign a label to a test example x. If  

0)( <xf  we label x as an anomaly, otherwise it is labeled 
normal.  

Using kernels, solving the OCSVM optimization problem is 
equivalent to solving the following dual quadratic 
programming problem: 
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where iα  is a Lagrange multiplier (or “weight” on example i 
such that vectors associated with non-zero weights are called 
“support vectors” and solely determine the optimal 
hyperplane), ν  (nu), is a parameter that controls the trade-off 
between maximizing the distance of the hyperplane from the 
origin and the number of data points contained by the 
hyperplane, l is the number of points in the training dataset, 
and ),( ji xxK  is the kernel function. By using the kernel 

function to project input vectors into a feature space, we allow 
for nonlinear decision boundaries. Given a feature map: 

 
NX ℜ→:φ   (4) 

 
where φ  maps training vectors from input space X to a high-
dimensional feature space, we can define the kernel function 
as: 
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Fig. 2 Classification in one-class SVM 
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Feature vectors need not to be computed explicitly, and in 
fact it greatly improves computational efficiency to directly 
compute kernel values ),( ji xxK . 

IV. PROTEINS FEATURE REPRESENTATION 
The construction of an appropriate feature space that 

describes the training data is essential for any supervised 
machine learning system. In the context of protein-protein 
interactions, it is believed that the likelihood of two proteins 
to interact with each other is associated with their structural 
domain composition [18], [19], [29]. For this reason, this 
study used the domain structure as protein features to facilitate 
the prediction of protein-protein interactions. 

Within a protein, a structural domain (simply called 
“domain”) is an element of overall structure that is self-
stabilizing and often folds independently of the rest of the 
protein chain. Many domains are not unique to the proteins 
produced by one gene or one gene family but instead appear 
in a variety of proteins. Domains often are named and singled 
out because they play an important role in the biological 
function of the protein they belong to; for example, the 
calcium-binding domain of calmodulin.  

Domains sometimes act completely independently of each 
other, as in the case of a catalytic domain and a binding 
domain, where the two domains don't interact with each other, 
but their association is synergistically because the linker 
between them means that the catalytic domain is kept in close 
contact to its substrate. In other cases structural interactions 
between domains do occur. In this case, the interaction 
between the domains should be considered as something akin 
to quaternary structure, rather that treating the whole complex 
as a single protein. 

Fig. 3 illustrates the idea of potentially interacting domain 
pairs. As depicted in Fig. 3, domain combination pair based 
approach considers the interactions of domains as the 
mediator for protein-protein interactions. There exist multiple 
possible choices for the interaction of domains or domain 

combinations that can be inferred from a protein interaction, 
with only the interaction information of two proteins.  

In this study, the domain data was retrieved from the PFAM 
database [30]. PFAM is a reliable collection of multiple 
sequence alignments of protein families and profile hidden 
Markov models. The current version 10.0 contains 6190 fully 
annotated PFAM-A families. PFAM-B provides additional 
PRODOM-generated alignments of sequence clusters in 
SWISSPROT and TrEMBL that are not modeled in PFAM-A.  

When the domain information is used, the dimension size of 
the feature vector becomes the number of domains appeared in 
all the yeast proteins. The feature vector for protein p was thus 
formulated as:  
x = [d1, d2, …, di, …, dn]     (6) 

 
where di = m when the protein p has m pieces of domain di, 
and di = 0 otherwise. This formula allows the effect of 
multiple domains to be taken into account. 

V. MATERIALS AND IMPLEMENTATION 
An overview of the one-class SVM classifier for predicting 

protein–protein interaction is shown in Fig. 4. Experimentally 
found protein interactions obtained from Database of 
Interacting Proteins (DIP) are used for training the one-class 
SVM classifier. Interaction partners, ‘protein A’ and ‘protein 
B’, are converted to feature vectors based on domain 
structure. Then, predicting if two proteins can interact is done 
by passing their feature vectors into the one-class SVM 
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Fig. 3 Domains mediate protein-protein interactions  
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classifier which generates the prediction output.  

A. Data Sets 
The protein interaction data was obtained from the 

Database of Interacting Proteins (DIP) [7]. The DIP database 
was developed to store and organize information on binary 
protein–protein interactions that was retrieved from individual 
research articles. The DIP database provides sets of manually 
compiled protein-protein interactions in Saccharomyces 
cerevisiae.  

The majority of DIP entries are obtained from combined, 
non-overlapping data mostly obtained by systematic two-
hybrid analyses. The current version contains 4749 proteins 
involved in 15675 interactions for which there is domain 
information. DIP also provides a high quality core set of 2609 
yeast proteins that are involved in 6355 interactions which 
have been determined by at least one small-scale experiment 
or at least two independent experiments and predicted as 
positive by a scoring system [8].  

The proteins sequences files were obtained for the 
Saccharomyces Genome Database (SGD) [31]. The SGD 
project collects information and maintains a database of the 
molecular biology of the yeast Saccharomyces cerevisiae. This 
database includes a variety of genomic and biological 
information and is maintained and updated by SGD curators. 
The proteins sequence information is needed in this research 
in order to elucidate the domain structure of the proteins 
involved in the interaction and to represent the amino acid 
hydrophobicity in the feature vectors.  

 

B. Data Pre-processing  
Since proteins domains are highly informative for the 

prediction of protein-protein interaction, we used the domain 
structure of a protein as the main feature of the protein 
sequence. We focused on domain data retrieved from the 
PFAM database which is a reliable collection of multiple 
sequence alignments of protein families and profile hidden 
Markov models. In order to elucidate the PFAM domain 

structure in the yeast proteins, we first obtain all sequences of 
yeast proteins from SGD. Given that sequence file, we then 
run InterProScan [32] to examine which PFAM domains 
appear in each protein. We used the stand-alone version 
of InterProScan. From the output file of InterProScan, we list 
up all PFAM domains that appear in yeast proteins and index 
them. Fig. 5 shows an example of protein domains that 
appears in yeast genome. The first column represents a protein 
whereas the following columns represent the domains that 
appear in the protein. The order of this list is not important as 
long we keep it through the whole procedure. The number of 
all domains listed and indexed in this way is considered the 
dimension size of the feature vector, and the index of each 
PFAM domain within the list now indicates one of the 
elements in a feature vector. 

The next step is to construct a feature vector for each 
protein. For example, if a protein has domain D1 and D2 
which happened to be indexed 17 and 64 respectively in the 
above step, then we assign "1" to the 17th and 64th elements 
in the feature vector, and "0" to all the other elements. Also if 
the domain D1 appears three times then we assign "3" to the 
17th element in the feature vector and so on.  Next we focus 
on the protein pair to be used for SVM training and testing. 
The assembling of feature vector for each protein pair can be 
done by concatenating the feature vectors of proteins 
constructed in the previous step. Fig. 6 shows the format of 
the feature vectors to be used by SVM. In this problem there 
are only two classes, +1 for interacting proteins and -1 for 
non-interacting proteins. 

In the case of one-class SVM, only positive data was used 
in the training phase. The classifier should then be used to 
predict protein-protein interactions from a set of unknown 
protein pairs. However for testing purpose, we separated a 
part of the training data to be considered unknown to the 
classifier. This testing data was also combined with a similar 
number of random protein pairs that are not included in the 
DIP.   

 

 
Fig. 5 An example of protein domains structure of the yeast genome 

 

 Format of the feature vectors 
 
<class> .=. +1 | -1   ( interaction: +1, no interaction: -1)  
<index> .=. integer (>=1)    (feature index) 
<value> .=. integer (>=0)     (feature value)  
<line> .=.  <class> <domain>:<value> <domain>:<value> … <domain>:<value> 
 
Example 
 
+1 8:1 13:1 22:1 23:2 26:1 40:1 72:1 77:1 ………..                 (default: value = 0) 
+1 21:1 27:1 52:2 56:3 58:1 81:2 84:1 90:1 ………. 
……… 
-1 32:1 34:1 55:1 58:1 82:1 91:1 102:1 103:1 ……… 
-1 21:1 28:2 48:1 66:1 69:1 73:1 93:1 102:1 ………  
……… 
 

 
Fig. 6 Feature vectors format 
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VI. RESULTS AND DISCUSSION 
We developed programs using Perl for parsing the DIP 

databases, sampling of records and sequences, and replacing 
amino acid sequences of interacting proteins with its 
corresponding feature. To make a positive interaction set, we 
represent an interaction pair by concatenating feature vectors 
of each proteins pair that are listed in the DIP-CORE as 
interacting proteins. Since we use domain feature we include 
only the proteins that have structure domains. The resulting 
positive set for domain feature contains 1879 protein pairs.  

In our computational experiment, we employed the 
LIBSVM [33] (version 2.5) software and modified it to train 
and test the one-class SVM proposed in this paper. This is an 
integrated software tool for support vector classification, 
regression, and distribution estimation, which can handle one-
class SVM. In order to train our one-class SVM, we examine 
out the following four kernels find appropriate parameter 
values: 
• Linear: .),( j

T
iji xxxxK =  

• Polynomial: .0,)(),( >+= γγ d
j

T
iji rxxxxK  

• Radial basis Function (RBF): 

.0),exp(),(
2

>−= γγ jiji xxxxK  

• Sigmoid: ).(),( rxxtahnxxK j
T

iji += γ  
 

whereγ (gama), r, and d are kernel parameters to be set for a 
specific problem. We carried out our experiments using the 
above mentioned kernels. 

The results of our experiments are summarized in Fig. 7. 
These results indicate that it is informative enough to consider 
the existence of domains structure in the protein pairs to 
facilitate the prediction of protein-protein interactions. These 
results also indicate that the difference between interacting 
and non-interacting protein pairs can be learned from the 
available data using one-class classifier. It is also important to 
note that the choice of the parameters has a clear impact on 
the classifier performance.  

Appropriate parameters for one-class SVM with different 
four kernels are set by the cross-validation process. We can 
see from this validation process that it is important to choose 
the appropriate parameters. As shown in Fig. 7, one-class 
SVM is very sensitive to the choice of parameters. However, 
since one-class SVM with linear kernel does not have the 
parameter gama, we executed the cross-validation process 
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Fig. 7 One-class SVM performance for proteins interactions using different kernels 
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only for parameter nu. Then the cross-validation accuracy is 
calculated in each run as the number of corrected prediction 
divided by the total number of data 
((TP+TN)/(TP+FP+TN+FP)). Then the average is calculated 
for the 10 folds. 

The best results were found by the RBF kernel (Fig. 7 (c)). 
Even though, RBF kernel could give as low accuracy as 29% 
with unsuitable choice of parameters, it achieves around 80% 
with proper choice of parameters. These results are 
comparable to the results that have been obtained by [6], [8] 
with slightly better accuracy. However, [5] reported accuracy 
of 94% using hydrophobicity as the protein feature. The 
reason behind this big difference between our result and their 
results lies in the approach of constructing the negative 
interaction dataset. They assign random value to each amino 
acid in the protein pair sequence. This leads to get new pairs 
that considered negative interacting pairs and greatly different 
from the pairs in the positive interaction set. This leads to 
simplify the learning task and artificially raise classification 
accuracy for training data. There is no guarantee, however, 
that the generalized classification accuracy will not degrade if 
the predictor is presented with new, previously unseen data 
which are hard to classify. In our work we used only positive 
data in the training set. In this case we don’t need any 
artificially generated negative data for the training phase. We 
believe this approach will make the learning problem more 
realistic and ensure that our training accuracy better reflects 
generalized classification accuracy. 

 

VII. CONCLUSION 
The problem of predicting protein-protein interactions 

possesses the features of one-class classification problem 
where only data from target class (i.e. interacting proteins) are 
available and sampled well. Therefore, in this paper we have 
presented one-class SVM that find maximum margin 
hyperplanes in a high-dimensional feature space, emulating 
Vapnik’s SVM. The objective of this paper was to show that 
the one-class SVM method can be applied successfully to the 
problem of predicting protein-protein interactions. 
Experiments performed on real dataset show that the 
performance of this method is comparable to that of normal 
binary SVM using artificially generated negative set. Of 
course, the absence of negative information entails a price, 
and one should not expect as good results as when they are 
available. In conclusion the result of this study suggests that 
protein-protein interactions can be predicted from domain 
structure with reliable accuracy. Consequently, these results 
show the possibility of proceeding directly from the 
automated identification of a cell’s gene products to inference 
of the protein interaction pairs, facilitating protein function 
and cellular signaling pathway identification. 
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