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ABSTRACT

Modern vehicle stability and navigational systems are mostly designed using
inaccurate bicycle models to approximate the full-car models. This results in
incomplete models with various unknown parameters and states being neglected in
the controller and navigation system design processes. Earlier estimation algorithms
using the bicycle models are simpler but have many undefined parameters and states
that are crucial for proper stability control. For existing vehicle navigation systems,
direct line of sight for satellite access is required but is limited in modern cities with
many high-rise buildings and therefore, an inertial navigation system utilizing accurate
estimation of these parameters is needed. The aim of this research is to estimate
the parameters and states of the vehicle more accurately using a multivariable and
complex full-car model. This will enhance the stability of the vehicle and can provide
a more consistent navigation. The proposed method uses the kinematics estimation
model formulated using special orthogonal SO3 group to design estimators for vehicles
velocity, attitude and suspension states. These estimators are used to modify the
existing antilock braking system (ABS) scheme by incorporating the dynamic velocity
estimation to reduce the stopping distance. Meanwhile the semi-active suspension
system includes suspension velocity and displacement states to reduce the suspension
displacements and velocities. They are also used in the direct yaw control (DYC)
scheme to include mass and attitude changes to reduce the lateral velocity and slips.
Meanwhile in the navigation system, the 3-dimensional attitude effects can improve
the position accuracy. With these approaches, the stopping distance in the ABS has
been reduced by one meter and the vehicle states required for inertial navigation are
more accurately estimated. The results for high speed lane change test indicate that the
vehicle is 34% more stable and 16% better ride comfort on rough terrains due to the
proposed DYC and the active suspension system control. The methods proposed can
be utilized in future autonomous car design. This research is therefore an important
contribution in shaping the future of vehicle driving, comfort and stability.
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ABSTRAK

Sistem keseimbangan dan navigasi pengemudian kenderaan moden ke-
banyakannya direka dengan menggunakan model dua tayar yang tidak tepat untuk
menganggarkan model-model kereta-penuh. Ini akan menghasilkan model yang
tidak lengkap dengan pelbagai parameter dan keadaan yang tidak diketahui diabaikan
di dalam proses merekabentuk pengawal dan sistem navigasi. Algoritma awal
penganggaran menggunakan model dua tayar adalah lebih ringkas tetapi mempunyai
banyak parameter dan keadaan yang penting yang tidak ditakrifkan untuk kawalan
kestabilan yang sepatutnya. Untuk sistem navigasi kenderaan yang sedia ada, garis
penglihatan langsung untuk capaian satelit diperlukan tetapi ia terhad di dalam bandar
yang mempunyai banyak bangunan tinggi. Oleh itu, sistem pengemudian inersia
yang memberikan anggaran lebih tepat bagi parameter-parameter tersebut adalah
diperlukan. Matlamat penyelidikan ini adalah untuk menganggarkan parameter-
parameter dan keadaan kenderaan tersebut secara lebih tepat dengan menggunakan
model berbilang pemboleh ubah dan kereta-penuh. Ini akan menambahkan
kestabilan kenderaan dan memberikan pengemudian yang lebih konsisten. Kaedah
yang dicadangkan menggunakan model penganggaran kinematik yang dirumuskan
menggunakan kumpulan SO3 ortogonal khas untuk penganggaran halaju, sikap dan
keadaan ampaian kenderaan. Penganggar ini digunakan untuk mengubah skema sistem
brek antikunci (ABS) dengan menggabungkan penganggar dinamik halaju untuk
mengurangkan jarak berhenti. Sementara itu, sistem ampaian separa aktif dengan
menyertakan halaju dan sesaran digunakan bagi mengurangkan sesaran dan halaju
ampaian. Ia juga digunakan dalam skema pengawalan rewang terus (DYC) dengan
menyertakan perubahan jisim dan sikap untuk mengurangkan halaju dan gelincir sisi.
Dalam sistem navigasi pula, kesan sikap ini boleh meningkatkan kejituan posisi.
Dengan pendekatan ini, jarak berhenti dalam ABS telah dikurangkan sebanyak 1 meter
dan keadaan kenderaan diperlukan untuk navigasi inersia dianggarkan dengan lebih
tepat. Keputusan bagi perubahan lorong ketika halaju tinggi ialah 34% lebih seimbang
dan 16% lebih selesa di atas permukaan kasar hasil dari DYC dan pengawalan
sistem ampaian aktif yang dicadangkan. Kaedah yang dicadangkan boleh digunakan
dalam merekabentuk kenderaan autonomi pada masa hadapan. Penyelidikan ini
adalah sumbangan penting dalam membentuk masa depan pemanduan, keselesaan,
dan keutuhan kestabilan.
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CHAPTER 1

INTRODUCTION

1.1 Background

Since the early 19th century, the cars has passed through a number of
improvements (Bevly and Cobb, 2010; Leung et al., 2011; Oh and Choi, 2013;
Farrell, 2008). During the early days, clutch system and variable speed gear system
was introduced to improve the vehicle handling (Lee et al., 2014; davidL, 2000).
Similarly flexible suspension system using spring mass damper system and air filled
tires were introduced to improve the ride comfort and long term reliability (Lin and
Kanellakopoulos, 1997). These innovations were introduced using bulky mechanical
system and conceived on paper using expert knowledge; as there were no means of
doing simulations (Stensson et al., 1994; Fallah et al., 2009). Earlier introduction
of electromechanical systems in the form of motors for engine starting, encouraged
the car engineers to replace the bulky mechanical assemblies with electromechanical
systems to reduce weight and improve system performance (Bevly and Cobb, 2010;
Farrell, 2008). Most of the earlier electromechanical systems used simple drive-
by-wire technology for control. The improvements in digital control theory and
microprocessors lead to the use of computer for driver assistance in collision avoiding
system, like antilock braking system (ABS), and driver assisting systems, like assisted
direct yaw control (DYC) (Jagtman and Wiersma, 2003; Abdulrahim, 2006; Aripin
et al., 2014; Suzuki and Takeda, 2016). When designing driver assisted control
systems, the focus was mainly on improving the specific component of the car. For
example, the automatic transmission system design process was focused on how to
change the drive train by including electromechanical valves coupled with a large array
of speed sensors and a digital controller for gear shift (Ackermann and Buente, 1997;
Lee et al., 2014). It did not include the engine block in the design process to optimize
speed and torque. Similarly, the antilock braking system (Khachane and Shrivastav,
2016; Rizzi et al., 2016; Boopathi and Abudhahir, 2016) included the speed obtained
from the wheels speed sensors (Madau et al., 1993; Mauer, 1995; Suraci et al., 2006)
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and did not include the linear accelerations (Bowman and Law, 1993) and angular
velocities acting on the vehicle when developing the controller (Peric et al., 2016;
Antic et al., 2016; Tang et al., 2016).

The use of electromechanical systems for steering control and navigational
system for autonomous driving, is another application which is being developed and
refined (Inoue et al., 2016; Zhao et al., 2017). The use of electromechanical systems
for direct steering, by using drive-by-wire technology has resulted in the reduction
of weight, by reducing heavy mechanical linkages used in the ackermann shaft. It
has also resulted in the improvement of the system response time, since direct control
with lightening response and very low torque requirements are needed. High torque
requirements for turning are common in bigger car, trucks and buses. Excessively high
torque requirements had forced the car engineers to design power steering systems.
With drive-by-wire technology, power steering systems become irrelevant. The drive-
by-wire technology, reduces engine load required by power steering, reduces the
weight and converts torque requirements into systems response inputs. The drive-
by-wire technology also helps in placing digital controllers to assist the driver by
changing the steering input habits of the driver for better control and reduce accident
chances (Zhao et al., 2017).

Recently, the drive-by-wire steering system, the automatic cruise control
system and the braking system has been integrated with a reliable navigational system
to provide the driver with a fully autonomous or partially autonomous system. The aim
of this system has been in replacing or comforting the driver by employing various
sensors and controllers. These systems have shown promising results under various
test conditions. Since these systems have not gone through strenuous testing, they
are considered less reliable and their accuracy is also limited. The reliability of
these systems has created a sense of uncertainty in the car industry. The industry
is also looking for systems which are simpler, since simpler systems are more
reliable, have better accuracy and good component and system reliability. A good
component reliability can result in higher component service life, which results in
lesser maintenance (Dhahri et al., 2012).

When considering the reliability of such systems, the reliability of each
component is important. Hence each component is being tested and refined to improve
its reliability. The amount of energy consumed is one important factors for judging
the reliability of a component, subsystem or system. Some safety and comfort related
systems have thus been graded as unreliable or uneconomical. One such system is the
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active suspension system, which consumes a lot of power and its components have
a very limited operational life. They are thus replaced by sub-optimal semi-active
suspension systems, which are much more reliable and consume less energy (Chen
et al., 2015). Similarly, in semi-autonomous systems, the global positioning system,
because of its direct line of sight requirements and limited 3D accuracy, is considered
less reliable. There is a need to have navigational systems which can provide reliable
accuracy (Wu et al., 2016; Lin et al., 2016; Sarbishei, 2016).

1.2 Problem Statement

The research work aims to address the following problems:

i. Most of the current vehicle stability control systems incorporate essential and
measurable parameters and states. Essential but non-measurable parameters are
either estimated using complex estimation schemes, or are neglected (Sandu
et al., 2010; Crivellaro and Alves, 2006; Qazi et al., 2014). The resultant control
scheme is therefore, not robust enough or has high computational cost. Earlier
control systems did not use expensive sensors or fast processing computers due
to their higher cost (Cherouat et al., 2005; Hac and Simpson, 2000). Current
technologies has made the cost of sensors to reduce considerably and high end
processors are also becoming cheaper. Therefore parameters and states which
were neglected must be included to have more robustness and reliability (Chen
et al., 2015; Qazi et al., 2014).

ii. Current navigational systems use direct line of sight satellite communications,
which are easily obstructed by underground bridges, sky scrapers and overhead
bridges (Cohen et al., 1994; Jwo et al., 2012; Farina et al., 2002). The system
has to do a lot of computations to provide accurate 3D positional and velocity
accuracy, which makes the system unsuitable for real time navigation (Wu et al.,
2016). The inertial navigation system can provide data in real time but does
not have high accuracy. It does not require direct line of sight. A fusion of
GPS with INS, as used in existing systems, cannot overcome the direct line of
sight problem with GPS, without sacrificing the system accuracy. By fusing the
inertial navigation system with other sensors to achieve redundancy and by using
better algorithms, the INS accuracy can be improved without any direct line of
sight problems (Sarbishei, 2016).
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iii. Newer and better control schemes must be provided to improve the stability
and control of the vehicle to overcome general problems with existing control
schemes.

1.3 Objectives

The objectives of this research are listed as follows:

i. To estimate the important states and parameters of vehicles for better control of
the vehicle.

ii. To design a simple and robust controller that can improve the longitudinal, lateral
and vertical stability of the vehicle.

iii. To develop a navigational system that has no dependency on GPS.

1.4 Scope of Work

The scope of work in this research are

i. The systems were tested using hatchback car model, since it has the ability to
loose traction during turning. The real time systems were tested on test car since
its structure is hatch back with good weight to torque settings for a utility car.

ii. The important data for states and parameters were obtained using CarsimTM (a
nonlinear vehicle simulator) and used for comparison in real time estimation,
since those states and parameters were not possible to physically measure them.

iii. The proposed controllers were only simulated with tests in CarsimTM.

iv. The proposed navigational algorithm was tested on practical environment and
the attitude states were compared with simulated results obtained from CarsimTM

since they were not possible to measure in practical environment.
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1.5 Dissertation Organization

The research is divided into several chapters. Following is the list of chapters
with a brief detail of each chapters.

i. Chapter 1: This chapter gives a brief introduction of the work. It consists of
the problem statement, the objectives of this research, the scope of the work and
important contributions of this work.

ii. Chapter 2: This chapter describes the theory of existing systems. This chapter
clearly defines the important parameters, models and states used to build the
foundation of this research.

iii. Chapter 3: This chapter briefly describes the literature review of existing
systems. It revisits certain models to introduce important missing parameters.
It also revisits the existing observers and controllers to suggest improvements
and new control and estimation algorithms.

iv. Chapter 4: The proposed changes are discussed with elaborate mathematical
justification in this chapter. The method used for testing the proposed changes
and its implementation are also discussed. The chapter thus includes the
methodology of the proposed works. The proposed changes and the method used
to test the changes and evaluate them in comparison to the existing methods is
also done in this chapter.

v. Chapter 5: The chapter presents all the test results and provides a comprehensive
analysis of each test result, that are compared with existing results. The chapter
thus provides the results and analysis of the research.

vi. Chapter 6: This chapter concludes the work done in this research. It gives all the
conclusions drawn from the research. Based on the conclusions, it also suggests
recommendations for further research.
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