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ARTICLE INFO ABSTRACT

Incorporating thermally labile polymer additives into carbon membrane development is highly practical due to
its process simplicity and effective approach. In this study, different polymer composition of thermally labile
additives such as polyvinylpyrrolidone (PVP), microcrystalline cellulose (MCC) and nanocrystalline cellulose
(NCC) were introduced into the BTDA-TDI/MDI (P84-copolyimide) polymer solution. The P84-copolyimide
based carbon tubular membranes were fabricated using dip-coating method and characterized in terms of its
thermal stability, structural morphology and gas permeation properties. Initially, the NCC was introduced as a
pore performing agent in the carbon membrane fabrication for carbon dioxide (CO,) separation. Our finding
indicated that the use of NCC as pore performing agent significantly promoted an increment of pore structure
channel in carbon membrane. As a result, the high permeance as well as high selectivity was demonstrated in
this study. Pure gas permeation tests were performed using CO,, CHy4, O, and N, at room temperature. The
increment of both gas permeance and selectivity were observed in the NCC-containing carbon membranes
prepared with a composition of 7 wt%. The promising CO,/CHj, selectivity of 68.23 = 3.27, CO,/Nj selectivity
of 66.32 + 2.18 and O,/N, selectivity of 9.29 + 2.54 with respect to neat carbon membrane were presented.
Thus, upon further investigation, the potential of NCC as thermally labile additive in carbon membrane was
assured.
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1. Introduction et al., 2013). In addition, the high pore volume of carbon membrane
has provided higher selectivity and permeability as compared to poly-
meric membrane especially in the separation of similar gas molecules

size such as O,/N,, CO,/CH,4 and CO,/N, (Hunt et al., 2010; Jones and

Challenges for polymeric membranes such as swelling and plasti-
cization are no longer an issue for inorganic membranes. In general,

inorganic membranes have great resistance to harsh environments and
at high temperatures and pressures (Dalane et al., 2017). Among the
inorganic membranes, carbon membranes, zeolite membranes and
metallic membranes are the three candidates that have mostly been
studied (Rungta et al., 2015). Indeed, the superior performance pro-
duced by carbon membrane can be achieved by a proper selection of
membrane material which can withstand high thermal and mechanical
stability (George et al., 2016). Carbon membrane is resulted from car-
bonization of polymeric precursors. As compared to polymeric mem-
branes, the carbon membranes are immensely superior in terms of
thermal and chemical resistance, thus results in no contamination,
physical aging and plasticization as polymeric membrane (Adewole

Koros, 1994; Koresh and Soffer, 1986; Tanihara et al., 1999).

The developments of carbon membranes using polymer blend ma-
terials are among attractive strategies to improve their performances in
term of permeability and selectivity. A variety of polymer blends has
been explored in the recent years (Hosseini et al., 2014; Pirouzfar et al.,
2014; Tiptipakorn et al., 2007; Yong et al., 2016). For instance, Itta and
co-worker had successfully fabricated blending thermally stable
polymer polyphenylene oxide (PPO) and thermally labile polymer poly
vinylpyrrolidone (PVP) through a spin-coating technique (Itta et al.,
2011). The best performance for hydrogen permeability obtained with
PPO 15 PVP carbonized at 700 °C was 1121 Barrer (1
Barrer = 1 x 10—10 cm® (STP) cm/cm?s.cm Hg) and the values of
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selectivity for gas pairs such as Hy/N, and H,/CH4 were 163.9 and
160.9, respectively. The addition of thermally labile poly-
vinylpyrrolidone (PVP) created diffusion pathways and controlled se-
lectivity for the carbon membranes derived from PPO 10 PVP and PPO
15 PVP. Moreover, carbon membrane carbonized at 550 °C from
polyimide (PI) and polyvinylpyrrolidone (PVP) polymer blends ex-
hibited an enhanced O, gas permeability from 560 to 810 Barrer and a
reduced O,/N, selectivity of 10 ~7 (Kim et al., 2005). Previous study has
reported carbon membrane derived from PBI (poly-2,2’-(m-phenylene)-
5,5’-bibenzimidazole) blends with PI (BTDA-TDI/MDI exhibited an
open cell structure and a reduced thickness which led to a 50% higher
pure water permeability and a larger pore diameter (Xing et al., 2013).
Greater values of separation efficiency were achieved in higher than
90 wt% polyimide contents in these blends. In 2014, the carbon
membranes fabricated from Kapton/PBI blends offered an incredible
selectivity for majority of the gas pairs including CO,/CH,4 (Pirouzfar
et al., 2014).

By assuming the natural abundance of cellulose, bio inert beha-
viour, low weight and high strength and stiffness, the introduction of
modification of this cellulose are needed for blending material appli-
cations. Recently, cellulose has been used in various application such
nanocomposite material (Mohamed et al., 2015a, 2016a), membrane
(Mohamed et al., 2015b), and bio-templated nanoreactor (Mohamed
et al.,, 2016b, 2017c). Based on the author's knowledge, the study on
microcrystalline cellulose (MCC) with PI has not yet been explored in
the fabrication of carbon membrane. Rhim et al. have studied the
thermophysical properties of carbon materials derived from MCC under
vacuum and nitrogen atmospheres. The results indicated that both en-
vironment (vacuum and nitrogen) would increase the diffusivity and
thermal conductivity of the material. Moreover, it is found that there
are four regions corresponding to the stages of microstructural evolu-
tion during carbonization process (Rhim et al., 2010). Aside to MCC,
the research on nanocrystalline cellulose (NCC) as one of the promising
biodegradable material in the nanotechnology industry has been ex-
plored. Typically, NCC is obtained by acid hydrolysis of cellulose mi-
crofibrils by using sulphuric acid at a specific concentration for a de-
sired amount time and temperature (Mohamed et al., 2017a, 2017b).

Based on literature, Bai et al. had prepared poly(vinylidene fluoride)
(PVDF) composite membranes blended with (NCC) for ultrafiltration by
a Loeb-Sourirajan (L-S) phase inversion process (Bai et al., 2012). The
obtained membrane possessed an asymmetric structure which indicated
the sponge-like dense layer and finger-like microporous supportive
layer. They have proven that the mechanical property of resultant
membrane was increased with addition of NCC, thus the degree of
crystallinity was also increased to 52.1%. Another study has been done
by Kaboorani et al. by adding NCC to polyvinyl acetate (PVA) at dif-
ferent loadings. This study showed that NCC could improve bonding
strength of PVA in all conditions. In addition, thermal stability of PVA
was significantly improved and structural studies revealed that varia-
tions in shear strength could be related to the quality of NCC dispersion
in the PVA matrix (Kaboorani et al., 2012). The main interest of uti-
lizing NCC in this study is due to their rod-like nanostructure and low
decomposition temperature. The nanostructure of NCC would ease to be
slit within polymer chain as compared to microstructure additive.
Furthermore, NCC can be used as pore forming agent due to their
premature decomposition would create channels to assist gas permea-
tion.

The research on polymer blends has grown rapidly in the carbon
membrane fabrication due to the formation of porous structure since
the thermally labile polymer is completely decomposed at a lower
temperature than the thermally stable polymer. As one of the inter-
esting results on the addition of a thermally labile polymer, carbon
membranes derived from the polymer blends showed a high perme-
ability and selectivity even through microporous carbon membrane
structures (Lee et al., 2007). Therefore, this study would focus on the
development of carbon membrane by blending with three different
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thermally labile additives (NCC, MCC, and PVP) with polyimide parti-
cularly for CO, gas permeation. The results on the physicochemical
properties and gas permeation performance of the resultant carbon
membranes were compared and discussed.

2. Experimental section
2.1. Materials

Polyimide BTDA-TDI/MDI (P-84), polyvinylpyrolidone (PVP) and
microcrystalline cellulose (MCC) were procured from Sigma Aldrich. N-
methyl-2-pyrrolidone (NMP) was purchased from Merck (Germany). All
chemicals were directly used without further purification.
Nanocrystalline cellulose (NCC) was synthesized, in-house according to
experimental procedure as reported in previous studies (Mohamed
et al.,, 2015c). Porous tubular ceramic support (TiO,) with 8 cm in
length, 3 mm thickness and average pore size of 0.2 pm (porosity of
40-50%) was purchased from Shanghai Gongtao Ceramics Co. Ltd.

2.2. Carbon membrane preparation

Polymer solution consisting of 15% of P-84 (relative to total wt.)
and NMP was prepared and stirred under constant stirring condition at
80 °C. A predetermined amount of additives (Table 1) were introduced
into the solution and were continuously stirred to obtain homogenous
solution. The solution was sonicated for 12 h in order to remove any
trapped bubbles. The tubular support was then dip-coated for 45 min.
Afterward, the resultant membranes were immersed in methanol for
2 h, followed by placing it inside the oven at 100 °C for 24 h in order to
remove the solvent.

Carbon membranes were prepared by carbonization process of the
supported polymeric membranes. For carbonization process, the sup-
ported polymeric membranes were heat treated in Carbolite horizontal
tubular furnace at 800°C under nitrogen gas flow (200 ml/min). The
detailed experimental procedures were conducted based on our pre-
vious studies (Sazali et al., 2017). Flat sheet carbon membranes
(without substrate) were also prepared using similar procedure for
characterization purposes.

2.3. Membrane characterization

Thermogravimetric analysis (TGA) was used to characterize thermal
stability of polymeric membranes. TGA records the weight changes of
the sample when the sample is heated up continuously. In this study,
the sample was heated from room temperature to 900 °C at the heating
rate of 10 °C min ™' with nitrogen flow rate of 20 mL min~'. Scanning
electron microscopy was used to observe the membrane structure and
morphology. Prior to the observation, the samples were coated with
gold by employing a scanning electron microscope (TM3000, Hitachi)
with a potential of 10 kV. Fourier Transform Infrared Spectroscopy
(FTIR), Single Reflection Diamond for the Spectrum Two)
(PerkinElmer, L1600107) was used to distinguish the actuality of the
functional groups in a membrane. The presence of any element, com-
pound or phase of the prepared carbon membranes were examined on
X'Pert PRO X-ray different fractometer (XRD) from PANalytical with the
diffraction angle from 26 from 10° to 50°. Ni-filtered CuKa radiation

Table 1
Dope formulation for the preparation of carbon membrane.

Sample Composition (wt.%)

P-84 Polyimide Additive
PI/NCC 15 7
PI/MCC 15 7
PI/PVP 15 9
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with a wavelength of A = 1.54 A was applied in the experiments. The
interplanar distance (d-spacing) of the carbon membranes was calcu-
lated using Bragg equation.

2.4. Pure gas permeation measurements

The carbon tubular membranes were tested in gas permeation
system as described in our previous study (Sazali et al., 2015a, 2015b).
The carbon tubular membrane was placed inside a tubular stainless-
steel module of 14 cm in length. To avoid any leakage on the module,
the membrane was fitted with rubber O-rings. Pure gas CH, (0.380 nm),
N, (0.364 nm), O, (0.346 nm) and CO, (0.330 nm) and were fed se-
parately, in that order, into the module at a trans-membrane pressure of
8 bars. The permeance, P/l (GPU) and selectivity, a of the membranes
were calculated using equations as described in our previous studies
(Sazali et al., 2017).

3. Results and discussion
3.1. Thermogravimetric analysis (TGA)

The thermogravimetric curves of NCC, PI, and PI/NCC were dis-
played in Fig. 1. On the account of differences in chemical constitution,
all polymers were decomposed at different temperature. As shown in
Fig. 1, NCC was stable up to 170 °C with a slight weight loss at around
100 to 150 °C due to evaporation of moisture content and other volatile
components in the sample (Sun et al., 2016). It was observed that the
NCC underwent thermal degradation (from 200 to 400 °C) earlier than
the other membrane samples due to the decomposition of sulphate
groups. The presence of sulphate groups which were introduced onto
the NCC particles during hydrolysis process might also affect the
thermal stability of NCC due to the dehydration reaction involving the
sulphate groups (Rubentheren et al., 2016). PI-copolyimide curve
shows a single-step weight loss from 530 to 630 °C indicated an ex-
cellent thermal stability of polymer with decomposition temperature at
535.5 °C. The approximately 4% weight loss of the pure PI at 100 °C
was due to the evaporation of moisture in the sample. Two stages of
weight loss were observed in the PI/NCC curve. The first weight loss
around 280-375 °C was related to the thermal decomposition of NCC
while the second decomposition from 375 to 565 °C was attributed to
the thermal decomposition of PI.

The TGA profiles for MCC, PI, and PI/MCC are graphically pre-
sented in Fig. 2. Analysis of TGA curve for MCC showed that the MCC
was stable up to 337 °C. The weight loss of MCC between 291 °C and
337 °C was attributed to the decomposition of micro cellulose particles
and the evolution of non-combustible gases such as carbon dioxide,
carbon monoxide, formic acid and acetic acid (Das et al., 2010). Similar
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Fig. 1. TGA profile for PI, NCC and polymer blends of PI/NCC.
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Fig. 2. TGA profile for PI, MCC and polymer blends of PI/MCC.

to the PI/NCC, two weight losses were observed in the curve of PI/MCC
blending. The first weight loss observed at 360-450 °C that was related
to the thermal decomposition of MCC while the second loss from 450 to
600 °C was attributed to the thermal decomposition of PI

Fig. 3 illustrates the TGA profiles of PVP, PI, and PI/PVP at 9 wt%.
PVP started to decompose at 380 °C and completely at 450 °C (Mondal
and Mandal, 2014; Salleh and Ismail, 2011). There are two distinct
weight losses could be observed in polymer blends of PI/PVP which was
the first weight loss observed at 420-480 °C due to the decomposition
of PVP while the second weight loss was observed between 480 and
620 °C possibly attributed to the decomposition of PI.

PI had been reported to be a thermosetting polymer (Iredale et al.,
2017) while NCC, MCC, and PVP were thermally labile polymer (Lee
et al., 2007). Amongst these samples, the blending of the PI/NCC to be
the earliest to decompose (in the range between 280 and 375 °C) due to
the presence of sulphate groups that forces the blending polymer to
decompose at much lower temperature as compared to the others
(Mohamed et al., 2015c). Meanwhile, the PI/MCC started to decompose
at temperature ranging from 360 to 450 °C and followed by decom-
position of PI/PVP at temperature between 420 and 480 °C. The dif-
ferences of thermal properties of the two polymers showed significant
effects on the thermal stability of the final membrane.

3.2. Scanning electron microscopy analysis

Fig. 4 shows the micrographs of the PI/NCC precursor and
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Fig. 3. TGA profile for PI, PVP and polymer blends of PI/PVP.
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Fig. 4. Surface micrographs for (a) PI/NCC polymeric membrane, (b) PI/NCC-carbon
membrane.

carbonized membranes fabricated at different blending compositions. It
was observed that the long (needle-shaped), slender rod of NCC parti-
cles appeared inside the precursor membrane (Fig. 4 (a)). The mor-
phology was in agreement with the Kaboorani et al. where a rod-like of
NCCs with 150-250 nm was observed (Kaboorani et al., 2012). It can be
observed that the rods-like NCCs structures were shorter but still con-
tained both microcrystals and aggregated microcrystals. As mentioned
by Mohamed et al., who found that the NCC structure was in uniform
nanorod or needle-like shapes. The size found to be 5.78 + 2.14 nm
wide and 121.42 + 32.51 nm long. After undergoing the carbonization
process, the rods or needle-like structures were collapsed. These results
showed that the PI/NCC membrane with dense structure was obtained.

Fig. 5(a) shows the surface micrograph for PI/MCC polymeric
membrane while Fig. 5(b) shows PI/MCC carbon membrane surface
micrograph. In order to verify the presence of MCC, surface structure of
the corresponding membranes was evaluated. The MCC particles uni-
formly appeared in the polymer matrix without any preferential or-
ientation. No significant agglomeration was observed. Remarkably, it
was noted that the role of hydrolysis reaction on the available MCC
polymer could alter the polarity of cellulose. The current finding of
morphological properties of cellulose were significantly consistent with
previous study by Elsakhawy and Hassan (2007) due to the occurrence
of fibers shortening and formation of rod-shaped MCC (Elsakhawy and
Hassan, 2007). For heat-treated microcrystalline cellulose with PI, the
MCC particles do not appear in the membranes, indicating that all
membranes were fully carbonized. Furthermore, there was no influence
on the final morphologies of the PI/MCC carbon membrane due to
depolymerization that leads to the formation of isolated sp® carbon

Fig. 5. Surface micrographs of (a) PI/MCC polymeric membrane and (b) PI/MCC- carbon
membrane.
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Fig. 6. Micrographs of (a) PI/PVP polymeric membrane and (b) PI/PVP-carbon mem-
brane.

atoms; the same species that is responsible for the increase in overall
structure. This effect can be ascribed to the conversion of disordered to
ordered sp? carbon crystallites that increases crystalline thickness, L,
(Hu et al., 2016). In summary, SEM images showed that the addition of
different MCC additives inside polymer matrix did not have significant
influence to the final carbon structure.

Fig. 6 shows the cross section and outer surface micrographs of P1/
PVP precursor and carbonized membranes fabricated at PI/PVP. Based
on Fig. 6(a), some closed pores on the outer surface of the membrane
were observed that indicated the PI/PVP precursor membrane was
filled with microporous structure. This structure was generated because
of the rearrangement and movement of the polymer structure. As illu-
strated in Fig. 6(b), the carbonized membrane showed a reduction in
micropores structure which resulted in defect-free and smooth surfaces.
The pore distribution was non-homogeneous with wide openings and a
few constrictions. This phenomenon signified the occurrence of struc-
tural rearrangement of the precursor membrane after the carbonization
process (Kim et al., 2005).

3.3. Fourier transform infrared spectroscopy (FTIR) analysis

Fig. 7 shows the FTIR spectra of PI/NCC samples. It was observed
that the lower peak of 896.73 cm ™! was associated with the cellulosic
glycosidic linkages that consisted of C1-H and O-H bending (H.P.S
et al., 2016). The band at 1052.94 cm ~ ! indicated C-O-C pyranose ring
stretching vibration. For PI/NCC carbon membrane, there was a pre-
sence of only small peak which indicated the sample was fully con-
verted in carbon form. The hemicellulose characteristic was determined
at 1247.71 cm™! that referred to the acyl-oxygen CO-OR stretching
vibration in hemicelluloses PI/NCC polymeric membrane (Mohamed
et al., 2015c). However, these hemicelluloses could be removed by al-
kaline treatment. The C=C stretching was observed at peak
1504.20 cm ™! where it presented plane symmetrical stretching of the
aromatic rings that appeared in lignin of the PI/NCC polymeric mem-
brane. While at peak of 1594.84 cm ™!, C=C unsaturated linkages
presented due to the existence of aromatic rings in lignin for PI/NCC
polymeric membrane (Mohamed et al., 2015c).

The FTIR spectra of the PI/MCC samples are shown in Fig. 8. From
the figure, band 1120.43 cm ™! of PI/MCC polymeric membrane can be
clearly seen. This phenomenon indicated -C—O—C—stretch of the -
1,4-glycosidic linkage in cellulose which known as most prominent in
MCC. At high wave number of 3000.69-3600.44 cm™?, the presence
peak in PI/MCC polymeric membrane can be attributed to the -C-O-
stretching of the carboxyl and acetyl groups in hemicelluloses (Hu
et al., 2016). Furthermore, small peak at 1440.56 cm™! and
1735.62 cm ™! appeared in PI/MCC polymeric samples which signified
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Fig. 7.FTIR analysis of PI/NCC-based polymeric and
carbon membrane prepared using different dope formula-
tion.
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the asymmetric CH, bending and wagging (Mohamed et al., 2017).
Fig. 9 shows the FTIR spectra of PI/PVP samples. The vibration band
at 1650.76 cm ™! corresponded to C=0 stretching of PVP polymer in-
side the PI membrane while C-H asymmetric stretching of CH, ab-
sorption band was located at 2987.195 cm ™! (Kim et al., 2004). The
bands at 931.44 cm ™!, 1249.64 cm ™! and 1427.06 cm ™! were attrib-
uted to C-C stretching vibration, C-N stretching vibration and C-H
bending vibration of PVP blending, respectively. The broad absorption
band centered at 3473.16 cm ~ ! was attributed to O-H stretching mode
of H,O absorbed on the surface of the product. The most striking evi-
dence from FTIR spectrum of the PVP stabilized with PI was the broad
peak between 1250 and 650 cm™' which corresponded to C-N
stretching motion and C=0 stretching motion of monomer for PVP,
respectively. The narrow absorption peaks centered occurred at
1409.70 cm ™! and 2875.34 cm ™~ ! in Fig. 9 which was attributed to the
C-H bonding due to the presence of PVP. This scenario might be due to

1000 500

the formation of coordinated bond between nitrogen atoms of the PVP.

Based on Figs. 7-9, it can be concluded that PI/NCC, PI/MCC and
PI/PVP-based carbon membrane showed reduction in peaks as the
samples underwent heat treatment process. This phenomenon was due
to the released of the heteroatoms during the carbonization process
where it vanished the presence of the functional group in their original
state. The elimination of N, O and H elements from the PI/NCC, PI/MCC
and PI/PVP resulted in the rearrangement of carbon membrane mor-
phological structure.

3.4. Wide-angle x-ray diffraction patterns

The XRD pattern of the polymeric and carbon membrane was illu-
strated in Fig. 10. The XRD spectra were stacked accordingly in order to
show clear x-ray diffraction results without affecting the diffraction
angle. XRD was employed to confirm the amorphous nature of the
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carbon structure. The average d-spacing between the individual layers
of the carbon were calculated using the Bragg's Law. These d-spacing
values were determined at the maximum of the broad peaks and only
reflected the average space between the centers of the chain segments
in the polymer matrix (Wang et al., 2015; Zhang et al., 2014).

The d-spacing values of the polymeric membrane prepared from PI/
PVP, PI/MCC and PI/NCC were 0.423, 0.417, and 0.403 nm respec-
tively. Whereas, the d-spacing values of the carbon membrane prepared
from PI/PVP, PI/MCC and PI/NCC were 0.376, 0.369, and 0.356 nm,

respectively. It has been suggested that decreases in d-spacing value,
would results in narrower pore sizes. The small reduction in the average
d-spacing of the carbon membranes resulted in a very strong molecular
sieving effect (Salinas et al., 2017; Briceno et al., 2012). It was revealed
that the d-spacing value was decreased after the carbonization process.
The microstructure of the polymeric was slightly different from that of
carbon membranes due to the similar layer distance that could be
considered as a divisional path for gas molecules. All samples possessed
a broad peak and amorphous structures (Su and Lua, 2007). The

Fig. 10. XRD spectra of Pl-based polymeric and carbon
membrane prepared using different dope formulating.
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polymeric and carbon membrane possessed differences in d-spacing
value which referred to the space dimension for a small gas molecule to
penetrate through membrane and it was very helpful information to
determine the gas permeability and selectivity.

The carbon membrane from blended PI/NCC provided a low d-
spacing value of 0.356 nm among other carbon membrane as illustrated
in Fig. 10. From the graph, the presented cellulose crystal diffraction
pattern peaks were observed at 20 = 24.99° and 20 = 22.21°. More-
over, after experiencing different steps of chemical pretreatment using
NaOH and NaClO, and followed by acid hydrolysis process, the crys-
tallinity index of the samples was increased. This phenomenon was due
to the lignin removal that occurred during NaOH and NaClO, pre-
treatment (Mohamed et al., 2016a). Furthermore, the appearance of a
weak diffraction peak could be observed which signified the removal of
most of the lignin and hemicelluloses inside the membrane. In addition,
the PI/MCC carbon membrane showed decreasing crystallinity degree.
This statement might be explained by a reduction of the intra- and in-
termolecular carbon bonds during the heat treatment process (Shi et al.,
2015).

3.5. Gas permeation measurements

The gas permeation performances of the polymeric and carbon
membrane with different polymer blends are presented in Tables 2 and
3, respectively. From the gas permeation test, it was revealed that the
addition of NCC, MCC and PVP to the precursor as an additive produced
better gas permeation performance as compared to pure PI. The current
finding demonstrated that the highest gas permeance and selectivity
was obtained for the PI/NCC polymeric membrane. For all tested
membranes, the gas permeance of the selected gases were in the order
of CO, > O, > CH4 > N,.

As tabulated in Table 3, the PI/NCC carbon membrane showed the
highest selectivity among the other carbon membranes with resulting
values of CO,/CH,4 of 68.23 + 3.27, CO,/N, of 66.32 =+ 2.18, and
05/N5 of 9.29 * 2.54. As mentioned in the previous studies, the
presences of pore performing agent resulted in the formation of porous
structure (Siddique et al., 2014; Wu et al., 2016). This scenario was
attributed to additives that could be easily decomposed at lower tem-
perature as compared to Pl-copolyimide. Consequently, by varying
different types of additives might lead to the different pore size, pore
volume and diffusional pathway in carbon membranes. Carbon mem-
brane derived from PI/NCC showed a higher gas permeance due to an
increased compactness of microporous structures as compared to those
prepared from pure PI, PI/MCC and PI/PVP. According to Kim et al.,
the carbon membrane that prepared with the addition of additives had
promoted the enhancement of the diffusion pathway for the gas species
in the domain of the thermally liable polymer (Kim et al., 2005).

All selectivity of the gas pair increased dramatically from the
polymeric membrane to carbon membrane. The increment of 28, 32
and 6 times was observed for CO,/CH,4, CO5/N, and O,/N, selectivity,
respectively. The carbon membrane derived from PI/PVP showed the
lowest gas permeance and selectivity among the PI/NCC and PI/MCC.
This phenomenon was mainly due to the difficulties for the small gases

Table 2
Gas permeation performance of polymeric membranes.
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molecules to pass through the tiny channels. The permeation results of
all the carbon membranes showed that the gas transport was controlled
by the molecular sieving mechanism.

It is concluded that the addition of the thermally labile polymer can
control the overall pore structure of carbon membranes by fixing car-
bonization temperatures as well as PI composition. The addition of
additives such as cellulose makes the carbon membranes retard the
transport of easily condensable gases (e.g. CO,). This phenomenon can
be exploited for enhancing gas separation efficiency (Lie and Hagg,
2005). Apart from that, the carbon membrane containing cellulose has
demonstrated a promising gas permeation performance for the gas pairs
of Oy/N, and CO,/CH,4 (Lie and Hiagg, 2005). In this study, carbon
membrane derived from pure PI was less permeable as compared to
carbon membrane derived from Pl/additives. These results were sup-
ported by Kim et al., who reported that the gas permeation results
showed that the ideal O,/N, separation factor of the membranes was
improved by the presence of the additives (Kim et al., 2004). During the
heat treatment process, the membrane tended to create cracks due to
the presence of additives. In this study, it was believed that the NCC
which was carbon content of aromatic structures indicated that the
molecules start to stride in their way out and form micropores structure
at its thermal degradation temperature same as mention by Xie et al.
(Xie et al., 2009). Furthermore, it was proven that the tubular sup-
ported carbon membrane derived from PI/NCC membrane has great
potential to compete with other available carbon membrane for gas
separation application.

4. Conclusion

The influence of three types of thermally labile additives on the
preparation of the carbon membrane was investigated. The presence of
additives (NCC, MCC, and PVP) resulted in decreasing thermal stability
of polymer blends. Hence, it might be suggested that the presence of
additives can be utilized to fabricate carbon membrane with desirable
morphological structure. Moreover, the presence of the additives in
carbon membrane provided superior pore structural properties due to
the decomposition prior to carbonization process. Among the studied
samples, NCC as an additive provided optimum physicochemical
properties owing to their nano-crystalline structure. Other than that,
the permeances of all gases increased with the addition of additives.
The carbon tubular membrane from PI/NCC showed the best compo-
sition with CO,/CH,4, CO2/N, and O,/N, selectivity of 68.23 + 3.27,
66.32 + 2.18, and 9.29 = 2.54, respectively. It was concluded that
the utilizing of NCC as thermally labile additive showed positive re-
marks in carbon membrane development. These findings would be a
good initiating point in order to encourage the study of using recycle
resources such as NCC as a polymeric additive material.
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Table 3
Gas permeation performance of carbon membranes.
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