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ARTICLE INFO ABSTRACT

A new micron-sized leaf- two-dimensional (2D) structured zeolitic imidazolate framework (ZIF-L) and nano-
sized ZIF-8 were successfully synthesised in aqueous basic solution at room temperature with the same molar
ratio of reagents (Zn* 2/Hmim = 8). Both ZIFs have attracted tremendous research interest due to their wide
applications including absorption, separation, and catalysis. This phase and morphology change could be tai-
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;i?jﬁon lored by changing the concentration of base-type additive triethylamine (TEA). Also, this morphology change
Desor;ion from 2D (ZIF-L) to three-dimensional (3D) (ZIF-8) was observed by X-ray diffraction (XRD), transmission

electron microscopy (TEM), field emission scanning electron microscopy (FESEM), thermogravimetric analysis
(TGA), attenuated total reflectance infrared (ATR-IR) spectroscopy analysis, and surface area and pore textural
properties using micromeritics gas adsorption analyser. The total amount of basic sites and carbon dioxide (CO5)
desorption capacity were also calculated using CO, temperature-programmed desorption (CO,-TPD) technique.
Furthermore, TEA/total mole ratio of 0.0006 was proved as transition loading between two phases. Also, the
particle and crystal size of samples decreased with increasing TEA/total mole ratio. The smallest ZIF-L and ZIF-8
particles obtained were 1.6 pm and 177 nm, respectively that showed excellent thermal stability. The basicity
and uptakes of CO, improved proportionally with TEA and followed this order: ZIF-8 > ZIF-L. This study
provides some new insights into zeolitic imidazolate framework by controlling crystal growth and morphology.

our knowledge, most types of MOFs can be synthesised through these
methods [6,7,8]. Despite the maturity of the process, both approaches

1. Introduction

Zeolitic imidazolate frameworks (ZIFs) are a new subclass of metal-
organic frameworks (MOFs) and emerge as a new family of molecular
sieves and porous structure. The highly diversified structures, tunable
pore sizes, and versatile functionalities inspired many researchers to
explore its different industrial applications such as CO, adsorption [1],
catalysis [2], membrane fabrication for gas separation [3], and gas
storage [4,5]. Common metal sites used for synthesis of ZIFs are Zn™* 2
and Co*? and there are many types of imidazole-type linkers like
imidazole (IM), 1-methylimidazole (mIM), 2-methylimidazole (Hmim),
1-ethylimidazole (eIM), and 2-nitroimidazole (nIM). The combination
of different metal sites and imidazole ligands would result in different
structures and properties of ZIFs [6]. Solvothermal method and mi-
crowave-assisted are the most versatile approaches and to the best of
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suffer from high energy requirement while utilising expensive organic
solvent in highly diluted manner [9,10]. Contradictory, aqueous system
synthesis is reported to provide economical, rapid, nano-sized, and
higher yield of formation compared to solvothermal and microwave-
assisted synthesis [9,11]. Up to date, only limited types of MOFs have
been successfully synthesised in aqueous solution because most organic
ligands are insoluble in water [12,13].

Among the MOFs, ZIF-L and ZIF-8 have been documented to be well
compatible with aqueous system synthesis. Nonetheless, MOFs are well-
developed porous compounds but ZIFs are still in their infancy, such as
crystal growth and pore structure. Recently, many researchers have
synthesised and characterised various types of ZIFs particles
[2-4,13-32]. Liquid-phase diffusion in methanol process is used for the
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production of ZIFs crystals [28,29] but it takes many days to produce it.
Zhang et al. [33] identified that Co/Hmim molar ratio played an im-
portant and crucial role in the synthesis of ZIF-L-Co with leaf-like
structure. They also concluded that lower concentration of reactants
gave larger particle size and vice versa. Pan et al. [34] replaced the
organic solvent with water during the synthesis of ZIF-8 at room tem-
perature and the resultant ZIF-8 nanoparticles showed excellent
thermal stability. However, the requirement of the high molar ratio of
zinc salt and organic ligand (1:70) makes this process costly and ha-
zardous. Despite the different approaches that have been used for
tuning the crystal shape and morphology of ZIFs, far less effort has been
employed to the economical, friendly, and fast synthesis of ZIFs for CO,
adsorption.

ZIF-L and ZIF-8 have many similarities that provides a unique op-
portunity to investigate their crystal growth during the synthesis such
as both have the same reagents, i.e., zinc salt and Hmim [22,31]. Also,
similar CO, adsorption capacity makes them promising materials for
purification of natural gas [4]. A 2D ZIF-L is made up of the same
building blocks as ZIF-8 [28] and have been widely used in various
separation processes as an adsorbent to remove hazardous wastes such
as dyes, aromatics, arsenic, and heavy metals [35], gas detachment,
heterogeneous catalysis, drug delivery, and sensors [36].

The objective of this work is to investigate the effect of base type
additive (TEA) on the morphology of ZIFs and CO, adsorption perfor-
mance. Besides, critical loading of TEA that was used for intermediate
structure between ZIF-L and ZIF-8 was identified during the synthesis
process. Also, its influence on their CO, adsorption capacity would be
reported and discussed here. The temperature programmed desorption
(TPD) is the best technique to calculate basicity and CO, adsorption/
desorption behaviour of porous materials [37]. To the best of our
knowledge, the presented CO,-TPD results for ZIF-L and ZIF-8 are the
first experimental evidence of basicity calculations.

2. Experimental Section
2.1. Materials

The materials used to synthesise ZIF-L were zinc nitrate hexahydrate
(Zn (NO3)2 6H50, 99% purity), an organic linker, 2-methylimidazole
(Hmim, 99% purity), and base-type additive triethylamine (TEA, 99.5%
purity) to change its structure. All chemicals were purchased from
Sigma-Aldrich and used without any further purification.

2.2. Synthesis of ZIF-L and ZIF-8

The synthesis of ZIF-L was described in literature [1,28] while some
changes were done in this work to enhance the yield, decrease the
chemical usage and improved desorption capacity. Briefly, the key
synthesis parameters were the ratio of Hmim/zinc ion molar ratio (e.g.,
8) and TEA/total mole ratio of the reactants. Approximately 2.95 g
(1.98 mmol) of Zn (NO3),-6H,0 and 6.5 g (15.83 mmol) of Hmim were
dissolved in 200 mL of deionised water. Various amounts of TEA were
added to Hmim solution as the deprotonation agent as shown in
Table 1. Then, the aqueous solution of Zn (NO3),-6H,0 was added into
the aqueous solution of Hmim with stirring. The mixture was stirred at
room temperature at various time intervals. The product was obtained
by repeated centrifugation (10,000 rpm for 10 min), washed by deio-
nised water to remove residual chemicals, and then dried in an oven at
60 °C for 12 h. The products ZIF-L (A0, Al, A2, and A3) were obtained
at TEA/total mole ratios of 0, 0.0002, 0.0003, and 0.0005, respectively.
Also, A4 and A5 represented transition stage. Meanwhile, ZIF-8 samples
(A6 and A7) were also obtained when the TEA/total mole ratios of the
reactants were increased up to 0.001 and 0.002, respectively. The yield
of the products was measured using Eq. (1) and reported in Table 1.
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Table 1
Different TEA/total mole ratio, yield and time for the synthesis of ZIL-L and ZIF-8.

Sample TEA/total TEA Duration of Yield (%) Product
mole ratio  volume synthesis (min)
(mL)
A0 0 0 240 [23] 90 ZIF-L
Al 0.0002 0.5 60 80 ZIF-L
A2 0.0003 1 60 90 ZIF-L
A3 0.0005 1.5 60 90 ZIF-L
A4 0.0006 60 80 Transition
phase
A5 0.0009 3 60 80 Transition
phase
A6 0.001 4 60 80 ZIF-8
A7 0.002 5 60 90 ZIF-8
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Fig. 1. XRD pattern of the synthesised samples with different TEA/total mole ratios: AQ
(0), A1 (0.0002), A2 (0.0003), A3 (0.0005), A4 (0.0006), A5 (0.0009), A6 (0.001), and A7
(0.002).
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2.3. Characterization

2.3.1. Physicochemical Analysis

The field emission scanning electron microscopy (FESEM) images
were taken using a Hitachi SU 8020 microscope. The X-ray diffraction
(XRD) analysis was performed on a Rigaku smart lab diffractometer
using CuKa radiation at 40 KV and 30 mA in the 20 range of 3°-100°.
The attenuated total reflectance infrared (ATR—IR) spectroscopy ana-
lysis was performed using IRTracer-100 (Single Reflection Diamond for
Spectrum Two, Shimadzu) to observe the functional groups of the
synthesised ZIF-8 samples. The thermogravimetric analysis (TGA, Q
500, TA Instrument, USA) was used to check the thermal stability of the
synthesised samples at different TEA loadings. TGA recorded the weight
changes of the sample when heated from 30 to 900 °C at a heating rate
of 10 °C/min under nitrogen atmosphere. The flow rate of N, was used
up to 40 mL/min. The specific BET surface area, pores textural prop-
erties of the synthesised samples, and nitrogen adsorption-desorption
isotherms were measured using Micromeritics gas adsorption analyser
ASAP 2010 instrument equipped with a commercial software for cal-
culation and analysis.

2.3.2. CO, Temperature Programmed Desorption (CO5-TPD)

CO, temperature-programmed desorption tests were conducted to
determine the total amount of basic sites on the surface of the ZIF-L and
ZIF-8 samples. Experiments were carried out on Auto Chem II 2920
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instrument equipped with a thermal conductivity detector (TCD)
(Micromeritics, USA). Firstly, the sample was pretreated using Helium
(He) with a flow rate of 30 mL/min at 150 °C for 2 h and then cooled to
room temperature (50 °C). After that, the sample was saturated with
CO, at a flow rate of 30 mL/min at 50 °C for 2 h. Following this ad-
sorption, the sample was flushed with He at room temperature for 1.5 h
to remove any physisorbed CO,. After the He flush, the sample was
heated at a heating rate of 10 °C/min with a He flow rate of 30 mL/min,
and the desorbed CO, was measured by the Auto Chem II 2920 in-
strument with a TCD ramp to 900 °C. Effluent curves of CO, were re-
corded as CO,-TPD curves. Finally, the surface basicity of the sample
can be found out separately according to the amounts of desorbed CO,.
The amount of basic sites (mmol/g) was defined as the number of
desorbed CO, molecules between room temperature and 900 °C during
the TPD analysis. The amount of basic sites can be calculated from the
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Fig. 2. FESEM images of the synthesised samples at
different TEA/total mole ratios: (a) A0 (0), (b) Al
(0.0002), (c) A2 (0.0003), (d) A3 (0.0005), (e) A4
(0.0006), (f) A5 (0.0009), (g) A6 (0.001), and (h) A7
(0.002).

area of the TPD spectrum as follows:

Asample

Basicity = X

1
Al mL msample Vm

@

where basicity is the amount of basic sites (mmol/g), Asampie is the
integrated area of the TPD spectrum of the sample, A; ., is the area
from the calibration pulse of 1 mL of CO,, Mgample is the mass of the
sample in grams, and V,, (mL/mmol) is the molar volume of CO,
(0.0235 mL/mmol).

3. Results and Discussion
3.1. Structural and Surface Analysis

The X-ray diffraction (XRD) pattern for ZIF-L showed that the
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Table 2
Structural properties of the synthesised samples.
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Fig. 3. TEM images of the synthesised samples with
different TEA/total mole ratios: (a) A0 (0), (b) A3
(0.0005), and (c) A7 (0.002).

Sample 3 = 0.0002 e * 0.0002 Crystal size (nm) Particle size Dimensions
Scherrer + 1 nm FESEM + 2 nm TEM + 2nm Thickness(nm) + 1 nm Width (um) = 5nm
A0 0.0015 0.0011 38 5.05 um 5um 137 2.1
Al 0.0017 0.0011 38 3.2 um - 89 1.2
A2 0.0018 0.0011 36 3um - 88 1.2
A3 0.0014 0.0010 35 1.6 ym 1.7 pm 77 0.77
A4 0.0021 0.0012 40 - - - -
A5 0.0027 0.0013 41 - - - -
A6 0.00071 0.00091 47 501 nm - - -
A7 0.00087 0.00084 45 177 nm 181 nm - -

intensity of the peaks are in well agreement to the previous reported
work [22,38,39]. In the first attempt (Fig. 1, A0), ZIF-L was synthesised
in zinc salt and Hmim aqueous solution at room temperature with no
addition of TEA. After continuous stirring, the synthesis solution turned
cloudy that showed the occurrence of a reaction between the reactants.
FESEM image (Fig. 2a) also confirmed the leaf-like structure of ZIF-L.
However, a longer time of synthesis (4 h) was required due to low re-
action rate and insufficient deprotonation of Hmim. When the small
amounts of TEA (0.5, 1, and 1.5 mL which were equivalent to TEA/total
mole ratios 0f0.0002, 0.0003, and 0.0005, respectively) were added in
the synthesis solution, ZIF-L particles were formed after 60 min (Fig. 1,
Al, A2 and A3). Furthermore, their FESEM images confirmed the leaf-
like particles with 2D crystalline structure (Fig. 2b, ¢ and d). The pos-
sible reason was the fast deprotonation of Hmim to produce more re-
active sites for the reaction with Zn™?2 [13,40,41]. Thus, ZIF-L was
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successfully synthesised in shorter time with high yield (Table 1). But,
when the volume of TEA was increased up to 2 and 3mL in the
synthesis solution (TEA/total mole ratios of 0.0006 and 0.0009, re-
spectively), the intensity of the characteristics peaks in the XRD ana-
lysis (Fig. 1, A4 and A5) increased, and FESEM images (Fig. 2e and f)
clearly exhibited the transition stage of ZIF-L to ZIF-8 and the leaf-like
structure started to break up. Higher TEA/total mole ratio increased the
reaction rate by rapid deprotonation of Hmim, leading to the break-
down of the leaf-like structure. When the concentration of TEA in the
synthesis solution was increased to 4 mL, the intensity of the peaks
increased and showed almost similar curve as reported for ZIF-8
[12,23,35]. But FESEM image (Fig. 2g) was not fully confirmed the
structure of ZIF-8. It suggested that 4 mL of TEA was still not sufficient
to deprotonate Hmim for the formation of ZIF-8. When the volume of
TEA was increased up to 5 mL, the characteristic peaks of ZIF-8 for the
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Fig. 5. ATR-IR spectrum analysis of the synthesised samples with different TEA/total
mole ratios: A0 (0), A1, A2 (0.0003), A3 (0.0005), A6 (0.001), and A7 (0.002).

planes {110}, {200}, {211}, {222}, {310}, {222}, {321}, {411}, {420},
{332}, and {422} were clearly observed at 26 of 7.24, 10.29, 12.64,
14.61, 16.37, 17.95, 19.38, 22.05, 23.01, 24.43, and 25.53, respec-
tively. The intensity of the peaks are in good agreement with the XRD
phase recognition DB card number for ZIF-8 (00-062-1030) and pre-
viously reported work [42,43]. Furthermore, FESEM image also con-
firmed the cubic hexagonal particle with 3D crystalline structure of
pure ZIF-8 (Fig. 2h).

The structure of ZIF-L and ZIF-8 was further confirmed by the
transmission electron microscopy (TEM) images (Fig. 3) that well
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agreed with the FESEM images. For this purpose, three samples (A0, A3,
and A7) were selected for TEM analysis. These TEM images clearly
exhibited the 2D leaf-like structure of ZIF-L without TEA, with the TEA/
total mole ratio of 0.0005, and 3D hexagonal and octahedron mor-
phology of ZIF-8 at high TEA loading (TEA/total mole ratio of 0.002).

The crystal size of the synthesised samples was calculated using
Debye-Scherrer equation shown in Eq. (3) [44] and the series of FESEM
and TEM images were used to estimate the average particle size of the
synthesised samples (Table 2). Almost the same particle size was ob-
served in FESEM and TEM images. It was identified that the particle size
of ZIF-L samples decreased from 5.05 to 1.60 um and the crystal size
was also decreased from 38 to 35 nm (Table 2) when the TEA/total
mole ratio was increased from 0 to 0.0005 as shown in Table 1. This
reduction in particle size was due to the rapid deprotonation of Hmim
at higher TEA loading, subsequently, producing more reactive sites on
the organic ligands to ease the chemical reaction with the zinc salt. But
when the TEA/total mole ratio was increased up to 0.0006 and 0.0009,
the crystal size suddenly increased because of the transition stage as
stated earlier. Also, it was not possible to measure the particle size in
the transition stage because of breakage and irregularity as shown in
Fig. 2e and f. After the transition stage, ZIF-8 nanoparticles were ob-
served and their crystal and particle sizes decreased from 47 to 45 nm
and 501 to 177 nm, respectively. This reduction in particle size was also
due to the rapid deprotonation of Hmim at higher TEA loading.

094
~ B-cosd 3)

where,

D = crystal size (nm),

B = full-width at half maximum of the peak in radian,

6 = measured diffraction angle of the peak, and.

A = X-ray wavelength of CuKa (0.1542 nm).

Moreover, the dislocation density (8) is measured using Eq. (4) [45]
where D is the crystal size.

1

0= @)

This gives more insight into the quantity of defects in the crystals.
Very small defects are found in ZIF-L particles that slightly increased
with the decreasing size of the particles from A0 to A7 as shown in
Table 2. Strain-induced broadening arising from crystal imperfections
and distortion calculated using Eq. (5) are related with lattice strains
[46]. The lattice strain was smaller and almost constant for ZIF-L but
slightly higher for ZIF-8 nanoparticles due to the rapid reaction at
higher TEA loading (Table 2).

_ PBcos®
T ®)

Other structural parameters for ZIF-L particles like average thick-
ness and width were also measured using the FESEM images of ZIF-L.

Fig. 6. (a) Thermal stability of the synthesised sam-
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Table 3
The pore textural properties of the prepared samples.

Sample BET Langmuir Micropore Mesopore Micropore
surface surface area  volume volume area (m?/g)
area (m®/g) (cm®/g) (em®/g)

(m?/g)

A0 (100°C) 2.5 3.6 0.0001 0.0033 0.1

A0 (200°C) 133 210 0.0026 0.011 7.7

Al (100°C) - - - - -

Al (200°C) 135 213 0.0044 0.013 11.5

A2 (100°C) - - - - -

A2 (200°C) 163 238 0.0085 0.16 22

A3 (100°C) 2.6 3 0.0004 0.0016 0.88

A3 (200°C) 166 251 0.0059 0.18 15

A4 (100°C) - - - - -

A4 (200°C) 212 235 0.074 0.04 193

A6 (100°C) — - - - -

A6 (200°C) 525 602 0.18 0.08 448

A7 (100°C) 431 528 0.1341 0.083 339

A7 (200°C) 1472 1605 0.5543 0.0524 1441

One image is shown in Fig. 4 to explain how thickness and width of the
samples were measured. It is clear that both parameters are dependent
on particle size, where it decreased with the decrease in particle size
(Table 2).

3.2. Functional Groups

ATR—IR spectra observed bond stretching vibration of different
functional groups at various frequencies. To check the effect of TEA on
ZIF-L, three samples with minimum (A0), medium (A2) and maximum
(A3) amount of TEA were considered, as shown in Fig. 5. These spectra
showed the vibrations of imidazolate and zinc ion units because of their
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bond origin, basic and acidic nature It was observed that the spectra of
all samples showed a good agreement with previous documented works
[47,48]. The results for ZIF-L showed various peaks such as 423 cm ™ 1
and 450 cm~! due to Zn—N and Zn—O stretching, respectively,
1146-1307 cm ™~ ! that is ascribed to C—H vibrations, 1384 cm ™~ ! due to
C—C stretching, 1500-1700 cm ™~ ! that is associated to C=N stretching,
and 1350-1500 cm ™ ! that is associated with the entire ring stretching
[49]. The spectral bands in the region of 900-1350 cm ™' are for the
alkane in-plane blending whereas the vibrations at 600-800 cm ™~ ! are
named as out of plane bending [40,50]. For ZIF-L and ZIF-8, the peak
positions of the spectra are almost the same. The only difference is
aromatic compounds (N-CHs3) vibration at 2800-2820 cm ™ 1 and H
bonded N—H at 3000 cm ™~ ! due to the excess amount of TEA [51].

3.3. Thermal Stability

The thermal stability of the synthesised products of ZIF-L and ZIF-8
was measured by thermogravimetric analysis (TGA) in which the mass
of the product was monitored as a function of temperature as shown in
Fig. 6a. We reported the higher thermal stability of products compared
to previous works [22,37,38,47]. All ZIF-L samples exhibited a quite
gradual in weight losses initially and there were sudden weight losses at
around 260 °C (Fig. 6a). As proven in FESEM (Fig. 2g) results that the
TEA/total mole ratio of 0.001 was still not enough for the formation of
ZIF-8, the TGA results for this sample also gave low stability, as sudden
weight loss occurred at around 260 °C (Fig. 6a, sample A6). Meanwhile,
pure ZIF-8 (A7) was highly stable as its sudden weight loss started at
around 600 °C (Fig. 6a, sample A7).

Further verification of the thermal stability of these samples was
done by calculating the derivative of the weight loss curves at different
temperature (Fig. 6b). All the synthesised ZIF-L samples had two peaks
representing two different weight loss temperatures or thermal events.
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Fig. 7. Nitrogen sorption isotherms of the synthesised samples at 100 °C with different TEA/total mole ratios: A0 (0), A3 (0.0005), and A7 (0.002).
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The first derivative peak temperature (T,) was around 100-150 °C
which shows the initial weight loss and attributed to the evaporation of
the trapped deionised water from the pores and unreactive species (e.g.,
Hmim) [5,21,31] and the carbonisation of organic ligand molecules in
ZIF-L framework [47,50]. The second T, (second weight loss) was in the
range of 250 to 300 °C indicating the point of greatest rate of change on
the weight loss curve and was due to the decomposition of organic
linkers and ZIF-L crystal structure. However, ZIF-8 had three peaks
representing three different weight loss temperatures or thermal events.
The first derivative peak temperature (T,) was around 100 °C which
shows the initial weight loss and attributed to the evaporation of the
trapped deionised water from the pores and unreactive species (e.g.,
Hmim). The second T, (second weight loss) was in the range of 250 to
300 °C and it was associated to the carbonisation of organic ligand
molecules in ZIF-8 framework. The third T, (third weight loss) occurred
at around 600 °C indicating the point of greatest rate of change on the
weight loss curve and was due to the decomposition of organic linkers
and ZIF-8 crystal structure.

3.4. Pore Textural Properties

The surface area is one of the major parameters for characterising
porous materials. The pore textural properties of the synthesised sam-
ples are presented in Table 3. Samples AO and A3 of ZIF-L and A7 of
ZIF-8 were selected for BET analysis at 100 °C. Smaller BET and Lang-
muir surface areas of ZIF-L and ZIF-8 particles were found compared to
previously reported works [23,34,52]. The reason for the low surface
area was probably the incomplete activation of the samples at 100 °C.

413

The pores of the samples still contained guest molecules and residual
unreacted species which led to a decrease in the surface area [24].
Therefore, all samples of ZIF-L and ZIF-8 were heated at 200 °C in an
oven to remove all the entrapped guest molecules. All surface proper-
ties were improved due to evaporation of guest molecules from the
pores (Table 3). The results are in good agreement with the reported
works [2,30,33].

Nitrogen sorption isotherms for as-synthesised samples (A0, A3, and
A7) at 100 °C are shown in Fig. 7. It was observed that low gas adsorbed
at 100 °C due to the low BET and Langmuir surface area, and micro- and
mesoporosity of the samples (Table 3). Moreover, these samples have a
rising trend of surface properties with decreasing size. Nitrogen sorp-
tion isotherms at 200 °C are shown in Fig.8. For all samples, it was
observed that the gas absorbed even at a very low relative pressure,
revealing the microporous structure of samples, while higher adsorp-
tion of gas at high relative pressure (P/P, > 0.95) indicates micro-
porous and mesoporous structure. It was also identified that the amount
of adsorbed gas in ZIF-L (A0-A3) samples increased from 10.5 to
141 cm®/g due to the increase of all surface properties. As sample A4
was identified as transition stage between ZIF-L and ZIF-8, the low
absorbance of gas also verifies this phenomenon (Fig.8, A4). Further-
more, the amount of the adsorbed gas in ZIF-8 (A6 and A7) samples
increased from 168 to 397 cm>/g due to the increase of surface areas
and microporosity (Fig.8, A6 and A7). Moreover, typical Type I iso-
therms were obtained for all samples as shown in Fig. 8, which confirms
their microporosity [53-56]. However, the behaviour of the isotherms
for the values of P/Py > 0.95 changed to Type IV, which reveals the
existence of large pores due to mesoporous structure [49].
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Fig. 9. CO,-TPD spectra recorded for various samples

818 A0 0.25- A3 between room temperature and 900 °C with different
— ' TEA/total mole ratios: A0 (0), A3 (0.0005), and A7
3 s d (0.002).
< 0.10 s
© © 0.154
5 )
=)
& 0.051 & 0.10-
3 3
8 = 0.05-
0.00- 0.00- __J
0 200 400 600 800 0 200 400 600 800
Temperature (°C) Temperature (°C)
2
0.20 ) Y
N ’] 7‘3

- 1 [\ v\

501 A I\

B It ™

T 0.10+ [ | }

c / | | \

2 /[ | [

@ [\ |

o 0.05- / \ f ]

O 1 >‘c / I

- / ‘,_' ,,.f’;

0.00{ —
0 200 400 600 800
Temperature (°C)

Table 4 4. Conclusions

Amounts of the basic surface sites of the ZIF-L and ZIF-8 crystals at various temperatures.

Sample Temperature (°C) Amount of basic sites (mmol/g)
A0 223.3 1.48
264 4.54
602.9 13.45
868.3 1.30
Total 20.77
A3 252.8 1.82
344.9 2.75
439.4 1.45
627.4 1.38
647.7 13.80
Total 21.20
A7 115.4 0.018
367.4 8.83
614.4 2.52
651 10.89
894.3 0.477
Total 22.74

3.5. CO; Temperature Programmed Desorption (CO;~TPD)

The total amount of desorbed CO, on the samples was calculated
from the CO,-TPD isotherms as shown in Fig. 9 using Eq. (2). Table 4
lists the amount of basic sites that increased after the appropriate ad-
dition of TEA. Two samples of ZIF-L with maximum (AO), and the
minimum (A3) particle size were selected for TPD-CO, analysis as
shown in Fig. 9. The calculated basic sites were quite high and im-
pressive compared with the previously reported CO,-TPD for ZIF-8 al-
kali-metal cation exchanged faujasite type zeolites [20,37]. The in-
creased basicity is ascribed to the presence of amine basic groups in
TEA which adsorbed more CO,, an acidic molecule. Furthermore, ZIF-8
sample showed higher basicity compared to ZIF-L due to smaller par-
ticle size and high surface area and porosity as documented in Tables 2
and 3, respectively.
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This study presents an alternative approach to produce ZIF-L with
leaf-like structure and ZIF-8 cubic crystals in an aqueous solution at
ambient temperature. The Zn* 2/Hmim ratio of 8 was used with various
concentrations of TEA. It was concluded that TEA played an important
role for the transition of morphology from ZIF-L to ZIF-8. It was iden-
tified that TEA/total mole ratio of 0.0005 and 0.002 played an im-
portant and most promising role in controlling the crystal growth,
porosity, and CO, desorption of ZIF-L and ZIF-8. This phase transition
process is very important and vital advancement in ZIFs formation is
rarely reported. Furthermore, it controls the crystal growth and for-
mation as it deprotonates the organic ligand. More importantly, TEA
threshold loading of 2 mL which was responsible for the phase transi-
tion was determined. Furthermore, it was observed that BET surface
area and porosity of samples were increased by heat treatment at 200 °C
to remove the unreacted species in the pores and subsequently in-
creased the adsorption capacity. Also, ZIF-L and ZIF-8 particles showed
excellent thermal stability at around 260 and 600 °C, respectively.
Additionally, ZIF-L and ZIF-8 particles showed a significant amount of
basic sites on their surfaces due to the presence of TEA and thus im-
proving the adsorption capacity and selectivity towards CO,. Moreover,
Zn* 2/Hmim ratio, TEA loading, and temperature are the major para-
meters to improve this synthesis process and adsorption of CO,. Our
research will undoubtedly provide a better understanding of crystal
growth and morphology control of ZIFs during the synthesis process
and help to improve the basicity and adsorption capacity for CO,.
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