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ABSTRACT 

The project report proposes that travelling wave will produced different location when 

the reflected wave is interpreted differently by the devices in the system. The security of 

Sarawak Grid depends very much on the availability of the transmission network. It is, 

therefore, important that any transmission line fault can be located speedily and accurately to 

minimize the down-time or repeated tripping.  Currently, Sarawak Energy Berhad (SEB) is 

using Traveling Wave Fault Location System (TWS) to identify correct transmission line fault 

location. For a single-ended travelling wave fault location, the identification on the reflected 

wave is the core of getting precise location of the fault. Due to the polarity of the travelling 

wave reflected from the fault point or from the remote-end bus is affected by the bus 

configuration at both ends of the faulted line, it is difficult to identify whether the travelling 

wave is reflected from the fault point or the remote-end bus using the polarity of single modal 

travelling wave. A previous study only proposes method of locating by simulating the fault in 

a controlled environment. There are two types of traveling wave analysis techniques are 

proposed in the project report. The modelling of the simplified electrical network will be done 

using MATLAB Simulink where four types of fault; 3-phase fault, 2-phase fault, 2 phase-to-

ground faults and single-phase fault will be simulated in the network. Analysis of the travelling 

wave waveforms are done after the signal processing of the faulted current waveform are 

carried out. Analysis of the travelling wave waveforms show that effects of variables such as 

fault inception angle, fault resistance, line distance and weak-end will produce a fault location 

which is not accurate. The data analyzed with the methods proposed in the project report found 

that the results reflect the finding in the simplified electrical network modelling. The simulation 

shows that the fault impedance has a minor effect (less than 5% error margin) on the traveling 

wave waveform and amplitude. However, the fault inception angle (less than 5°) can be a cause 

for the TWS fault location equipment to mis-operate and not capture the event. 
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ABSTRAK 

 Laporan projek ini mencadangkan bahawa gelombang-menjalar akan menghasilkan 

lokasi yang berbeza apabila gelombang yang dipantulkan ditafsirkan secara berbeza oleh 

peranti dalam sistem. Keselamatan Grid Sarawak sangat bergantung kepada ketersediaan 

rangkaian penghantaran. Oleh itu, adalah penting bahawa sebarang gangguan pada talian 

penghantaran boleh ditempatkan dengan cepat dan tepat untuk meminimumkan masa 

gangguan atau pengulangan gangguan. Pada masa ini, Sarawak Energy Berhad (SEB) 

menggunakan Sistem Gelombang-Menjalar (TWS) untuk mengenal pasti lokasi gangguan 

pada penghantaran talian yang betul. Untuk lokasi gangguan gelombang-menjalar penamat 

tunggal, pengenalpastian pada gelombang yang dipantulkan adalah penting untuk 

mendapatkan lokasi tepat bagi gangguan. Kerana polariti gelombang-menjalar yang tercermin 

dari titik kesalahan atau dari bas jarak jauh dipengaruhi oleh konfigurasi bas pada kedua-dua 

hujung garis bersalah, adalah sukar untuk mengenal pasti sama ada gelombang perjalanan 

tercermin dari titik kesalahan atau bas jarak jauh menggunakan kekutuban gelombang 

perjalanan modal tunggal. Satu kajian terdahulu hanya mencadangkan cara mencari dengan 

mensimulasi semula gangguan dalam persekitaran terkawal. Terdapat dua jenis teknik analisis 

gelombang-menjalar yang dicadangkan dalam tesis. Pemodelan rangkaian elektrik yang 

mudah akan dilakukan menggunakan MATLAB Simulink di mana empat jenis gangguan; 3-

fasa, 2-fasa, 2-fasa-ke-bumi dan 1-fasa akan disimulasikan dalam rangkaian. Analisis 

gelombang pada gelombang-menjalar dilakukan selepas pemprosesan isyarat bentuk 

gelombang semasa gangguan berlaku. Analisis gelombang pada gelombang-menjalar 

menunjukkan bahawa kesan pemboleh ubah seperti sudut permulaan (inception angle) 

gangguan, rintangan dan jarak talian penjana akan menghasilkan lokasi gangguan yang tidak 

tepat. Data dianalisis dengan kaedah yang dicadangkan dalam tesis mendapati bahawa 

hasilnya mencerminkan penemuan dalam pemodelan rangkaian elektrik yang dipermudahkan. 

Simulasi menunjukkan bahawa kesan rintangan mempunyai kesan kecil (kurang daripada 5% 

julat ralat) pada gelombang-menjalar dan amplitud. Walau bagaimanapun, sudut permulaan 

gangguan (kurang daripada 5°) boleh menjadi punca bagi peralatan lokasi gangguan TWS 

tidak menangkap peristiwa gangguan tersebut.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

Electrical power grid is made up of generation, transmission lines, substations 

and distribution networks. Transmission lines are normally designed for extra high 

voltage (EHV) operation to connect the generation stations to the load centres. The 

generation/power stations are usually further away from load centres/user and 

therefore EHV transmission lines must cross large physical distances for the 

interconnection. Transmission lines are subjected to line faults due to lightning, 

mechanical failures, vegetation incursions and other natural elements that are 

impossible to completely protect. A fault on the transmission system has great impact 

on system stability and availability. It is therefore very necessary to locate, clear the 

fault and normalize the effected line immediately.  

Since Malaysia has a tropical climate, the rate of lightning occurring is high 

and vegetation growth is rapid. Transmission lines are located mainly in a corridor 

assigned away from major development and thus subjected to faults arising from faults 

caused by vegetation, animals, lightning and failure of transmission line hardware. For 

most of transmission line faults, single phase-to-ground faults dominates, and this fault 

type is will be studied in greater detail in this paper.  Three phase faults are mainly due 

to mal-operation of switching operation with 3-phase portable earth not removed 

during energization. Double phase faults are not very common and may be due to 

conductor breakage. Although the effect on stability of the system is greater for the 3-

phase and 2-phase faults, these rarely occur in real time. 

During fault occurrence, the protection equipment would detect the fault and 

disconnect the faulted line from the electrical system. This action from the protective 

equipment and switchgears take less than 120 ms to complete and any fault location 
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equipment is expected to give the operator a precise fault location immediately after 

the fault. Traditional impedance measurement and fault location has a wide tolerance 

depending on the fault type and system topology. This method is not dependable and 

therefore a better and more accurate method of fault location is required.  

Traveling wave fault location has gained a wide acceptance with the ready 

availability of accurate due to GPS timing equipment. The accuracy of TWS location 

equipment is reported to be less than 300 m which is within 1 pole span of a typical 

EHV transmission line. The hardware setup of the TWS fault location system is simple 

to implement and to retrofit. The core system includes clamp on current transformers, 

detection and recording equipment, GPS timing equipment and a basic communication 

channel to the main station.  

The location of fault is determined by accurate time tagging the arrival of 

traveling wave at each end of the line. No specific line parameters such as line 

impedance are required for this method. The only input required analysing fault data 

with the traveling wave fault locator are line length and wave velocity. TWS fault 

locator can locate phase-to-phase and phase-to ground fault, irrespective of the value 

of fault resistance, as well as broken conductors. It provides a level of accuracy 

(±150m regardless of line length) many times better than that offered by conventional 

‘one-ended impedance base’ type fault locator (accuracy about 5%-10% of the total 

line length). It also can locate vegetation fault more easily as compared to the 

conventional ‘impedance’ type fault locator. 

1.2 Problem Statement 

Conventional method of using single ended impedance measurement for fault 

location has many challenges as described by Zimmerman, K and Costello, D (2004). 

Traditional impedance-based fault location is not accurate enough and result is 

dependent on system topologies and fault types. The errors caused by fault resistance 

and load, mutual coupling effect and in-feeds are some of the main contributors to 

inaccurate result of fault location. The method does not give accurate results and are 



 

3 

not reliable for high impedance faults. In nature, vegetation faults are normally having 

a high impedance 

Traveling wave fault location technique is gaining wide acceptance in locating 

line faults. The technique requires the study of traveling wave produced naturally 

during a fault and is not affected by the various system conditions associated in the 

impedance method. However, there are concerns with the accuracy of fault location 

due to a different set of constraints such as fault inception angle, fault impedance and 

algorithm to determine the fault location (Sawai, Suraj, Pradhan, A K and Naidu, OD, 

2017). These constraints need to be investigated to justify the suitability to use 

traveling wave as an accurate and dependable fault location technique. 

For single phase faults which dominates most of transmission line fault type in 

Malaysia (Abdullah Asuhaimi Mohd. Zin, Sazali PO. Abdul Karim, 2007), there has 

been reports from utilities that single phase faults caused by high fault resistance are 

not reliably captured by TWS system. The performance of traveling wave fault 

location technique has produced mixed results which roughly has a success rate of 

about 80%. 

1.3 Research Objective 

The objectives of the research are: 

(a) To verify and simulate of a sample transmission system using MATLAB for a 

transmission line of 200 km with 2 generation sources at either ends of the line 

for the study of traveling wave fault location. The distance can be varied from 

100 km to 400 km. 

(b) To simulate and verify by analysis of the traveling waveform the fault distances 

of the modelled transmission line for all fault types at various fault distances, 

fault inception angles, fault resistances and generation source. 
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1.4 Project Scope 

The research work carried out in this project are concentrated to the following 

aspects: 

(a) Verification of fault location using traveling wave techniques 

(b) Determination of fault location using traveling wave phenomenon 

(c) Accuracy of fault location simulation 

(d) Verification of the validity of traveling techniques for different fault types 

(e) Observe the effects of fault inception angle on fault traveling wave 

(f) Observe the effects of fault resistance on traveling wave 

(g) Observe the effects of line distance on traveling wave 

(h) Investigate the weak end condition on traveling wave 

 

 

1.5 Project Outline 

In this project report, a total of 5 chapters are presented. First chapter will 

introduce the background of the problem and the objectives of this study. Some 

limitation and scopes are explained. Chapter 2 will investigate literature review, 

theory, formula behind the finding the fault location. 

Further detailed explanation on the proposed MATLAB-Simulink setup and 

implementation method will be enlightened in chapter 3. Collected data and short 

explanation on the result will be presented in chapter 4. Chapter 5 will present the 

conclusion of the project report and further works needed to be done to improve the 

TWS. Research schedules are explained in terms of Gantt chart for the whole frame of 

study 
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