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Abstract  

 

 

 

 

It is a generally held view that, in tropical countries, traditional house is more 

sympathetic to the prevailing climate and provide comfortable interiors. This study 

analyses the above hypothesis for Tropical House in ‘Taman Tropika’ (TTH) 

Universiti Teknologi Malaysia (UTM), which was designed emplacing tropical 

design strategies.This house initiated good ventilation, which indicated indoor 

temperature similar with the outdoor condition. However, the architectural design 

solutions do not permit good passive cooling for thermal comfort for whole day. It is 

illustrated by the indoor temperature above the neutral temperature experienced 

during the day time.  In this research, new tropical building principle has been 

suggested by adopting Taman Tropika house elements as alternative techniques for 

achieving passive cooling. The thermal comfort study in this research involved the 

use of field measurement and computer simulation using ECOTECT software.  

Validation of ECOTECT is done by comparing the computer simulation result with 

the field measurement. The results of the new tropical building principles illustrated 

that the indoor air temperature reduced by 3.5 
o
C and below the neutral temperature 

for comfort. The other important factor is that it can continuously maintain the 

comfortable condition during full day regardless of the available outside climate 

condition. This effect is significant toward improving the comfortable indoor 

environment of the tropical house. 

Key words: Taman Tropika House, comfortable indoor environment, new 

tropical building design   
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Abstrak 

 

 

 

 

Secara umumnya telah wujud satu pandangan bahawa, di negara-negara 

tropika, rumah traditional adalah lebih bersimpati terhadap cuaca setempat serta 

menyediakan ruang dalaman yang selesa. Kajian ini menganalisa hipotesis diatas 

bagi Rumah Tropika di Taman Tropika (TTH) Universiti Teknologi Malaysia 

(UTM), yang dibina berdasarkan strategi rekabentuk tropika. Rumah ini menerapkan 

ciri-ciri pengudaraan yang bagus, yang mana telah menunjukkan suhu dalaman 

adalah sama dengan keadaan diluar. Namun, kaedah rekabentuk senibinanya tidak 

membenarkan penyejukan pasif bagi keselesaan terma pada siang hari. Ini telah 

ditunjukkan oleh suhu dalamannya yang melebihi paras suhu neutral yang dilalui 

sepanjang hari. Dalam kajian ini, prinsip rekabentuk tropika yang baru telah di 

cadangkan dengan mengambil kira elemen-elemen rumah tropika sebagai teknik 

alternatif untuk mencapai penyejukan pasif. Kajian keselesaan terma dalam kajian ini 

melibatkan pengukuran di lapangan dan simulasi berkomputer menggunakan perisian 

ECOTECT. Keputusan bagi prinsip bangunan tropika yang baru telah menunjukkan 

yang suhu udara dalaman dikurangkan sehingga 3.5°C dan kurang daripada suhu 

neutral untuk keselesaan. Faktor lain yang penting adalah ia boleh mengekalkan 

keadaan keselesaan secara berterusan pada hari penuh dengan tidak mengambilkira 

wujudnya keadaan iklim diluar. Kesan kajian adalah penting untuk memperbaiki 

keselesaan persekitaran dalaman di sebuah rumah tropika.  

 

 Kata kunci: Rumah Taman Tropika, keselesaan persekitaran dalaman, 

rekebentuk bangunan tropika yang baru 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Research Background 

 

 

The Tropics regarded as a region where the human evolved and comfort has 

often been taken for granted, built environments are increasingly becoming issues of 

public concern. The tropical outdoor environment has been regarded as important as 

indoors in the life of the populace and which is remarkably evident in the vernacular 

architecture of the region. However, today many cities in the region experienced 

rapid urban growth often without much reference to the evolving urban environment. 

This tendency has put increased demand on the comfort requirements in the design of 

buildings. Comfortable out door spaces have a significant bearing on the comfort 

perception of the indoor ambience. The demand for comfort conditions in buildings 

are significantly increased as a result of exposure to uncomfortable outdoors 

(Ahmed, 2003). In the context of Malaysia, overheated outdoor environment of the 

city has contributed to a growing preference for a lower comfort temperature indoors. 

This in turn has put an immense pressure on the energy demand in the cities. 

 

 

Local climate greatly affects the indoor thermal environment in buildings. In 

tropical climates, buildings are overheated during the day due to solar heat gain 

through the building envelope and solar penetration through windows (Rajapaksha, 

2003). From a thermal comfort point of view it requires lowering of indoor daytime 

temperature below the outdoor temperature using building elements and by passive 

or active systems. Techniques for such thermal modification have been widely 

addressed (Givoni, 1994). From a thermal comfort point of view, climatic and 

physical factors other than air temperature are important. In outdoor conditions the 

radiant exchange of the human body with the environment is of special importance 
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due to exposure to solar radiation, the cold sky-vault, and warm and cool urban 

surfaces. The other factors influencing thermal comfort, air movements and humidity 

vary much more outdoors than indoors. There are, however, few studies has assessed 

the thermal comfort by calculation of the physiologically equivalent temperature 

(PET) (Johansson, 2006). A comfort index is determined by the environmental 

parameters that influencing thermal comfort: temperature, radiation, humidity and 

the wind speed.  

 

 

The rational approach to thermal comfort seeks to explain the response of 

people to the thermal environment in terms of the physics and physiology of heat 

transfer. An ‘index’ of thermal comfort is developed which expresses the thermal 

state of the human body and in terms of the thermal environment (Johansson, 2006). 

Although the indices were based on the responses of subjects in constant-temperature 

conditions in climate chambers, it was hoped that such an index would express the 

response of people in variable conditions in daily life. In fact problems arise when 

rational indices are used to predict the thermal comfort of subjects from field 

surveys. Firstly the rational indices require knowledge of clothing insulation and 

metabolic rate which are difficult to estimate. Secondly they are no better than 

simpler indices at predicting the comfort vote (Humphreys and Nicol 2002) and the 

range of conditions which subjects find comfortable in field surveys is much wider 

than the rational indices predict. The reason for this has been the subject of 

considerable speculation and research, most of which have concentrated on the 

context in which field surveys are conducted. Nicol and Humphreys (1973) first 

suggested that this effect could be the result of a feedback between the comfort of the 

subjects and their behaviour and that they ‘adapted’ to the climatic conditions in 

which the field study was conducted. 

 

 

Tropical House in Taman Tropika UTM was designed emplacing tropical 

design strategies of avoiding direct penetration of sunlight and applying natural 

ventilation.  Without trapped hot air, the house experienced good indoor climate for 

thermal comfort (Ahmad 2001).  Many visitors found the building provides good 

shelter during hot days, suggesting that indoor climate would be lower than the 

outdoor climate.  However there is no evidence to justify the performance of this 
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building in term of its actual indoor climate and comfort condition that can be 

compared to establish thermal comfort condition as suggested by many researchers 

such as Md Rajeh (1989), Abdul Malik (1992) and Adnan (1997).  The actual 

performance through this research can provide further improvements and directs in 

the advancement of knowledge and design appropriate within tropical climate. It is 

hypotheses that performance of Tropical House is similar or lower than outdoor 

environmental condition.  This research will determine the justification of the 

hypothesis.  The actual performance of the house can then provide new concepts, 

principles of passive design and help in the advancement of knowledge and design 

that is appropriate for tropical climate. 

 

 

  

  

 

1.2 The Problem Statement 

 

 

 Hot humid tropical conditions in Malaysia affect the high temperature, and 

low air flow which affect on the comfortable indoor environment. Residential 

buildings are subject to significant cooling requirements due to high intensity of heat 

transient from building envelope. Tropical building design principle can significantly 

decrease air temperature in the rooms and large energy savings can be achieved. 

  

 

 An application of tropical building principle design reduces internal heat 

gain, high temperature in the room and make comfortable indoor environment. In hot 

humid climate, the problem emphasized by the fact that it is important to understand 

the solar radiation, temperature and wind profile outside buildings in order to achieve 

indoor thermal comfort. 

 

 

 

1.3 Research Hypothesis 

 

 

 The hypothesis of this research is that a new tropical building roof, wall 

opening and landscape design principle will achieve the following: 

- Decrease indoor air temperature compared with outdoor air temperature.    
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- Provide minimum temperature at thermal comfort temperature requirement.   

- Determine the minimum temperature to predict the effectiveness of new 

tropical building design principle. 

 

 

 The term “new tropical building design principle” refers to best performance 

of building design principle which will decrease maximum indoor air temperature to 

obtain comfortable environment.  

 

 

 

1.4 Research Questions 

 

 

The following questions will be addressed in this study: 

Q1. Does the use of tropical building design principle are effective in Taman Tropika 

House? 

Q2. What is the influence of tropical design principles in Taman Tropika House with 

comfortable indoor environment? 

Q3. What is the new tropical building design principle model to obtain maximum 

comfortable indoor environment under tropical climate condition in Malaysia? 

Q4. Does the effective new tropical design principle at (Q3) achieve comfortable 

indoor environment in residential building? 

Q5. What is the limitation of the new tropical design principle model to increase 

comfortable indoor environment in the residential building? 

 

 

 

1.5 Research Objective  

 

 

 The main objective of this study is to assess and compare the impact of 

tropical building design principle for comfortable indoor environment in Malaysia 

residential building. Other specific objectives of the study are as follows: 

- To identify and establish the effectiveness of existing tropical house design 

against actual outdoor condition 

- To develop new tropical building design principles base on theoretical and 

actual building performance with scientific evidence 
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1.6 Scope and Limitations 

 

 

The scope of this study is to evaluate the effectiveness of new tropical 

building design principle in Malaysia’s residential building. The main focus is to 

determine the design parameters to achieve comfortable indoor environment. A 

single space room of prototype Malaysia traditional timber house (Taman Tropika 

UTM House) was selected for the experiment.      

 

  

 This study is entirely carried out using field measurement and Ecotect 

computer simulation program and thus bears the limitations of the simulation tool 

used.  In the following chapter, a review on common research methods used by 

previous researches and justification for the selection of the present tool is discussed.   

 

 

 

1.7 Importance of the Research 

 

 

 The out come of the study is expected to show that, the effectiveness of the 

new tropical building design principle will decrease air temperature for comfortable 

indoor environment.  The study also expect to suggest that appropriate design 

decisions on tropical design principle can significantly reduce the heat gain in 

residential buildings in Malaysia.  Apart from reduced air temperature, the use of 

new design principle has benefit on various other aspects as shown in figure 1.1  The 

most important aspect is the thermal environment and energy efficiency.   Hence, 

findings of this study will enable and provide the building designer with wider range 

of options in selecting appropriate tropical building design strategy for achieving the 

balance between thermal environment and energy consumption.   
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Figure 1.1 User requirements for new tropical building design principle  

 

 

 

1.8 Organization of report  

 

 

 The report is divided into five chapters as summarized bellow. 

 Chapter one introduces the main issue of this research.  This chapter 

discusses the research background, problem statements, hypothesis of the study, 

research questions, objective, scope and limitations of the study, importance of the 

research and the overall research structure.  

  

 

 Chapter two presents the literature review of tropical building design 

principle, indoor environment and thermal environment simulation. This chapter 

introduces an overview of tropical building design principle creating a comfortable 

indoor under Malaysia climate condition.  All aspects of tropical design are discussed 

in this chapter with the intention of giving a review of roof and wall opening. The 

study also covers the concepts and work related to comfortable indoor environment 

that affect thermal environment especially comfort neutral temperature that have 

been carried out by other researchers.  Finally, an appropriate computer simulation 

program is determined to analyse the performance of tropical design principles in 

relation to various design parameters.  

 

 

Chapter three discusses the research design and the methodology 

implemented in tropical building design principle.  The justification of selecting the 

Requirements on New 

Tropical Principle Design 

Thermal Env. 
- Reduce Temperature 

- Reduce heat gains 

- High thermal environment 

Reduce energy 

consumption 

-Reduce cooling load 

-Reduce total electricity 

demand 

Low cost 
-Reduce mechanical ventilation 

-Reduce additional appliances 



 

 

7

methodology for this study is also elaborated.  The investigation conducted in this 

research was explained, including the field measurement and simulation method.  

The field experiment and simulation design method are discussed separately.  

Further, development of the base model, procedures, assumptions, limitations, 

condition and the overall setting-up of the field study and computer simulation are 

described.   The reliability and validity of the methods, equipments and simulation 

procedures are also discussed. The estimation of the air temperature value for the 

research is also presented. Finally, the data analysis criterions are discussed, which is 

used to analyze the results of the experiment.   Thorough analyses of the raw data 

collected from each type of study are discussed in the following chapter 

 

 

 Chapter four presents the results and analysis of field study, validation, 

configuration of tropical building design principle and performance of new tropical 

building design model. The principle findings of the field experiment and simulation 

are also summarized.  The results of the research are analyzed as follows: 

o Assess the field study and the validation of computer simulation of tropical 

building design principle in Taman Tropika House UTM  

o Assess the configuration of tropical building design principle to achieve the 

minimum indoor air temperature. 

o Assess the performance of new tropical building design principle under 

Malaysia climate condition.  

 

 

 

Chapter five concludes the study by summarizing the major findings of the 

experiment.  It also outlines the suggestions for future research on tropical building 

design principle especially on the area of limitations of this study. 

    

 

 

 

 

 

 

 

 

 



 

 

 

 

 

CHAPTER 2 

 

 

 

 

LITERATURE REVIEW 

 

 

 

 

2.2 Tropical Building Design Principles    

 

 

Generally the tropical zone is defined as the area of land and water between 

the Tropic of Cancer (latitude 23.5
o
 N) and the Tropic of Capricorn (latitude 23.5

o
 S). 

Occupying approximately forty percent of the land surface of the earth, the tropics 

are the home to almost half of the world’s population. There are variations in climate 

within the tropic. However ninety percent of the tropical zones embody hot and 

humid climatic regions, whether permanent or seasonal. The remaining ten percent is 

desert like, and characterized as hot and dry climate (Baish, 1987). Local conditions 

may also differ substantially from the prevailing climate of a region, depending on 

the topography, the altitude and the surroundings, which may be either natural or 

built by humans. The presence of conditions like cold air pools, local wind, water 

bodies, urbanization, altitude and ground surface can all influence the local climate 

strongly (Gut et al., 1993). According to Gut et al. (1993) the main climatic factors 

affecting human comfort and relevant to construction are: 

• air temperature, its extremes and the difference between day and night, and 

between summer and winter; 

• humidity and precipitation; 

• incoming and outgoing radiation,  

• the influence of the sky condition, air movements and winds. 

 

According to Gut et al. (1993) the main points to take into consideration 

when designing a tropical responsive building are:  
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• minimize heat gain during daytime and maximize heat loss at night in hot sea 

sons,  

• minimize internal heat gain in the hot seasons; 

• select the site according to microclimatic criteria; 

• optimize the building structure (especially regarding thermal storage and time 

lag); 

• control solar radiation; 

• regulate air circulation. 

 

 

Any building design for warm climatic conditions would attempt to exclude 

any of the above major heat loads arising due to the prevailing ambient temperature 

and the intensity of solar radiation. The interaction of solar radiation by the building 

is the source of maximum heat gain inside the building space. The natural way to 

cool a building, therefore, is to minimize the incident solar radiation, proper 

orientation of the building, adequate layout with respect to the neighbouring 

buildings and by using proper shading devices to help control the incident solar 

radiation on a building effectively. If ambient temperatures are higher than the room 

temperature, heat enters into the building by convection due to undesirable 

ventilation, which needs to be reduced to the minimum possible level. Incorporate 

these design principles into the design wherever possible. The tropical building 

principle are discussed thus include the elements of roof, wall, opening and 

landscape.  

 

 

 

2.2.1 Tropical Roof Design Principles for Passive Cooling Strategy    

 

 

A near vertical sun during the hottest hours of the day causes the roof to bear 

the greatest intensity of heat (Plumbe, 1987). The roofing should be tightly fixed and 

the material should insulate the building from both excessive heat and humidity. Big 

eaves are recommended as they create plenty of shade around the building and 

protect the outer walls from getting soaked (Duchein, 1988; Schüller, 2000). Pitched 

or sloping roofs are recommended, specially designed to stand the many and sudden 

tropical showers as well as the violent winds, from gusty to cyclonic. Metal roofs 
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made from aluminum, zinc, copper or stainless steel have the disadvantage of being 

very effective heat conductors, as well as possibly suffering from corrosion caused 

by contact with sulphur dioxide in the atmosphere (Duchein, 1988). Flat roofs are not 

advisable because of the risk of leaking during heavy rains (Karim, 1988). Flat roofs 

made of concrete with or without a false ceiling are often subject to cracking due to 

contraction and expansion (Plumbe, 1987). The construction of secondary roofs and 

facades, with a gap of several inches between the primary and secondary surfaces, to 

allow for ample airflow around the primary building, is very important. This prevents 

sunlight from shining on and directly heating the outside surfaces (Schüller, 2000). 

Thermal insulation or the construction of a false ceiling will have a similar positive 

effect. According to Agrawal (1974), a light roof colour to reflect unwanted summer 

heat may reduce the heat transmission into the building. The reflectance of a surface 

is a measure of the energy that is neither absorbed nor transmitted and is expressed as 

a ratio of the reflected energy to the total incident radiation energy. The roof tropical 

principle designs are discussed below. 

 

 

 

a. Roof Solar Shaded  

 

 

Appropriate external shading devices can control the amount of solar 

radiation admitted into the room, which could largely reduce cooling loads and 

improve indoor thermal comfort and day lighting quality. Bouchlaghem (2000) 

presented a computer model, which simulate the thermal performance of the building 

taking into account design variables related to the building envelope and optimize 

window-shading devices with optimization programs. Corrado (2004) evaluate the 

influence of the geometry of window-shading device system on the thermal 

performance. Liping (2007) study on facade designs to improve indoor thermal 

comfort for naturally ventilated buildings, especially for hot-humid climate. In 

addition, it is noticed that there are very few guidelines for facade designers of 

naturally ventilated buildings or for occupants with operation of individual control 

over their thermal environment for the hot-humid climate.  

 

 



 

 

11

b. Roof Solar Reflection  

 

 

According to Sharma (2003) if the external surfaces of the building are 

painted with such colours that reflect solar radiation (in order to have minimum 

absorption), but the emission in the long wave region is high, then the heat flux 

transmitted into the building is reduced considerably. For highly absorptive (low-

solar reflectance) roofs, the difference between the surface and ambient air 

temperatures may be as high as 50°C (90°F), while for less absorptive (high-solar 

reflectance) roofs, such as white paint, the difference is only about 10°C (18°F). For 

this reason, "cool" roofs (which absorb little "insolation") are effective in reducing 

cooling energy use.  

 

An alternative method is to provide a cover of deciduous plants or creepers. 

Because of the evaporation from the leaf surfaces, the temperature of such a cover 

will be lower than the daytime air temperature and at night it may even be lower than 

the sky temperature. 

 

 

 

c. Roof Thermal Insulation  

 

 

According Garde (2004) the major importance of good insulation of the roof 

in tropical climate is thickness and colour of insulation. In general, 5cm insulation is 

being used for red and blue tiled roofs, which is inadequate.  Therefore, insulation 

thickness needs to be at least 8cm (the value for medium colours) and to use 

polystyrene as insulation rather than mineral wool. Mineral wool is fairly cheap but 

not very well adapted to tropical climates: it loses its thermal properties when it 

absorbs ambient humidity. In another experiment more than 3°C have been observed 

between a dwelling with a well insulated roof and with no insulation (Garde, 2004). 

 

Palomo (1998) showed that a well designed and managed green roof could 

behave as a high quality insulation device in summer, reducing the heat flux through 

the roof. The parameters determine the role of the canopy as a shadowing device. 

The thickness of the soil layer, its apparent density, and its moisture content 
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determine the soil thermal diffusivity. It increases with the apparent density, and 

decreases with the soil moisture content.  

 

 

 

f. Summary 

 

 

The optimisation of the thermal performance of the roof was achieved 

through different levels of thermal mass, insulation, geometry of ceiling, external 

colour and levels of ventilation (attic). For both operation modes, the use of low 

absorptance values substantially reduced the cooling energy requirements (Parker et 

al., 1995) and the degree hours of discomfort. The use of ceiling insulation was also 

a determinant of thermal performance. It was the most effective element of 

improvement of roofs. Higher values of insulation showed no improvement. In fact, 

for higher mass cases, the effect was adverse, as the super insulation prevented heat 

dissipation at night. For both modes, the use of an attic roof ceiling improved 

performance. The higher levels of ventilation of the attic did not show much 

improvement in performance of the zone below, for either of the operation modes, 

unless no insulation or higher absorptance values were used.  

 

 

 

 

2.2.2 Tropical Wall Design Principles for Passive Cooling Strategy    

 

 

Today, buildings are required to have a high degree of thermal inertia so that 

the interior temperature and relative humidity remain reasonably stable and 

unaffected by fluctuations in exterior conditions. The design of wall is a potential for 

passive control of a building’s indoor conditions by managing the transference of 

external outdoor temperature. Construction materials such as concrete, brick, cement 

block and other solid masonry materials are considered as having high thermal mass. 

However, high thermal mass materials are considered very effective against rapid 

heat transfer, which is mainly due to their properties to absorb heat from solar 

radiation at a much slower rate than lightweight materials with a low thermal mass. 

Lightweight materials of timber, steel and the various building wall materials absorb 

heat quickly and conversely cool down quickly. A composite construction wall may 
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be a compromise solution ideally suited to the local climatic conditions. From 

literature review it was found that there are four tropical designs factor for wall. They 

are wall solar shade, solar reflection, thermal material and thermal insulation.   

 

 

 

a. Wall Solar Shade 

 

 

The impact of solar protection of walls is of less importance than the solar 

protection of windows. Therefore, if a project is too expensive, the preferred initial 

source of economy is the wall protection. Garde (2004) highlighted that an 

overheating of 2ºC was observed in rooms with coloured concrete walls exposed to 

the solar radiation compared to rooms with no walls exposed. The most important 

surfaces to treat therefore are those most exposed to the sun that is to the east and 

west, and to a lesser extent, the northern and southern surfaces. The other surfaces 

could be granted dispensations, or else given less requirements (Garde, 2004). 

 

 

 

b. Wall Solar Reflection 

 

 

The use of reflective surfaces to avoid solar gains and the use of reflective 

insulation are the most effective means of improving attic performance. According to 

Rosangela (2002) the use of a white reflective surface indicated the best 

performance, and minimized the need for insulation. Also, the differences in wall 

types were almost equalised when white surfaces were tested. For the solar 

protection of the dark colored house wall of reflectance, it was recommended to put 

10 cm insulation instead of the 6 cm. No insulation was planned for the solar 

protection of medium colored walls. A dispensation was granted over this point as 

well (Garde, 2004).  
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c. Wall Thickness  

 

 

The variation in wall thickness makes a significant difference in the comfort 

performance of houses. Fuad H Mallick (1996) indicated rooms with thicker walls 

tend to be more comfortable. Comparison of temperature measurements in houses 

that have wall thicknesses ranging between 125 and 500 mm shows that rooms with 

thicker walls tend to be more comfortable, particularly in hot and dry period between 

March and June in Bangladesh. Houses which have thick walls and are on lower 

floors can be comfortable all year round as opposed to ones that are on top floors 

(Fuad H. Mallick, 1996). Thermal transmission in a certain material depends upon 

the thermal property (in this case the thermal conductivity) and the thickness of that 

material. The lower value thermal conductivity will have less thermal transmission. 

Similarly, the thicker insulation material will create less thermal transmission 

(Mahlia, 2007). From traditional knowledge, low-mass materials such as wood are 

considered appropriate for free-running operation in hot humid climates as their 

indoor temperature drops rapidly in the evening, when the winds usually subside. 

High-mass buildings cool down more slowly during the night, which is a feature to 

cause discomfort during sleep. Over a 24 hours period high-mass buildings can have 

more cumulative degree hours of discomfort, but on a daytime basis only they have 

far more advantages. The conclusion is that for free-running operation, if there is 

assisted ventilation at night, for most of the time high mass buildings can be more 

comfortable than low-mass ones (Rosangela, 2002). 

 

 

 

d. Wall Thermal Insulation 

 

 

Massing of the enclosing envelope is a parameter that is mostly related to the 

thickness and type of the construction material used and its ability to delay heat 

transfer through the building structure over a period of time. It is another important 

parameter in determining thermal performance of the building and hence the energy 

required to provide thermal comfort in the occupied space. Results indicate that 

insulation materials subject to high temperature have higher thermal conductivity and 
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therefore higher envelope cooling load with varying degrees depending on the type 

of insulation material. 

 

According to Mahlia (2007) suggest that fiberglass–urethane is the most 

economic among other insulation materials. If we see the thermal conductivity, 

perlite has the highest thermal conductivity among the insulation materials. Higher 

the thermal conductivity of an insulation material means lower thermal resistance; 

therefore the thickest thickness is required to be used in order to get optimum 

thermal insulation. The thickness of insulation material is an important part in 

designing of building since thick insulation material will reduce the space of building 

significantly. 

 

 

Thermal insulation is a major contributor and obvious practical and logical 

first step towards achieving energy efficiency especially in envelope-load dominated 

buildings located in sites with harsh climatic conditions. The thermal performance of 

building envelope is determined by the thermal properties of the materials used in its 

construction characterized by its ability to absorb or emit solar heat in addition to the 

overall U-value of the corresponding component including insulation. The placement 

of insulation material within the building component can affect its performance 

under transient heat flow. The best performance can be achieved by placing the 

insulating material close to the point of entry of heat flow. However, for practicality 

it is common to use insulation to the inside or between wall cavities (Al-Homoud, 

2005). 

 

 

 

e. Summary 

 

 

The building wall is affected by all three heat transfer mechanisms; 

conduction, convection, and radiation. The incoming of solar radiation into the outer 

wall surface will converted to heat by absorption and transmitted into the building by 

conduction. At the same time, convective thermal transmission occurs from air 

outside of the building to the outer surface of the wall and the inner surface of the 

wall to the air inside of the building. It makes most portion of heat gains from the 
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outside of the building wall occurs by conduction through the building wall and by 

air leakage since the inner building area has lower temperature. In order to lower the 

heat flow from outside into inside building, insulation material is usually used. This 

material has a very low thermal conductivity. In this case, a suitable insulation 

material with its optimal thickness is necessary in order to have an economic cooling 

load system. The insulation thickness will increase the investment cost, but the cost 

of energy will decrease, until at one point the thickness of material is optimum and 

will contribute the highest overall cost savings.  

 

 

 

2.2.3 Tropical Opening Design Principles    

 

 

In traditional buildings designers place windows at certain points to create a 

current of air. Further, opening windows can reduce heat and humidity, but on the 

other hand the existence of windows can increase inside temperatures with solar 

penetration. East and west-facing walls and windows are the most important to 

shade, as solar heating is most intense on these orientations. Reduce unwanted 

morning and afternoon solar heat gain by minimizing or protecting extent of walls 

and windows facing east or west. Planting trees around the building is one way of 

controlling the temperature in repositories and keeping the sunlight out as well. A 

comprehensive list of shade giving trees is given in Gut et al.,(1993). Trees can also 

form a security risk providing easy access to windows as well as the roof. A simple 

way to reduce the heat-gain of the building is for the windows to catch the prevailing 

breezes. There are two factors used in determining the opening in tropical building; 

solar shade and size.  

 

 

 

a. Solar Shade 

 

 

Climate conscious design in the tropics must be attempted in order to prevent 

solar heat gain into the building. The primary design strategy implies that exploration 

of the shading potentials is to reduce the total heat gain through the wall openings. 

These strategies in broad term can be achieved by two means; natural devices and 
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sun control devices. The natural shading strategies are the means of shading the 

building with orientation of the sun and by the use of vegetation. Apart from the 

natural devices, sun control devices are used to exclude the unwanted solar radiation 

penetration into the building. The design, fixing location, effectiveness in terminating 

the direct sun and operational systems are attributes of the sun control devices. They 

can broadly divided into two; internal and external devices 

 

Internal devices to control solar radiation can be categorized into two types; 

firstly, solar shading using blinds, louvers, drapers and screens which are other than 

the window glazing pane. Secondly, the use of special glazing without the use of 

external or internal shading devices. Compared to external devices, the internal solar 

shading devices are less effective, as they allow solar radiation to strike on the 

vertical surface of the building. They also permit the heat into the building. 

 

External devices are projections attached to the building skin or an extension 

of the skin to eliminate unwanted solar heat. They are more effective as they 

intercept the solar radiation before it reaches the vertical surface of the building 

envelope. The obstructed heat is dissipated to the out side air. Thus, heat reduction is 

best achieved by excluding unwanted heat rather than removing it later.  

 

The horizontal (overhang) and vertical (fins) devices are the two basic forms 

of external shading devices. The egg crate devices are combinations of the horizontal 

and vertical devices. Based on these basic forms, configuration of the external 

shading devices varies from structural projections in the form of cantilevered floor, 

recessed walls and shading devices using light weight materials. The form of 

horizontal and vertical fins and light shelves perform a similar function. Use of 

lightweight materials enabled to give more flexibility in operating solar shading. 

Configurations of operable shading device were able to change or adjusted to the 

changing patterns of sun’s motion and the shading needs. Therefore, the performance 

of an operable device in eliminating the unwanted heat is better than a fixed device 

(Givoni, 1998). The fixed device needs no handling by the occupant and free of 

maintenance, while operable devices need frequent maintenance to keep them in 

good condition. Operable system is more useful in temperate and cold climates as it 

can be adjusted to get more favored solar heat during winter but obstruct the heat 
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gains during summer. In the tropics, it can be useful to control glare, daylight and 

solar heat gains. Advent of technology has enabled development of automatically 

controlled operable devices with solar sensors for efficient use.  

 

Canopy and awnings are another form of external horizontal solar shading 

device, mostly used for high solar altitudes. Effectiveness of the canopy and the 

awning depends on; material used (thermal and optical transmittance, colour), 

geometry and fixing position and details (Dubois, 2001). Studies done by the same 

author indicated that the canopy or awning angles (to vertical surface) are also an 

important aspect in reducing building energy consumptions.  

 

However, there are structural and architectural limits in designing external 

projections. Excessively long projections can be alternated with number of smaller 

projections at different heights and widths to obtain the same solar protection 

(Olgyay, 1957). In most cases, limitations were imposed based on structural and 

architectural reasons, than concerning on the energy implication.  

 

 

 

b. Opening Size 

 

 

Cross ventilation is of prime importance in humid tropical climates as well as 

the solar protection of the roof. As for these two projects, natural ventilation of 

dwellings is efficient during the hot and humid season. This is quite a good result 

because the main objective of the building design in tropical climates is to avoid the 

overheating of the indoor temperature by keeping it at least below the outdoor 

temperature. The comparison of the indoor air temperature shows a gap of more than 

1.5 °C between the cross-ventilated dwelling and the other one (Garde, 2004). 

Prianto (2003) examined various types of louver to improved the comfort level by 

use of increased air velocity. Louver window at the ceiling height and floor level 

with angle of 45 degree achieve a comfortable condition under activities of 1 and 

1.25 met. The modification on the ceiling height at balcony and the enlargement of 

opening dimension on façade has no significant effect on the indoor comfort level. 

Actually, for heavyweight construction types smaller opening areas provided better 
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performance also for free-running operation. Based on these simulations, a 50% 

value was set as a maximum window opening area in terms of wall area for dual 

mode operation (Rosangela, 2002). 

 

 

 

c. Summary 

 

 

Windows facing east or west should be protected by a sufficiently wide 

horizontal-shading device (such as wide eaves, verandah or pergola), a vertical 

shading device or the window should be small and placed high on the wall under the 

eave. External sun-shading devices are preferred to internal and interstitial shading 

devices. Aligning windows and doors should assist in maximising natural ventilation 

to allow for the capture of prevailing breezes and to allow cross-flow breezes in 

summer. Provide high-level ventilation through roof cavity space via roof vents. 

Choose window types that offer the best ventilation performance or alternatively 

look at design combinations that fit the situation 

 

 

 

 

2.2.4 Use of Landscape Design Principles    

 

 

The essence of landscape planning for passive cooling is to modify the 

aspects of air temperature, humidity, radiation and air movement in such a way as to 

bring existing or unpleasant conditions as closely as possible into the climatic 

conditions which are comfortable to specific persons on a precise site at a particular 

time. A well thought-out landscape design, incorporating hard and soft landscape 

elements, is expected to help control the microclimate and thereby significantly 

reduce the amount of heat gain in the house (Parker, 1981). The landscape elements, 

comprising various types of hard and soft material can absorber, re-radiate and act as 

thermal insulation.  
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a. Natural Solar Shade 

 

 

Shading by trees and vegetation is a very effective method of cooling the 

ambient hot air and protecting the building from solar radiation. The solar radiation 

absorbed by the leaves is mainly utilized for photosynthesis and evaporative heat 

losses. A part of the solar radiation is stored as heat by the fluids in the plants or 

trees. The best place to plant shady trees is to be decided by observing which 

windows admit the most sunshine during peak hours in a single day in the hottest 

months. Usually east and west oriented windows and walls receive about 50% more 

sunshine than the north and south oriented windows/walls (Garde, 2004). Trees 

should be planted at positions determined by lines from the centres of the windows 

on the west or east walls toward the position of the sun at the designated hour and 

date. A major advantage of the use of vines and creepers in passive cooling strategy 

landscaping is their potential to cover a large portion of a building in a very short 

period. Consequently, they can be effectively utilized during the period required for 

the establishment of the trees and shrubs in the landscape. They are also useful in 

situations where there is limited ground space.  

 

 

 

b. Ground Surface Treatment  

 

 

In a region where surface temperatures of concrete can reach as high as 55°C 

(and metal up to 70°C), extreme care has been taken in the design and location of 

each hard landscape feature around the test house. Paved surfaces can absorb and re-

radiate great quantities of heat. Any ground surface design should minimize the heat 

collector surfaces. Where paving is necessary it need to incorporate with intervening 

patterns of grass cover and shade by some form of architectural element, tree 

plantings or a combination of architectural elements and plant material (vines and 

creepers). The colour of the paved surfaces has a great deal to do with the heat 

absorption and re-radiation. Lighter colours with rough surface finishes were used to 

reduce glare. Overhead structures, both attached and unattached, have been used to 

reduce heat absorption and re-radiation from the horizontal (roof, driveway and 

pathways) and vertical (boundary walls, dwelling walls and openings) surfaces. Open 
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type wooden or aluminum structures were used to let breezes through and to support 

plant material, like vines, for additional cooling. Structures attached to the building 

have proved very helpful in reducing direct heat gain in the buildings (Bajwa, 1995). 

 

 

 

c. Ground Thermal insulation 

  

 

Because of the thermal storage capacity of earth, the daily and even the 

annual temperature fluctuation keeps on decreasing with increasing depth below the 

ground surface. At a depth of 15 m, the earth has a constant temperature of 10°C. 

The level of water table plays an important role here. In summer and particularly 

during the day, the ground temperature is much lower than the ambient air 

temperature. If a part of the building is earth bound, the building loses heat to the 

earth particularly, if the insulation levels are low. The most ancient dwellings were 

often dug into the ground or covered with earth to take advantage by transferring the 

heat to the deep earth (Rosangela, 2002). According to an experiment on two floor 

types by Rosangela (2002) experiment two floor types, suspended timber and 

concrete slab on ground, the on-ground type floor had superior performance. The 

explanation for the better performance of the on-ground type is directly related to the 

mass of the ground, which acts as a heat sink to the floor above. The first simulations 

for the un-insulated timber floor assumed a fully enclosed perimeter (with 0.4 m high 

under-floor space). For both free-running and conditioned operations, the concrete 

slab on ground performed better. The use of insulation (EPS or carpet) for the on-

ground floor type decreased performance in both modes. This is to be expected as the 

insulation increasingly isolated the room from the mass of the ground. 

 

 

 

f. Summary 

 

 

In open spaces, solar radiation and wind must be considerably controlled to 

provide human thermal comfort to guarantee the use of these public spaces. 

Referring to the geometry, sun trajectory diagrams and solar masks, corresponding to 

the place latitude, must be known and taking into account. Shadowing areas by 
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constructed elements (pergolas, marquises or kiosks) or by the disposition of trees, 

together with the use of low absorbing or reflective surface materials, can minimize 

the problems provoked by excessive solar radiation first by the control of solar 

radiation that arrives directly on people and also by diminishing the environmental 

temperature. Materials employed and the buildings sizes affect the thermal comfort 

of indoor condition. The colors of the surrounding surfaces are also important due to 

its capacity to absorb different amounts of solar radiation. These amounts will be 

determined by the facility of radiation to reach these surfaces, considering the 

existing elements that reduce radiation, such as marquises, trees, etc. Surface colors 

and reflectivity and the surrounding materials diffusivity and effusively modify 

infrared radiation and therefore the comfort sensation for occupant. The greater the 

area covered by buildings and constructions, the greater impermeability will result 

from the relation between the paved soil and the naked but compacted soil. 

Impermeability is one of the elements that have influence on the reduction of the 

relative air humidity, on the infrared radiation increase, which results from the 

superficial temperature raise (Barlag A, Kuttler W. 1991). 

 

 

 

2.3 Comfortable Indoor Environment   

 

 

The number of indoor thermal comfort studies far outweighs the number 

performed outdoors (de Dear R. J, 2002), and those outdoor studies that do exist are 

usually premised on the assumption that indoor comfort standards are applicable 

outdoors. Predicted Mean Vote (PMV) is an indoor comfort model to equate thermal 

conditions with levels of physiological strain in human subjects. PMV predicts the 

thermal sensation of a person based on the six thermal comfort variables, 

parameterized into a heat-balance equation and outputting results on a scale from -3 

to +3 (where -3 is cold, 0 is neutral, +3 is hot). The PMV index has been partially 

validated in a variety of indoor contexts (McIntyre DA., 1980; de Dear RJ, 1985) and 

a PMV value between ±1 is widely considered to be “thermally acceptable” (Fanger, 

1970, ASHRAE, 2001). Based on Fanger’s, (1970) generalization that one PMV 

scale unit corresponds approximately to a change in temperature of 3ºC (∆PMV/∆t = 

1/3) under mid-range clothing insulation and near-sedentary metabolic rate, the VDI 
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3787 (Spagnolo, 2003) guideline implies that a narrow band of ±1.5ºC around the 

neutral temperature circumscribes “thermal comfort”.  

 

 

The PMV scale was developed to describe thermal discomfort, not thermal 

stress, therefore its relevance to conditions that vary greatly from neutrality, as many 

outdoor climatic conditions do, remains untested. The psychometric tool at the very 

core of thermal comfort research (including models like PMV) is the seven-point 

scale of thermal sensation, but its performance under more extreme outdoor climatic 

environments remains largely untested. The basis for using seven points and not 

more or less has been established in psychological studies (Miller GA., 1956 and 

Osgood CE, 1957), but it has been suggested (Wilkinson RT., 1974) that the 

experimentally determined optimum temperature in climate chamber studies may be 

subject to the “range effect”, where the optimum temperature is biased towards the 

mid-point of the range of temperatures to which the subjects are exposed, although 

there is no definitive experimental evidence for this hypothesis. An excellent review 

of the seven-point scale is given by McIntyre (1980). 

 

 

The fact that the outdoor microclimate is generally assumed to be beyond 

architectural and mechanical control leads people to expect the conditions 

experienced outdoors to fall within a much wider range than the indoor climates 

experienced in their home or office and therefore, because of this expectation, the 

range of conditions that they would regard “acceptable” should also be considerably 

wider than in the indoor context. To date, many of the well-known outdoor 

environmental indices (e.g. AT (Steadman RG.1984); windchill (Siple PA, 1945); 

wet bulb globe temperature (WBGT) (ISO-7243., 1989) were developed to predict 

and warn against heat or cold stress, as distinct from thermal comfort. Conceptually 

we can regard the human thermal environment as a set of concentric “zones” with 

thermal preference at its centre, Ranked by a wider band of thermally comfortable 

conditions, which in turn may be Ranked by wider bands of acceptable thermal 

conditions, then uncomfortable, then moderately stressful, then stressful conditions, 

and finally, hazardous thermal environments. 
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2.3.1 Comfort Neutral Temperature   

 

 

Nicol (2004) presented evidence that the comfort temperature in free-running 

buildings depends on the outdoor temperature. Humphreys (1978) have shown that 

for free-running buildings the relationship between comfort temperature Tc and 

outdoor temperature To is remarkably stable. The relationship for buildings which are 

heated or cooled is more complex, and less stable. It is less precise because when a 

building is heated or cooled the indoor temperature is decoupled from the outdoor 

temperature and the indoor temperature is more directly governed by the custom of 

the occupants (or their building services manager). This custom is not absolute as 

shown by the wide range of comfort temperatures for heated and cooled buildings. 

There is also a difference of some 2ºC in indoor comfort temperatures for heated and 

cooled buildings between the two databases according to Humphreys (1978) and de 

Dear and Brager (1998). Whilst it is not clear whether this is due to a change in 

preference over time or to other differences between the two databases, the preferred 

indoor temperature may need to be determined from time to time or between one 

group of people and another. It should be noted that this does not put the adaptive 

standard at a disadvantage vis-à-vis the rational indices. These also need to know of 

changes of clothing behaviour and working practices if they are to reflect changes in 

comfort temperatures. 

 

 

Defining the range of conditions which will be found comfortable around the 

comfort temperature is problematic. The adaptive approach tells us that variability in 

indoor temperatures can be caused by actions taken to reduce discomfort, as well as 

those which are uncontrolled and therefore more likely to cause discomfort. Adaptive 

thermal comfort is therefore a function of the possibilities for change as well as the 

actual temperatures achieved. The width of the comfort ‘zone’ if measured purely in 

physical terms will therefore depend on the balance between these two types of 

action. In a situation where there was no possibility of changing clothing or activity 

and where air movement cannot be used, the comfort zone may be as narrow as 2ºC. 

In situations where these adaptive opportunities are available and appropriate the 

comfort zone may be considerably wider. 
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a. Comfort Temperature 

 

 

The indoor design temperatures as described by international standards (ISO 

7730 (ISO 7730, 1994) and ASHRAE 55-1981, ASHRAE 55-1992 take no account 

of climatic variations and people adaptive behaviour. For any task and use of the 

building, there is a recommended temperature that is assumed to apply irrespective of 

climate and people culture, way of life and kind of clothing, though with some 

recognition of difference between summer and winter. 

 

 

Analysis of thermal comfort field studies have shown that indoor comfort 

temperature as felt by the occupants is function of mean outdoor temperature 

(Humphreys, 1978; Auliciem, 1981; Nicol, 1994)  

 

 

This means that we can relate indoor comfort temperature to climate, region 

and seasons. For free running buildings and according to different surveys held under 

different climatic conditions, Humphreys (1978) has found that the comfort 

temperature can be obtained from the mean outdoor temperature with Eq. (1) 

 

Tc=0.534To+11.9   (1) 

 

Auliciems (1981) revised Humphreys equation by deleting some fields 

studies such those with children as the subjects, and adding more information from 

other studies not included by Humphreys. These revisions increased the database to 

53 separate field studies in various climatic zones covering more countries and more 

climates. After combining the data for naturally ventilated buildings and air-

conditioned buildings, the analysis led to an equation involving the outdoors air 

temperature (To) and the indoor air temperature (Ti), this resulting equation is [Eq. 

(2)]: 

Tc=0.48Ti + 0.14To + 9.22   (2) 

 

Auliciems (1986) has also proposed a single line for all buildings which covered the 

naturally ventilated buildings and air-conditioned buildings. This relation is given by 

Eq. (3) 
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Tc=0.31T
o
 + 17.6   (3) 

 

Nicol has conducted several surveys under different climatic conditions. In a first 

survey in Pakistan (Nicol, 1996), he has established a relation between comfort 

temperature and outdoor temperature given by Eq. (4) 

 

Tc=0.38To + 17.0   (4) 

 

In a second survey in Pakistan (Nicol, 1996), he has found a second regression given 

by Eq. (5) 

 

Tc=0.36To + 18.5   (5) 

 

 

Those relations show clearly that the comfort temperature is related to the 

outdoor temperature and so to the climate. The difference between those relations 

confirms that there is no universal comfort temperature. Each community must have 

its own perception of the thermal comfort according to its climate, local culture and 

type of buildings.  

 

 

 

b. Neutral Temperatures 

 

 

Another interesting way of examining thermal sensation is through the use of 

neutral temperatures, i.e. the thermal conditions where people feel neither warm nor 

cool, but neutral (Nikolopoulou, 2005). This term was first introduced by Humphreys 

(1975), when he showed that variation of the neutral temperature is associated with 

the variation of the mean temperature (Humphreys, 1975).  

 

 

Deciding what temperatures to provide in buildings is a complex problem. 

One way around this is to treat the process as a black box where the internal 

mechanisms of the relationship between comfort and the environment are less 

important than the outcomes. This is the approach taken by those who use field 
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surveys to investigate the problem. In the field all the variables are in action—people 

are free to change their clothes, their activity, their posture and when the building 

allows it, to change the temperature, air movement and even the humidity. 

 

 

Nicol and Humphreys (1973) presented the results of field studies in the UK, 

India, Iraq and Singapore. The result shows that mean comfort vote changes little 

with the mean temperature experienced. Note that temperatures well above 30 ◦C are 

not considered uncomfortable in some cases. Subsequent work by Humphreys (1975) 

showed that the temperature which people find comfortable is closely related to the 

mean temperature they experience. In other words people find ways in which to 

make themselves comfortable in the conditions they normally experience: they adapt 

them behaviorally. Recent work by Humphreys and Nicol (2000) using data 

collected by deDear and Brager (1998) shows that, taking account of differences in 

the calculation of comfort temperatures, almost exactly matches these earlier 

findings. 

 

 

This relationship enables building professionals to predict the temperature 

which will be comfortable in free-running buildings by calculation from the monthly 

mean outdoor temperature given by meteorological records. Results for Islamabad, 

Pakistan indicated the comfort temperature overlaid on the outdoor temperature to 

indicate the temperature differential which the building must achieve to remain 

comfortable indoors. In this case the building must be warmer than the outdoor mean 

in winter and cooler in summer, but by amounts which it might be possible to 

achieve by passive means (certainly in winter). A comfort zone within which 

temperatures are generally acceptable can be taken to extend some 2–3 ◦C either side 

of this optimum temperature. 

 

 

 

c. Neutral Temperature Zone in Malaysia 

 

 The analytical method of evaluating the comfort zone for Malaysia have been 

studied by several authors (Rajeh, 1988; Abdul Malek and Young, 1993; Zain 

Ahmed, Sayigh and Othman, 1997; Abdul Rahman and Kannan, 1997, Hamdan, 
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2007), using the “Neutrality Temperature”.  This is the temperature at which the 

respondents in the various studies experienced neither warm or cool, which is a state 

of “neutral” or “comfortable”.  It is the mid point of the comfort zone, as an average 

value for many experimental subjects.  There four factors that can combine together 

to produce different neutral temperature for the individual: thermal environment, 

level activity, thermal insulation of the clothing and physiological state of the 

individual.  For adults the neutrality temperature ranges from 17°C to 30°C. The 

observed range of neutrality temperatures is therefore effectively 13 degree.  But it is 

necessary to conclude that acclimatization also had an affect on the temperature 

required for thermal neutrality. Szokolay recommended the use of the annual mean 

temperature (AMT) for applied Auliciems’s equation for Kuala Lumpur data (Rajeh, 

1988). The comfort temperature or neutrality temperature can be predicted from the 

linier equation for naturally ventilated building as cited by Hamdan (2007):  

 

  Tn = 17.6 + 0.31 x Tamt    (6) 

  

 Where, 

  Tn = neutral temperature with
+/-

 2°K range 

  Tamt = annual mean air temperature of the month 

 

The comparative comfort zone, using above equations and the annual mean 

air temperature of the month worked out from the climatic data for Malaysia weather 

data.  This will give a general picture of the range of comfort zone for Malaysia. 

According to Szokolay (1997) with the range of the comfort zone is taken as 5°C, 

thermal comfort temperatures extends approximately about 2.5°C above and below 

the neutral temperature.  While Humphrey’s equation gives a good approximation of 

a single comfort temperature in free running buildings, the thermal comfort zone 

defined using solely this technique does not accommodate the influences of thermal 

comfort in hot and humid climates.   
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Figure 2.1:    Neutral temperature range on the Ecotect monthly data 

 

Daily climatic patterns in the tropics required climate conscious building 

design strategies to achieve thermal comfort. Outdoor temperature for monthly data 

is plotted in Figure 2.1. According to the fig.2.1 the outdoor air temperature reached 

to 28.5°C in August. The lowest temperature was reported as 25.5°C in January and 

the average temperature is about 27°C. According to Szokolay comfort formula, the 

neutral temperature needed to maintain at 26ºC.  The single value resulted from this 

comparative study was confirmed with previous study. With the width of the comfort 

zone taken to be 5ºC (Szokolay, 1997), thermal comfort temperatures extends 

approximately about 2.5ºC above and below the neutral temperature.  Taking the 

neutral temperature of 26ºC in free running building as an illustration, the upper limit 

of the comfort zone would then be 28.5ºC.  This neutral temperature is for conditions 

without air movement.  

 

 

 

2.4 Computer Simulation Study of Indoor Environment  

Review of the above stated methods informed that simplified design and 

calculation is unreliable and does not represent real-world complexity.  While field 

experiment requires complex and comprehensive procedure in methodology, 

Upper limit 

Bottom limit 
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limitation in available equipment, limited budget and time consuming.  Therefore, 

computer simulation is an alternative method for this study. 

Over the past 50 years, literally hundreds of energy programmes have been 

developed, enhanced and applied in the building energy community.  New design 

tools approach enable all simulation model being simulated under virtual condition.  

Computer simulation tools developed by scientist and researcher provide accurate 

result and the models in simulation adequately represent real-world complexity 

(Sonia, 2005).  However they require extensive training, for learning on how to use 

them, preparing input, running and interpreting the result to the requirement of the 

research. 

Technology and information today allow scientists and researchers to bring 

computer simulation tools to implementation in actual building design and 

construction (Kristensen, 2003; Garde F. et al, 2001; Shaviv E., 2000).  Study from 

Garde F. et al (2001) demonstrates the methodology of the above methods.  Firstly, 

identify the specifications needed to consider in the building design and complete the 

simulations for each specification.  Then, implement the solutions on real projects 

and finally have the experiment validated. 

 

 

 

2.4.1 Selection of Computer Simulation Software 

Sonia (2005) recognizes the need for building simulation or performance 

tools that can be integrated into the building design process.  The complexity of 

simulation tools created by scientists, who are more technically oriented, discourages 

architects or designers who are more visually oriented people to use them.  

The selected computer simulation programme must provide a design tool that 

is user-friendly and easy-to-use.  Sonia (2005) describes the following factors to be 

integrated into the programme: 

a. Provide designers with a building performance tool that would aid in the 

design process. 
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b. Provide a front-end that supports AutoCAD so that the building information 

can be assigned to the drawings. 

c. Develop a graphical user interface where the mode of output is both graphical 

and numerical.  

d. Provide designers with building design information tool that requires the least 

amount of training and yet is very easy to learn and use. 

e. Provide designers option to create their own custom databases of building 

components. 

f. Allowing researchers to expand or further their study to widen perspective 

and scope (expandable design tools).  

The purpose of this study is to understand the indoor environment on tropical 

climate in minimising the indoor temperature.  The selected computer programme 

should be able to analyze thermal performance and simulate any possibility of 

tropical design strategy.  Therefore, the computer simulation programme must fulfil 

the following criteria: 

 

a. Provide required climate condition and weather data for the specified location 

of the study being carried out.  

b. Provide detailed weather data input for hourly climate data (solar radiation, 

temperature, humidity, wind). 

c. Provide editable modeling features, for example options in creating various 

generic building shapes and further modification it into building shape. 

d. Provide thermal analysis that enables distribution of computation at required 

time-step. 

 

 

 

 

2.4.2 Review of Thermal Simulation Software 

Sonia (2005) explained those most available simulations programmes were 

originally developed by researchers to have extremely sophisticated analysis tools.  It 
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requires significant amount of detailed information about the building and its 

context.  The input requires mechanical engineering data that comes at the end of the 

design process and the output is largely numeric or text.  It becomes difficult for 

architects to incorporate the analysis results during the process of designing.  

Building designers require energy analysis tools that are quick to use and produce 

result that are easy to understand.  Gratia E (2004) believes that user interface tool 

for architects should be very user-friendly and uses visual language of architects 

based mainly on illustrations. 

The comparative surveys of twenty major building energy simulation 

programme developed by Crawley, et al, (2005) became the reference of many 

researchers.  Availability of the comparative analyses provides immediate 

information for researchers to have a quick view and precise assessment based on 

information provided by the programme developers in various categories such as 

general modeling features, building envelope and daylighting, climate data 

availability, validation and links to other programmes.  

From the comparative survey, the following simulation programmes fulfil the 

required criteria of this research: ECOTECT, Energy Plus, e-QUEST, TRNSYS and 

IES <Virtual Environment> (IES <VE>).  ECOTECT is the ideal simulation 

programme for this study that can fulfil all experiment requirements and can easily 

be integrated into the building design process.  A generative design tool is suitable 

for complex and expendable models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

CHAPTER 3 

 

 

 

 

METHODOLOGY 

 

 

 

 

  In order to achieve the objectives of the research, to test the research 

hypothesis and to answer the research questions that have been laid in chapter I, this 

research is divided into three main stages.  Firstly, review and validation of the 

selected building simulation program to be used in the research. Secondly, method of 

the field study is described and finally, development of simplified model using 

tropical design principles.   These methodologies were reviewed and selected for the 

purpose of this research. 

 

 

 

 

3.1 Research Design  

 

 

In order to achieve the research objectives, the following steps are suggested: 

preparing climate data, field measurement, ECOTECT software validation, 

simulation of Taman Tropika house model and indoor comfort analysis.  In this 

study, the climate data of Malaysia with Kuala Lumpur weather data will be adopted 

for analysis. The weather data will be used to determine the trend of the monthly dry 

bulb temperature, wind speed and relative humidity available for thermal 

environment in Taman Tropika house at UTM skudai, Johor Bahru.  Climate data 

consist of annual climate data and design day of dry bulb temperature of each month.  

The effect of tropical design principle for thermal environment is quite difficult to be 

determined by analytical means.  The simplest means is to investigate by using 

computer simulations of both the climate data and buildings elements.  The 

ECOTECT is the instrument that is used to model the thermal environment of the 

Taman Tropika house.  The program is validated by comparison between field study 
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and ECOTECT simulation.  This step will involve the testing of a modification the 

Taman Tropika house design principle in order to fulfill previous stated objective.  

Several elements of a Taman Tropika house principle design (roof, wall, opening, 

landscape) is built to a scale of 1:1.  The testing of the models exclusively is divided 

several parts to ease the comparison between various modifications of thermal 

environment performances.     

 

 

 

Figure 3.1: The research design 

 

 

 

3.2 ECOTECT Simulation  

 

The ECOTECT software is relatively unique amongst performance analysis 

tools as it is aimed primarily at architects and is intended for use during the earliest, 

conceptual stages of design.  It integrates a relatively simple and intuitive 3D 

modeling interface with a range of analysis functions.  These include, overshadowing 

and solar reflection; sun penetration and shading device design; solar access and 

photovoltaic/heat collection; hourly thermal comfort and monthly space loads; 

natural and artificial lighting levels; acoustic reflections and reverberation times; 

project cost and environmental impact.  

Climate  

(Site & annual weather) 

Climate Analysis Design Days 
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Thermal  
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Neutrally Temperature 

Result 
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The original ECOTECT software was written as a demonstration of some of 

the ideas presented in a PhD thesis by Andrew Marsh (2000).  Its modeling and 

analysis capabilities can handle geometries of any size and complexity.  Its main 

advantage is that it focuses on feedback during conceptual building design stages.  

The intention is to ease design process to create a truly low energy building.  

Analysis results can be mapped over building surfaces or displayed directly within 

spaces that generate them.  It provides the designer the best chance of understanding 

exactly how their building response to the climate conditions.  

 

 

It is an environmental design tool which couples an intuitive 3-dimensional 

modeling interface with extensive performance analysis functions covering shading, 

thermal, lighting, acoustic, energy, resource use and cost aspects.  ECOTECT 

provides performance analysis which is simple, accurate, interactive and visually 

responsive (Crawley, et al, 2005).  The most significant feature of ECOTECT is its 

interactive approach to performance analysis.  Students are able to select different 

surface materials and very quickly compare the resulting changes to internal lighting 

levels, reverberation times, monthly heat loads and hourly internal temperatures at 

different times of the year.  New windows can be added in order to see their effect on 

day lighting, thermal response and overall building costs.  As the complexity of the 

model increases, it can also be exported to a range of application-specific tools for 

more detailed analysis.  Formats currently supported include the RADIANCE 

radiosity-based lighting simulation package from Lawrence Berkley Laboratories; 

VRML for interactive 3D visualization; the DOE-2 and Energy-Plus thermal 

simulation tools from the US Department of Energy and a range of other applications 

such as POV-Ray, a freeware ray-tracing-based rendering tool. 

 

 

 The primary aim of ECOTECT software was to minimise the amount of 

application specific data that the designer has to input and make it as graphically 

intuitive and interactive as possible.  This means that the designer uses a single 

application to generate the geometry of a building and assign material properties to 

each element.  As the library is easily customised to select the most appropriate 

material for each element, material assignment is not a significant chore. 
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 Once a model has been defined, the application itself is responsible for 

extracting all of the detailed information it requires for any particular analysis.  This 

vastly reduces the load on the user, is relatively simple to derive and usually 

produces more accurate results than user-supplied data anyway.  This approach does 

place a significant burden on the user interface, as this is the primary input 

mechanism and will dictate how the software is used.  The ability to rapidly and 

interactively create or edit models was considered of paramount importance.  

Numerical accuracy is provided through direct entry input fields, object snap points 

and snap grids.  However, most models do not require a high degree of precision, 

especially at the most formative stages.  Thus, significant effort has been devoted to 

the interactive interface, resulting in the development of a new 3D cursor system for 

the manipulation of geometry in perspective projection. 

 

 

 

 

3.2.1 ECOTECT Simulation Data Requirement 

 

This section will outline the sequence of the simulation approach, from the 

required data and the construction of geometric models to the output of the results.  

One tool vital to any pre-design analysis provides for the visualization of climate 

data. This tool builds on the work of Murray Milne at UCLA in the development of 

Climate Consultant (Milne, 1992) and on Balcombe’s WeatherMaker, a utility 

program for use with the Energy-10 design software (Balcombe, 1999).  Using this 

tool, data can be viewed in a number of different ways, ranging from a monthly 

summary with wind roses after Szokolay (Szokolay, 1982), to simple hourly graphs, 

or even interactive 3-D surface plots.  Hourly data can be imported from a wide 

range of file formats including TMY, TMY2, TRNSYS TRY files, Australian 

Bureau of Meteorology LST files, CSIRO and NatHERS climate data as well as 

ASHRAE WYEC2 format.  Custom formats also can be defined and saved within the 

software.  The tool also features a new form of wind analysis graph developed by the 

author to display speed simultaneously, direction and frequency over any date/time 

range.  Wind speed is shown by the distance of each block from the graph centre 
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whilst frequency is indicated using coloured shading. Temperature, relative humidity 

and rainfall can also be overlaid on these graphs. 

 

 

Additional research is currently underway to develop a methodology for 

rating the suitability of various design strategies to the specific climate data loaded.  

This will include an assessment and recommendation of shading periods, natural 

ventilation suitability, mass/insulation levels, glazing ratios and the most appropriate 

passive solar design techniques. 

 

 

 

 

3.2.2 ECOTECT Simulation Geometric Modeling 

 

 

 One of the major challenges in the development of ECOTECT was to 

produce an interface within which geometric modeling could be as simple, loose and 

disposable as a traditional hand sketch, yet still be used for both general and detailed 

analysis.  This required a departure from traditional CAD environments, which tend 

to concentrate on the drawing process rather than modeling - the lines that define an 

element only provide visual clues as to its architectural function.  In ECOTECT, a 

relational modeling system is used in which the role of each element and its 

relationship to others is automatically derived from the way it is created.  This means 

deriving the geometry and type of one element from the geometry and type of 

another, and storing the rules used.  If the parameters of these rules are subsequently 

changed, or the parent element moved, the geometry of the child can be 

automatically updated. 

  

 

 It was, however, of fundamental importance to know the function of each 

element within the model.  As a result, whenever elements are created, they are 

created as a particular type.  For example, the user chooses to create a floor plane, or 

insert a window into a wall, a skylight into a ceiling, a partition within a zone, etc.  

The following is a list of the 12 basic element types defined in the application are; 

void, roof, floor, ceiling, wall, partition, window, panel, door, point, speaker and 

light. These type definitions imbue the model with an inherent knowledge base.  
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Surface areas and statistical data can easily be determined, for example, the ratio of 

north/south facing glass to floor area.  Calculating the distances between doorways, 

and hence the adherence to fire codes, becomes relatively trivial.  Knowing that an 

element is a roof plane yet has only a shallow incline, means that the properties of 

airflow and air-film resistance can be accurately modeled.  It also eases material 

assignments as a large material library may contain over 100 materials, but only 8 

internal partitions or 12 ceilings. 

 

 

 

3.2.3 ECOTECT Simulation Analysis  

 

 

 The thermal analysis calculations were performed with the software 

ECOTECT v5.2 (Marsh, 2003).  The model of a representative building type with 

southern orientation was constructed.  The thermal modeling was based on a series of 

assumptions.  The different rooms of each level were used either throughout the day, 

or for specific hours during the morning.  These diurnal differences in the use of the 

house were represented with different schedules.  The summer comfort band was set 

at 18 to 26 °C.  The winter spaces (ground floor) were assumed with no ventilation 

apart from the air infiltration, while the summer spaces (upper floor) had natural 

ventilation.  The infiltration rate for all the zones of the building was set at 1 air 

change per hour.  All the thermal analysis calculations, which are presented, concern 

only the zones of the upper storey of the building. 

 

 

 

3.2.4 ECOTECT Simulation Result 

  

 

 The very nature of the architectural design process is visual.  This is 

especially true of the early stages of design where the building form itself is still 

being established.  In addition to simply displaying results, ECOTECT attempts to 

relate the analysis directly back to the geometry.  This is relatively simple in the case 

of solar and lighting calculation, however it is not always possible as some results 

can only be displayed as a graph. Where possible, however, graphs are displayed as 

separate interactive windows that automatically update to reflect changes in the 
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model.  In some cases, changes in the graph can also automatically effect changes in 

the model.  Many building analysis tools also provide very little visual feedback 

during calculations.  This means that the process being undertaken is essentially 

hidden from the user, who has to trust in the fact that what is being modelled is 

correct.  Mistakes in modeling that are not immediately visually apparent must be 

determined from a detailed examination of any output. Whilst the majority of 

calculations are not inherently visual, there are techniques that can be used to make 

them more so.  For example, when using sampling or raytracing techniques, it is a 

simple matter for ECOTECT to display each point or ray as it is generated and 

tested.  This acts to provide an indication of how the calculation is progressing as 

well as allowing the user to identify possible problems with the model by observing 

anomalies in the display.  Such techniques have been implemented during surface 

area, volume, daylighting and acoustic calculations (Robert, 2002). 

 

 

 

3.2.5 ECOTECT Simulation Limitation  

  

 In ECOTECT, all calculations are structured around a full set of basic 

assumptions and default values that can be changed at any time.  Inexperienced 

users, or those requiring a quick result, need only specify whatever level of 

information they have at the time.  As the design is gradually resolved, information 

that is more detailed is added to the model, making the results progressively more 

accurate.  This makes the process of modeling far more responsive.  There are, of 

course, issues relating to the validity of results based on default values.  However, 

the same limitations are true of simplified manual and rule-of-thumb methods that 

are well understood and accounted for by most practitioners.  Where accurate results 

are more critical, more information is provided.  This allows the designer to control 

both the effort and accuracy required for a result, not the application developer. 

 

 

 

 

 

 

 

 



 

 

40

3.3  Development of Tropical Principle Design  

 

 

The existing Taman Tropical house at Universiti Teknologi Malaysia was 

designed using traditional Malay architecture and tropical design principles. Thus, 

there is a clear definition of architectural elements and can be categorized into three 

main zone.  The top zone, which covers the roof element, the middle zone for wall 

and the bottom zone which is the floor.  Thermal performance of the existing tropical 

house was measured and the results were used to develop a computer model to 

further determine the aspects of tropical design principles. The methodology of the 

field measurements is described in the following section.  The new model is 

developed by modifying the configurations of roof, wall and openings, and the floor.  

The development of the simplified model is described in the following sections. 

 

 

 

3.3.1 The Field Study of Comfortable Indoor Environment Simulation Model 

 

 

The basic filed study model is a typical room configuration with overall size 

of 10m x 5m x 4m high.  This size is to represent a single space room on field study.  

The field measurements were carried out using air temperature and humidity data 

loggers and surface temperature data loggers.  The positions and the measured 

variables of the data loggers described in the following table (table 3.1). The building 

was neither occupied nor heated during this period.  The measurements were 

collected for one-month period stating from 20 September to 20 October 2007.   

 

 

Table 3.1.  Description of data logger positions and measured variables installed at 

Taman Tropica UTM  

No Position & Description Measured variable  

1 Middle of the Space on the timber floor surface Internal floor surface temperature  

2 Middle of the Space, 1.7m from floor level Internal air temperature & humidity at 

human body level 

3 Middle of the space, 3m from floor level Internal air temperature & humidity 

under the roof space  

4 South wall, 1.7m from floor level Internal wall surface temperature 

5 South louvered wall, 1.7m from floor level Internal louvered surface temperature 

6 Outdoor space under shade, 3m from floor level, 

East, West, North & South 

Outdoor air temperature and humidity 
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 The indoor environmental studies conducted in the Taman Tropika building 

not only provided valuable insights on its thermal performance but also made it 

possible to compare the results with the computer model in which the dynamic 

thermal performance of the building was simulated with the real performance as 

recorded.  Graphs displaying both the real and calculated data can be used to judge 

accuracy of the simulations and if discrepancy occurs, the relevant parameters can be 

adjusted.  

 

 

When the weather data for the given region is available, simulations can be 

performed for different times of the year.  It is also possible to test a model with the 

climatic data of other regions.  Thus, it is possible to evaluate the effect of building 

materials and climatic factors on thermal comfort inside a given building.  It is also 

possible to calculate the amount of energy required for space heating and cooling in 

order to maintain the ideal conditions for thermal comfort.  The environmental 

performance of traditional materials against those of contemporary materials can be 

evaluated.  Other parametric studies related to building form and orientation, window 

size, type and orientation can be performed.  

 

 

The major different between the simulation model and pilot testing is the 

topography shape.  The simulation consists of flat topography with building 

elevation (1m above ground) while the field study model consists of natural 

topography shape with an uneven surface.  Therefore, the height between the natural 

ground and the raised floor of the building differed from 1.4m to 0.8m.  A model 

created for thermal analysis is geometrically simplified since the relevant attributes 

here are the thermo-physical properties (such as U-values and thermal admittance 

values) of the building envelope and fenestrations. 

 

 

 

 

 

 

Figure 3.2 A field measurement of Taman Tropika building at UTM. 
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Figure 3.3 A 3D view of the thermal model of Taman Tropika building developed in 

ECOTECT v.5.20. 

 

Figure 3.4 Captured view of the rendered thermal model with shade and shadows as 

calculated with ECOTECT v.5.20. 

 

 

 

 

3.3.2 Modified Tropical Building Design Principle 

 

 

The modified tropical building design principle are extension of the field 

study model described in section 3.3.1.  In this stage, the basic tropical building 

models are modified physically into four alternative modifications.  The 

modifications are performed at roof, wall, and opening and floor elements.      
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a. Roof modification 

 

In this study, the shape of the roof model is assumed as similar with base case 

model.  The aperture above the roof of tropical principle model is assumed effective 

in decreasing the indoor temperature, while the area below the window has no effect 

on air movement on the sitting plane.  However, when considering the effect of roof 

design, several modifications were simulated: ceiling, roof color, insulation and 

thermal mass material (Table 3.2). 

 

 

 

b. Wall modification 

 

The basic wall of Taman Tropika construction is 0.05m thick timber material 

without external insulation and with natural color.  Hence, the wall modification 

elements tested are insulation thickness and thermal mass (Table 3.2). 

 

 

 

c. Opening modification 

 

The opening of tropical design is an independent variable in this study.  The 

main purpose of this study is to determine the optimizing of the opening design in 

terms of decrease air temperature and achieving comfort indoor temperature.  The 

louvered opening are tested as to following sizes; 0.05 m, 0.1m, 0.2m (Table 3.2). 

 

 

 

d. Floor modification  

 

The base Taman Tropika model and the modified configurations with 

different floor elements will be used to investigate the objectives of the study.  

Further, the characteristics of the thermal models will be determined based on the 

types of floor variables to be investigated. Following parameters were used to 

determine the influence of floor element on the thermal performance of the tropical 

house; color, insulation and thermal mass (Table 3.2).  
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Table 3.2: The summary of building modification 

 

No 

Element 

Roof Wall Opening Floor 

1 With Ceiling Thin Insulation  Without louver Light Color  

2 High Pitch Thick Insulation No opening Dark Color 

3 Thin Insulation Low U value Small louver Thin Insulation 

4 Thick Insulation High U Value  Thick Insulation 

5 Low U value    

6 High U Value    

7 Light Color    

8 Dark Color    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

CHAPTER 4 

 

 

 

 

RESULT, ANALYSIS AND FINDING 
 

 

 

 

This chapter evaluates the experiment and simulation results obtained for 

indoor environment for the Taman Tropika model.  The evaluation on indoor 

environment is based on the air temperature and relative humidity from on site data.  

The indoor environment analysis is based on the thermal environment, which 

includes both air temperature and relative humidity.  Further, in order to find the 

correlation between the air temperature and relative humidity component, both 

results are presented in the same graph as a function of tropical design principle 

models.  The development of new tropical principle design configuration is 

established based on the main element designs (roof, wall, opening and floor) and 

their relationship between modified models and the base model of Taman Tropika 

house.  Finally, the interpretations of the results on the application of the new 

tropical design principle on Taman Tropika house are discussed. 

 

 

 

4.4 Field Study of Comfortable Indoor Environment 

 

A field study using one model was measured and simulated for tropical 

principle design. The single room in the field study was 3.5 meter high, 5m width 

and 10m length, supported structurally by timber material.  Data loggers were 

positioned at nine different points on indoor and at outdoor. In the Ecotect 

simulation, the following boundary condition area used: the material and thickness of 

the Taman Tropika house are based on the base model, while the climatic condition 

is set similar to the site climatic conditions. Sample graphs used for these studies are 

illustrated below. 
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Figure 4.1 Comparison of internal and external temperature at 1.5m height from 

floor level - 20
th

 September to 10
th

 October at TTH. 

 

 

 

 

4.4.1 Indoor Environment Results of Field Study Measurement   

 

 

A typical diurnal variation of the mean indoor temperature against the 

outdoor temperature is illustrated in Figure 4.2. It can be observed that the Taman 

Tropika house temperatures were significantly below the outdoor in 09:00h until 

14.00h. Peak ambient temperature (indoor temperature) of 31.79°C at 15:00h.  

Figure 4.2 showed that the indoor and outdoor humidity of Taman Tropika House. 

The outdoor humidity was generally lowest than the humidity in Taman Tropika 

house. Relative humidity in outdoor and indoor decrease start in 09:00h until 18:00h 

with similar pattern. 
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 The indoor temperature was generally higher than the outdoor temperature 

during in the afternoon and the night. Indoor temperature increasing start in 14:00h 

and peak in 18:00h.  The indoor humidity decrease but still high from 08:00h until 

16:00h. Effectiveness for time to large temperature reduction in 10:00h until 12:00h. 

The measurement in 10 days showed the Taman Tropika house developed by tropical 

principle design impact for decreasing indoor temperature. Generally, temperature 

differences in mid day are 0.01°C-0.72°C for compare in outdoor and indoor.  Taman 

Tropika house model potential to reduce heat gain base large different temperature 

for indoor and outdoor. Indoor temperature incident on the single room is evident at 

15:00h on north oriented room façade (figure 4.2).  A higher amount of indoor 

temperature is recorded compare to outdoor. The maximum indoor temperature 

(31.5°C) is above the neutral temperature.   

 

 

 

4.4.2 Results Analysis of Field Study Measurement  

 

 

 A typical diurnal variation of the mean indoor Taman Tropika house 

temperature against the ambient temperature is illustrated in figure 4.2. It can be 

observed that the indoor temperatures were significantly below the ambient. This is 

representative of the pattern for all the tests undertaken. Typical values of peak 

indoor temperatures were between 25°C and 30°C compared with peak outdoor 

temperatures of 26°C-30.5°C. Corresponding average indoor temperature elevations 

ranged between 1°C and 0.5°C below outdoor temperature at 09:00h until 14:00h. 

The result illustrates the effectiveness of the principle of the tropical building design 

employed in this study and the need for the maximal temperature reduction to 

achieve upper limit of neutral temperature within the room.  The use of main 

principle design or the use shaded roof and louvers opening (which would serve 

equally as main element design) is recommended. The study of the shaded roof and 

louvers opening base on previous research has shown promising results. It is possible 

to create a maximum indoor reduction of single room. The incorporation of a 

combined roof, wall, opening and floor element design can be increase temperature 

reduction in the single room. To obtain such a neutral temperature (28.5°C) inside 

the room should be extended the new tropical design based on field study.  
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These present results are similar to previous results where they were indicated 

that the increase of roof solar shaded will decrease the indoor temperature as 

discussed by Bouchlaghem (2000) and Corrado (2004).  Bouchlaghem (2000) 

presented a computer model, which simulate the thermal performance of the building 

taking into account design variables related to the building envelope and optimize 

window-shading devices with optimization programs. According to Corrado (2004) 

the appropriate external shading devices can control the amount of solar radiation 

admitted into the room, which could largely reduce cooling loads and improve indoor 

thermal comfort by computer simulation. Finally, it is our opinion that tropical 

principle design seems to be feasible and viable and the opportunity to development 

new principle design for tropical climate.   

 

 

 

4.4.3 Ecotect Validation of Field Study Simulation 

 

 

Validation of the program was performed by comparing the measurement of 

field study with the Ecotect simulation. Figure 4.3 shows the comparison of 

measurement and simulation result.  It shows that the agreement between the 

measurement and simulation is generally good. The average difference between the 

measurement and simulation for ambient temperature was 5%; the maximum 

difference was 9% for the cavity 07:00h of indoor temperature.  This gives 

confidence in using the computer code to study the indoor temperature.    
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Figure 4.3: Comparing measurement and Ecotect simulation of field study on  

19 September 2007 
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4.4.4 Finding and Conclusion of Field Study of Taman Tropika House  

 

 

The results obtained from the measurement Taman Tropika house has 

illustrated that tropical principle if designed properly can maintain indoor 

temperatures consistently below the outdoor temperature in the morning. The 

maximum indoor temperature on the measurement and simulation is achieved at 

16:00h. The indoor temperature profile also indicates similar trend against the 

outdoor temperature.  This means the indoor temperature close with outdoor 

temperature can be achieved by maximize roof shading and louver opening on single 

space room.   Figure 4.2 illustrates that the upper target neutral temperature (28°C) is 

obtained during one day average indoor temperature measurement and simulations 

except at 12:00h until 19:00h. The neutral temperature performance was achieved 

with modification of tropical building design principle studied. Better performance 

was obtained with a maximum temperature reduction within the single space room. 

The results do, however illustrate the desired effectiveness of the tropical principle 

model.  

 

 

 

4.2 Modification of Tropical Building Design Principle Model in Selected 

Climate Condition 

 

 

Developing the new tropical building design principle had been undertaken 

on selected climate condition (on 19 September) to same ambient conditions. It was 

simplify to make a comparison between field study and the different design principle 

configuration because of the same climatic conditions. However, general and 

subjective conclusions were formulated.  Predictions of the impact of new tropical 

building principle configuration were performed for variety of main building design 

configuration (roof, wall, opening, floor). The influence of these variables on the 

indoor temperature performance is discussed below. An example of variation of new 

tropical building elements is given in figure 4.6, figure 4.7 and figure 4.8  shows that 

the indoor temperature of Taman Tropika model is changing along with the 

modification of tropical building elements. The ability of the modification tropical 

building elements to offer comfortable indoor environment is expressed by the air 
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temperature inside of the Taman Tropika model. The lower air temperature meaning 

more comfortable indoor environment.  

 

 

 

4.2.1 Roof Modification 

 

 

To evaluate the effect of roof tropical building element, several modifications 

were simulated: roof with ceiling, roof with big pitch, roof with insulation 0.04m and 

0,1m, roof with u value 6 W/m
2
K and 1 W/m

2
K, roof with light color and dark color.  

In Figure 4.4, a comparison between indoor temperatures for Taman Tropika model 

is made, for different values of roof elements. The other building elements are 

similar with field study (wall, opening and floor). Under similar ambient conditions, 

the average temperatures obtained inside of the Taman Tropika house for eight 

modifications. It was found that average air temperatures decreased with used ceiling 

which is obvious as less radiation was absorbed by the room. In addition, 

temperature along the Taman Tropika house is at a maximum at the roof with 

material U value 6 as shown in figure 4.4.   
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Figure 4.4: Indoor temperature in relation to roof modification   
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Figure 4.5 illustrates the temperature differences obtained by the roof 

modification. The maximum temperature difference during one day was about 3.2°C. 

The U value of roof material influences quantity of solar radiation absorbed by the 

roof and makes temperature difference between the indoor and outdoor condition 

greater and consequently air temperature inside of the single room rises.  
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Figure 4.5: Temperature differences in relation to roof modification   

 

 

In Figure 4.5, a comparison between indoor temperatures for roof 

modifications is made, for different parameters of ceiling and material. As can be 

seen, temperature differences increases with the use of ceiling, to achieve a lower 

indoor temperature through the single room. The profile of the indoor temperature 

incident on the roof modification showed on figure 4.4. Hence, when the roof with 

ceiling is lower value of indoor temperature, the neutral temperature component is 

lower as compared to the indoor temperature which is uncomfortable condition. 

 

The present results are consistent with the previous results by Mathews 

(1996) and Parker et al. (1995). In fact, according to previous research (Mathews, 

1996) a ceiling was again found to have the greatest energy saving potential with 

respective savings of 62%, 61%, 23% and 39% for the polystyrene, the clay brick, 

the asbestos and the particle board houses. It is therefore suggested that all new low-

cost houses be supplied with insulation integrated ceilings.  Parker et al. (1995) 
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investigated the use of an attic roof ceiling improved performance. For conditioned 

spaces the use of ceiling was the most effective element of improvement of roofs. 

 

 

 

4.2.2 Wall modification 

 

 

To evaluate the effect of wall elements on indoor temperature, several 

modifications were simulated: wall with insulation 0.04m and 0.1m, wall with high 

U value (3 W/m
2
K) and wall with light color, which correspond to roof, opening and 

floor similar with field study. Figure 4.6 show the indoor temperatures at the middle 

of the single room of Taman Tropika house for five different modifications. It was 

found that indoor temperatures decreased with increased U value of the wall.  In fact, 

those previous researchers regarded the fact that big U value will cool the inner 

surface of the wall leading to decreased temperature of the room. 
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Figure 4.6: Indoor temperature in relation to wall modification   

 

 

Figure 4.7 shows the simulation results of the temperature different produced 

by the wall modification. It can be seen that the temperature differences increased 

with U value material of 3W/m
2
K. Figure 4.7 show the comparison of temperature 

difference in the field study, wall U value 3W/m
2
K (maximum reduction) and wall 
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with light color (minimum reduction). This showed that a wall modification with a U 

value 3W/m
2
K was able to provide 0.1°C cooler than field study. Therefore, large U 

value of wall material is recommended.  

 

 

Figures 4.7 illustrates that the similar indoor temperature are obtained on wall 

modification. However, on U value 3,   average indoor temperature indicated a 

lowest value.  This can be explained that on U value 3, the wall reduce solar 

radiation; therefore the indoor temperature values are low.  This indicates, with the 

decrease of indoor temperature, the target neutral temperature levels still were not 

achieved compared to the minimum temperature values at 11:00h until 17:00h.   
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Figure 4.7: Temperature differences in relation to wall modification   

 

 

The comparison of present study agrees with Rosangela (2002), Garde 

(2004), Al-Homoud (2005) and Mallick (1996).  The present results showed that 

temperature reduction due to light color wall and big U value wall effects were 

significant.  Rosangela (2002) investigated the use of a white reflective surface 

indicated the best performance, and minimized the need for insulation. Garde (2004) 

used a medium colored wall for solar protection reflectance. It was recommended to 

put no insulation instead of the one originally planned.  According to Al-Homoud 

(2005) the thermal performance of building envelope is determined by the thermal 

properties of the materials used in its construction characterized by its ability to 
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absorb or emit solar heat in addition to the overall U-value of the corresponding 

component including insulation.  Mallick (1996) indicated rooms with thicker walls 

but high u value tend to be more comfortable. Similarly, the thicker insulation 

material is the less thermal transmission will be (Mahlia, 2007). Accordin to 

Rosangela (2002) the most of the time high mass buildings can be more comfortable 

than low-mass ones  

 

 

 

4.2.3 Opening modification 

 

In field study, the louver of the Taman Tropika house is used as a ventilation 

controller. A combined opening modification between full opening (100% open), no 

opening (close) and small louvers (0.05m) should be solved for same field study 

design elements (roof, wall, floor). Figure 4.8 show the indoor temperature and 

outdoor temperature of the Taman Tropika house with different sizes of opening. 

Generally, decrease the opening size decreased the indoor temperature, which is a 

consequence of the large opening impact decreased indoor temperature similar with 

outdoor temperature. Further, closed opening with good insulation and wall material 

make indoor temperature cooler than outdoor temperature.    
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Figure 4.8: Indoor temperature in relation to the opening modifications  

 



 

 

55

However, as shown in figure 4.8, the temperature differences increased with 

reducing opening size of the Taman Tropika model. Thus, the amount of indoor 

temperature by no opening would be lower than that full opening. Therefore, to 

anticipate the heat gain by the user (human body and equipment), the size opening of 

the Taman Tropika should be 0.1m of louvers size. Figure 4.8 shows that the average 

indoor temperature was achieved for each correspondence opening modification and 

the upper target of neutral temperature (28.5°C) during all day except at 11:00h until 

18:00.   The close opening modification indoor temperature profile indicated lesser 

than the field study indoor temperature profile. 
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Figure 4.9: Temperature differences in relation to the opening modification   

 

 

From figure 4.9, it is clear that temperature reduction up when the opening 

size is minimal. Therefore, the results are similar with Rosangela (2002) and Prianto 

(2003), there is no need of a much large opening for the climatic conditions 

considered. Opening type and size should be chosen in accordance with the building 

passive cooling (lesser than outdoor temperature) for diurnal building operation 

small opening are advisable while for the building day operation, louver opening 

type should be adopted. Prianto (2003) examined various types of louver has 

significant effect on the indoor comfort level. According to Rosangela (2002) the 
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type smaller opening area for heavyweight construction provided better performance 

of indoor temperature. 

 

 

 

4.2.4 Floor modification 

 

 

The effect of floor modification was analyzed by performing simulations for 

floor color and floor insulation. Figure 4.10 show indoor temperature profiles for 

different floor modification, as well as modification results with a floor with light 

color. Floor modification does not change significantly the indoor temperature and 

temperature differences, the maximum being obtained at 15:00h.  
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Figure 4.10: Indoor temperature in relation to the floor modification   

 

 

Figure 4.11 show plot of temperature differences at different floor 

modification values. Similarly, higher temperature difference at floor with light color 

caused the small temperature differences. By changing the floor color from solar 

absorption 0.7 to 0.1 the temperature difference derived in the single room is 

increased to the maximum value of 3.1°C at 13:00h. The maximum temperature in 

floor modification was still above the minimum target of neutral temperature.  This is 

mainly due to the highest temperature into the building during mid day. 
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Figure 4.11: Temperature differences in relation to the floor modification   

 

 

Figure 4.11 shows the color light of floor have significant impact to reduce 

indoor temperature. The present result is similar with previous study by Bajwa 

(1995) which the colour of floor surfaces has a great deal to do with the heat 

absorption and re-radiation. Lighter colour with rough surface finishes were used to 

reduce direct heat gain in the buildings (Bajwa, 1995). 

 

 

 

 

4.2.5 Selected modification model 

 

The discussion of the results of this simulation modification are referred to 

the field study configuration, model A (roof with ceiling, small roof u value, roof 

with insulation, big wall u value, wall with insulation, wall color light, opening 

louvers 0.1m), model B (roof with ceiling and small u value, wall with large u value 

and light color, opening louvers 0.1m) and model C (roof with ceiling and small u 

value, wall with large u value and light color, opening louvers 0.05m). All models 

used the floor material. For the purpose of comparative analysis on the effect of the 

new principle design (model A, model B, model C), the basic model (field study) 
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indoor temperature and temperature difference values were used to determine the 

deviation of values at the proposed configurations.  

Figure 4.12: Indoor temperature in relation to the proposed model 

 

 

The indoor temperature data shows that at proposed C the temperature value 

is the lowest in mid day (27.1°C until 28.5°C). The highest temperature reduction 

effect is recorded at model C of the big U value wall and decreases towards the 

increase of the ratio opening. The average indoor temperature of proposed A, B and 

C for the south oriented house are shown in figure 4.12.  The minimum indoor 

temperature was obtained in proposed C.  Results on the average temperature were 

obtained at similar profile of the three rooms. The results showed significant 

temperature reduction which the indoor average temperature values obtained neutral 

temperature (27.4°C) was less than upper limit neutral temperature (28.5°C). 
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Figure 4.13: Temperature differences in relation to the proposed model 

 

 

Figure 4.13 illustrate effectiveness of each selected proposed model in 

temperature reduction for the selected climate condition (19 September). The 

temperature reduction value increases significant at model B and C. This situation is 

reversed at the model A. The temperature reduction obtained from the proposed 

model A shows that maximum temperature reduction achieve in the night and 

maximum temperature addition during the day time.  The average air velocity pattern 

on the field study and proposed B is similar profile.   The results indicated that the 

maximum temperature reduction (5.5°C) through the model C. The maximum 

temperature reduction was obtained during 13:00h for model C. The effects of model 

C on different climate condition (orientation and design days) will be simulated to 

show the thermal environment performance of the new tropical building design.   
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4.3. Performance of New Tropical Building Design 

 

The primary purpose of the new tropical building designs to main building 

elements for improvement passive cooling strategy.  The performance of proposed B 

as new tropical building design was obtained at hourly condition during one year for 

four main cardinal orientations (north, south, east and west). The indoor temperature 

was analyzed as a function of new tropical building design for four design days (17 

March, 19 June, 19 September and 4 December).   

 

 

 

4.3.1 Orientation 

 

The average indoor temperature on respective orientations showed that the 

west (27.65°C) received the higher amount of indoor temperature than the other 

orientations (figure 4.14).  Hence, the orientation of Taman Tropika house affected 

the amount of indoor temperature. The values obtained for the average indoor 

temperature of the Taman Tropika house model on the west orientation indicated a 

highest indoor temperature (30.7°C) at 17:00h.  The average indoor temperature 

values obtained at 12 hour on west orientation was 28.43°C, 28.36°C on south 

orientation and 28.35°C on North and East orientation.  The profile of the indoor 

temperature into the house indicated a reduction when the orientation is changed 

from west to east.   Figure 4.14 illustrate the profile of the indoor temperature for 

new tropical building design models on all orientations.  Further, the indoor 

temperature is generally high during the afternoon compare with in the night. 

However, the indoor temperature of the all selected models is higher during the 

afternoon hours than in the morning on all oriented aperture.  Although north and 

east orientations indicated the lower indoor temperature in the afternoon compare on 

south and west orientations.   
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Figure 4.14: The indoor temperature in the new tropical building design on north, 

south, east and west orientations 

 

 

The average indoor temperature received on the north orientation is lower 

than the other orientations in night (0.01°C) and higher in day (0.01°C).  In 

comparison, the average of indoor temperature on north orientation received 27.4°C 

in the night less than the other orientations.  Comparatively, the day obtained average 

indoor temperature 27.3°C on the north orientation less than the other orientation. 

The mean reduction of indoor temperature on respective orientations showed that the 

north received the comfortable than south, east and west orientation.  In comparison, 

the north indicated less than the other orientations in terms of temperature reduction 

through the single room on monthly data.  On all orientations, they represent the 

same condition as the reduction in air temperature pattern. Figure 4.14 shows that the 

air temperature in the room, which ranged between 26.9°C and 28.5°C, was more 

within the neutral temperature. The air temperature in the occupant zone of all 

orientations was higher especially at 16:00h until 18:00h. 
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4.3.2 Design Days 

 

 

The effects of hourly variations of selected design day on the dry bulb 

temperature were assessed with respect to the new tropical building design.  This 

enables us to understand the condition of time component on the overall indoor 

temperature of the building.  The analysis is done based on four days: 17 March, 19 

June, 19 September, 4 December as design days. Hence, during 17 March and 19 

September the sun rotates closer to the tropical region and have peak air temperatures 

while on 19 June and 4 December the sun rotates furthest from the tropical region.  

The average indoor temperatures were obtained for each hour on the selected days. 

The profile of the indoor temperature in the new tropical building design model 

exhibited a steep gradient on 17 March and 19 June than in 19 September and 4 

December.  Further, on 19 June achieved a maximum of indoor temperature is 

29.5°C at 18:00h and a minimum is 27.5 at 08:00h.   The profile pattern of indoor 

temperature is reduction on 4 December with the maximum of indoor temperature 

28°C and minimum 26.5°C.  But on 17 March, the profile of indoor temperature 

exhibited fluctuated curve than on the other three days.  This is mainly due to the 

impact of ambient temperature. 
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Figure 4.15: The indoor temperature in the new tropical building design on 

respectively day 
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The average indoor temperatures on the new tropical building design are 

evident on 19 June, 19 September and 4 December on north-south orientation (figure 

4.10).  A high amount of the indoor temperature in the model occurs at 18:00 on the 

correspondence dates.  However, on 17 March, it exhibits the maximum incident 

values at 19:00h.  On 19 September can increase the indoor temperature reduction 

into the new tropical building until 5.5°C during the day.  On 4 December and 17 

March the graph exhibits that, a new tropical building model can increasing the 

temperature reduction at mid day when the sun is at higher altitudes.   

 

 

 

4.3.3 Findings of the Performance of New Tropical Building Model 

 

 

Figure 4.11 until figure 4.14 illustrate effectiveness of proposed new tropical 

building model in rising indoor temperature reduction for the respective orientation 

and design days.  The calculations were compared to indoor temperature on the new 

tropical building design model on respective orientations.  The north, south, east and 

west orientations had similar profile of the relationship between the new tropical 

building design model and the increasing indoor temperature reduction.  The north 

and east orientation air flow rate profile indicates a lower gradient than the south and 

west profile.  This implies that on the south and west orientation, the use new tropical 

building design had a lesser impact on the amount of indoor temperature reduction 

than on the north and east orientation.  The indoor temperature profile for all 

orientations indicated about 0.1°C reduction at mid day.  The east orientation 

indicated the maximum reduction percentage than other orientations.    The effects of 

new tropical building design on the average indoor temperature were assessed for 

each hour on the selected design days (17 March, 19 June, 19 September and 4 

December).The maximum average indoor temperature reduction on all respectively 

days can be achieved by new tropical building model on 19 September at 13:00h 

(5.5°C). Further, on 19 September received average of indoor temperature reduction 

compared to all other days.  The indoor temperature profile showed a similar pattern 

for all respective days. 
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The results, analysis and findings of the simulation exercise are done to 

determine the influence of the new tropical building design for hourly conditions and 

orientations in term of indoor temperature were presented in this chapter.   The 

analysis of the above performance variables were carried out in annual monthly data 

for east, west, north and south orientations.   The results of indoor temperature and 

comfort neutral temperature value were plotted against house model and orientation 

in the same graph.  Similarly, absolute target neutral temperature was also based 

against house model in the same discussion.   It enabled us to understand the 

influence of house model on the correspondence orientations, dates and hours.  The 

hourly average results of indoor temperature were also analyzed for the respective 

orientations.  This gave overall view of the influence of different house model and 

orientation on the patterns of temperature value variation throughout the day.  This 

chapter has analyzed the results obtained for the proposed house model and house 

orientation for improved thermal comfort.   

 

Comparison of the average indoor temperature on field study and new 

tropical building model indicated that new tropical building obtained the minimum 

air temperature and within upper limit of neutral temperature.  According to figure 

4.12 and figure 4.14, the new tropical building achieved below target of neutral 

temperature for thermal comfort under the selected climate condition. The average 

air temperature on field study indicated above of neutral temperature for mid day.  

However, the field study can significantly decrease indoor temperature below 30°C.   

Further, new tropical building decreased the average air temperature up to 2°C on 

respective conditions. The new tropical building design provides the optimum indoor 

comfortable. It enabled us to understand the influence of tropical principle design 

components on the overall indoor comfortable.  The results showed that ceiling, 

material and opening were main contributors on improving indoor comfortable.  The 

results revealed that the use of ceiling, wall material with 3W/m
2
K U value and the 

use of small louvers as opening were the three important aspects towards building’s 

indoor comfortable environment.   

 

 

 

 

 



 

 

 

 

CHAPTER 5 

 

 

 

 

CONCLUSION   

 

 

  

The findings of the research have been presented and discussed in the 

previous chapter.  This final chapter will conclude the overall findings of the report.  

The application of the research findings are also discussed in relation to the aims and 

objectives of the report as set in Chapter 1.  Finally, further work related to this study 

will be suggested in this chapter in order to strengthen and compliment this report. 

 

 

 

 

5.1 Review of Study Objectives and Research Questions 

 

 

 As stated in Chapter 1, the main aim of this study is to assess and compare 

the impact of tropical building design principle for comfortable indoor environment 

in Malaysia residential building.  Other specific objectives of the study are as 

follows: 

- To identify and establish the effectiveness of existing tropical house design 

against actual outdoor condition 

- To develop new tropical building design principles base on theoretical and 

actual building performance with scientific evidence 

 

 

The hypothesis of this research is that a new tropical building design principle will 

achieve the following: 

- Decrease indoor air temperature compare with outdoor air temperature.    

- Provide minimum comfort index at thermal comfort temperature requirement.   
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- Thus, decrease and provide minimum comfort index to predict the 

effectiveness of new tropical building design principle. 

 

 The term “new tropical building design principle” refers to best performance 

of building design principle which will decrease maximum indoor air temperature to 

obtain comfortable environment.  

 

 

The following questions will be addressed in this study: 

Q1.  Does the use tropical building design principle effective in Taman Tropika 

House? 

Q2.  What are the tropical design principles influences in achieving comfortable 

indoor environment in Taman Tropika House?   

Q3.  What is the new tropical building design principle to obtain maximum 

comfortable indoor environment under Malaysian climate conditions? 

Q4.  What is the limitation of the new tropical design principle model to increase 

comfortable indoor environment in the residential building? 

 

 

 

5.2 Research Conclusion 

 

 

This section attempts to conclude the research by summarizing the major 

findings of the study and answering the research questions as stated.  They are as 

follows: 

 

 

 

5.2.1 Comfortable Indoor Environment of Field Study  

 

 

 

a. The air temperature in the existing Taman Tropika house is similar compare to 

outdoor temperature.  The results were compared for the neutral temperature and 

received higher than upper limit of neutral temperature.  

 

b. Simulations of the Taman Tropika house were developed to predict the air 

temperature under similar condition of the existing building.  Observations on the 
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indoor temperature revealed that this simulation in good agreement with field 

measurement result.  

 

 

c. Based on the measurement and simulation results, significant impact on indoor 

temperature is above the neutral temperature for selected conditions.  The 

investigation of the indoor temperature also showed that this house on all 

correspondence months experienced the temperature value of an uncomfortable 

condition.  Generally, the Taman Tropika house received the highest indoor 

temperature in the afternoon.  Increase of outdoor temperature on the annual 

month data also resulted in the increase of indoor temperature values of the 

thermal comfort.  Therefore, it is important to consider the indoor temperature in 

existing house especially in the afternoon times with respect to outdoor 

conditions. 

 

 

 

 

5.2.2 Modification of Tropical Building Design Principle  

 

 

a. The study indicated that the proposed new tropical building design achieved the 

minimum indoor temperature.  The modifications were done to roof structure, 

wall component, opening and floor to achieve minimum indoor temperature.  

Hence, it can be concluded, that for an indoor comfortable house, the Taman 

Tropika building modification can be used to develop the appropriate design of 

tropical building design and provide lower than neutral temperature. 

 

 

b. The simulation results comparing different roof modification indicate that the 

roof with ceiling provide indoor temperature lower than the other roof 

modification on hourly data.  This is above the upper limit neutral temperature 

for thermal comfort.  In the case of the roof with ceiling, the lowest indoor 

temperature of 29.6°C on maxima peak time (19 September) was achieved. 

 

c. The air temperature values indicated lower value in the U value and color wall 

modification compared to another wall modification house models.  Considering 
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the material attributes to develop this the Taman Tropika model; therefore the 

study suggest that wall material with high U value and light color wall are 

required to achieve maximum temperature reduction.   

 

 

d. The indoor temperature on opening modification indicated minima indoor 

temperature in the small percentage opening size.  Differently, it experienced 

highest maximum temperature reduction compared to the other opening 

modification.  Influence of the opening size indicated a decrease opening size in 

indoor temperature and has significant impact on the comfortable condition.  

 

 

e. Simulation of the Taman Tropika house with floor modification on light color 

resulted in better indoor temperature performance than the other floor 

modifications.  This implies that changing floor color surface had an impact to 

indoor temperature reduction. These results can be combined with another 

building modification to obtain the optimum thermal comfort house model.  

 

 

 

5.2.3 New Tropical Building Design Principle 

 

 

a. The relationship between the thermal comfort and the proposed tropical building 

were determined based on the assumptions of the indoor temperature and 

temperature reduction on the selected climate condition. The optimum proposed 

model suggested that the proposed model C can be achieved best proposed model 

as the new tropical building.   

 

 

b. Hourly data in comfort condition had more impact on the amount of the indoor 

temperature and temperature reduction received inside the new tropical building  

house.  Hence, the results indicated that in the afternoon, the new tropical 

building has upper limit of neutral comfortable temperature and minima 

temperature reduction. 
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c. The comfortable condition on new tropical building was obtained on the north 

orientation. It showed the lowest indoor temperature and highest temperature 

reduction.  However, comparison with all orientations indicates that when 

considering only the indoor air temperature, all orientation can become thermally 

comfortable on proposed model C. Thus for low rise buildings impact of 

orientation is minimum. 

 

 

Table 5.1: Influence of proposed tropical building design for indoor temperature 

 

Time outdoor Field study Model A Model B Model C 

0 24,5 26,1 25,6 26,1 27,1 

1 24,3 26,2 25,7 26,2 27 

2 24,1 26,1 25,6 26,1 26,9 

3 23,6 26 25,4 26 27 

4 23,5 25,9 25,3 25,9 27 

5 23,4 25,9 25,2 25,9 26,7 

6 23,4 25,9 25,3 25,9 26,7 

7 23,2 25,8 25,1 25,8 26,7 

8 24 26,2 25,7 26,2 26,6 

9 27,4 27,5 27,5 27,5 26,7 

10 28,9 28,1 28,3 28 26,9 

11 31,4 29,1 29,7 29 27,1 

12 32,5 29,6 30,3 29,5 27,2 

13 32,9 29,8 30,7 29,8 27,4 

14 32,2 29,7 30,5 29,6 27,8 

15 32,5 29,8 30,7 29,8 28 

16 32,3 29,7 30,5 29,6 28,3 

17 31,9 29,7 30,5 29,6 28,5 

18 31 29,2 29,9 29,2 28,5 

19 28,7 28,3 28,6 28,3 28,3 

20 27,6 27,8 27,9 27,7 28,2 

21 26,9 27,4 27,4 27,4 28,1 

22 26,6 27,2 27,1 27,2 28 

23 25,8 27 26,8 27 27,8 

 

 

d. The hourly data of the new tropical building model showed the maximum air 

temperature and temperature reduction on different peak temperature days.  

Increase of outdoor temperature on mid day until the afternoon time increased the 

indoor temperature in new tropical building but still close with upper limit of 

neutral temperature.  The constant air temperature obtained contributes to 

effective comfortable condition on different peak design day.   
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f. Also the results of monthly data indicated that indoor air temperatures are lower 

on new tropical building than the field study for all respectively conditions with 

high U value and small louver opening size (0.05m).   

 

 

 

5.3 Suggestions for Further Research 

 

 

This research has revealed two significant findings. Firstly, the introduction 

of the Taman Tropika House is significantly produced thermally comfortable house 

in the morning. It can maintain the indoor temperature similar with outdoor 

temperature but still above for thermal neutral temperature for comfort (28.5°C) in 

single space room. Secondly, the new tropical building design experienced minimum 

thermal comfort inside the rooms. As a result the internal thermal comfort 

performance of the new tropical building cool condition. Some of the area even 

achieved air temperature below 28.5°C. However, the introduction of the new 

tropical building design roof solar shade, wall material and louver opening at the 

house increases and further improve the thermal comfort condition.  

 

 

This study has suggested that how a simple tropical building principle house 

strategy can be effectively used to reduce the air temperature and increase 

comfortable condition.  The new tropical building design strategies require simple 

and rational modifications in material of the wall and window openings.  However, 

several areas of study need further investigation, to develop the knowledge of the 

tropical building design strategies in Malaysia and regions with design of similar 

climates.  Therefore, it is recommended that future research could look further into 

this area in order to strengthen and compliment this research.  

 

 

The following are some suggestions: 

a. Investigation on the effectiveness of the wall material.  Apart from higher  

U value of wall material, the other factors need to be investigated are; the 

combining between several local material.  
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b. Further investigations are required to determine the effects of the new 

tropical building strategy on different room size on various building 

forms. 

c. Further study and analysis on existing Malaysia house typology should be 

carried out to give a better indication on the indoor thermal comfort 

performance. Hence, a better comparison on the performance can be 

carried out. 

 

 

Finally, it can be acknowledged that this work is a significant contribution by 

the researcher towards providing indoor comfortable house. It is hoped that it can 

induce good design solution that is not impossible in term of its low cost towards 

providing better comfort and more beneficial to the user. 
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ABSTRACT 

 

It is a generally held view that, in tropical countries, traditional house is more 

sympathetic to the prevailing climate and provide comfortable interiors. This paper 

analyses the above hypothesis for Taman Tropika House (TTH) in Universiti 

Teknologi Malaysia (UTM), which was designed emplacing tropical design 

strategies.  The analysis of actual performance of the house can provide information 

on the effectiveness of applying principle of passive design that is appropriate for 

tropical climate.  Empirical studies have been performed and internal and external air 

temperatures were measured. The internal data were collected in three zones; roof 

zone, middle zone enclosed with walls and the elevated floor surface.  This study 

uses the neutrality temperature as a base to determine the thermal performance of the 

TTH.  The upper and lower limits of the comfort zone without air movement were 

28.5ºC and 23.5 
o
C respectively. Results show that the TTH architectural design 

solutions do not permit good passive cooling for thermal comfort during the whole 

day. The elevated floor effectively maintained the surface temperature within the 

comfort range for the most of the hours of the day.  

 

Keywords: Taman Tropica House, traditional design principles, thermal 

performance 

 

 

1.0 INTRODUCTION 

 

Local climate greatly affects the indoor thermal environment in buildings.  In tropical 

climates, buildings are overheated during the day due to solar heat gain through the 

building envelope and solar penetration through windows.  From a thermal comfort 

point of view, it requires lowering of indoor daytime temperature below the outdoor 

temperature using building elements and by passive or active systems.  Techniques 

for such thermal modification have been widely addressed in traditional building 

technology.  Traditional building techniques utilized the environmental challenges 

and responds to achieve comfortable indoor environments.  This subject has been 

dealt with by a number of researchers (Koenigsberger et. al, 1973; Evans, M. 1980).  

It can be argued that environmental performance of a traditional house also largely 

depends on the surrounding environment. The random layout, the natural setting, the 

use of local building materials and the lack of physical barriers give the village 

(kampong) an informal and open atmosphere compared to present urban and sub-

urban environments.  Direct application of traditional design principle to 

contemporary designs indicated adverse results on the environmental performance of 

the building (Ahmad, 2005). If traditional architecture works well when blending 

with nature, the question arises whether these traditional design principles are 

responsive with harsher environment that we experience today?  
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A comparative study between traditional Malay house and modern low cost house by 

Jones P. J, et.al (1993) indicated that both house types had 2.5
o 

C higher internal 

temperatures than the external temperatures during the day time. Further, at night the 

traditional house cooled rapidly near to external temperatures compared to the 

modern low cost house, which retained the temperature 2.5
o 

C higher than the 

external temperature throughout the night.  However, different architectural elements 

of traditional house; roof, wall, opening and floor, need to be explored to determine 

the influence on the thermal performance. Thus, design principles implemented in 

traditional architecture can be applied in improving the current architecture. Thereby, 

present study set out to investigate the thermal performance of a timber house 

designed using traditional tropical architectural principles.  

 

This paper discusses the results of a field measurement on the thermal performance 

of traditional Malay house in hot and humid climate. The experiment was carried out 

at the Tropical House in Taman Tropika UTM which was designed emplacing 

tropical design strategies, traditional Malay design concept and use of local material. 

Many visitors found the building provides good shelter during hot days, suggesting 

that indoor climate would be lower than the outdoor climate.  However, there is no 

evidence to justify the performance of this building in term of its actual indoor 

climate and comfort condition that can be compared to establish thermal comfort 

condition as suggested by many researchers such as Md Rajeh (1989), Abdul Malik 

(1992) and Adnan (1997).  Evaluation of actual performance through this research 

can provide further improvements and advancement of knowledge and design 

appropriate within tropical climate.  It is hypotheses that performance of Taman 

Tropika House is similar or lower than outdoor environmental condition.  This paper 

will determine the justification of the hypothesis.   

 

 

2.0 METHODOLOGY 

 

2.1 Taman Tropika House at UTM (TTH) 

 

The basic field study is a timber house with a post and lintel structure raised on 

wooden stilts and a typical room configuration with overall size of 10m length and 

5m width.  The wall plate is about 3m and the ridge plate at the center of the roof is 

about 4.2m high from the floor surface.  This TTH represents a single space room 

without internal partitions.  The house is surrounded by lush landscaping and the 

longitudinal axis of the house is oriented east- west.  

 

As the traditional Malay house, the TTH has architectural elements that can be 

categorized into three main zones.  The top zone, which covers the roof element, the 

middle zone for wall and the bottom zone which is the elevated floor space above the 

natural ground level (figure 1).  The roof is the most important building envelope 

component providing shelter from external climatic forces, such as solar radiation, 

rain and wind.  Its performance will depend on the form, construction and material.  

The roof form at TTH is similar to the ‘bumbung lima’ (limas) or a hipped roof with 

Dutch gable ends.  The Dutch gable is decorated with ventilation panels to extract the 

heated air outdoors.  Timber frames are used as roof structure covered with clay tile 

and timber panels underside of the tiles. The eave of the roof extends about 2.8m 

from the external wall thus controls the solar penetration even at low solar angles.  
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The middle zone is enclosed with 25mm thick wooden horizontal louvered panels 

and 12mm thick solid timber walls.  The wooden horizontal louvered panels cover 

80% of the wall area and positioned in all four cardinal orientations.  The ventilation 

gaps between the horizontal louvers are about 25mm and each panel is about 2.9m 

high from floor surface.  The design intentions of these horizontal louver panels are 

to provide cross ventilation while the openings are closed and for night ventilation.  

This will reduce the effect of warm air in the room.      

 

The floor is constructed with 25mm and 150mm wide wooden stripes. The height 

between the natural ground and the raised floor of the building differed from 1.4m to 

0.8m.  An elevated floor can influence on two distinct thermal criterions, provide 

good airflow under the floor space and avoid direct heat transfer from the ground.  

However, the effectiveness of these horizontal louvers and the elevated floor in 

reducing the internal air temperatures needs to be explored before applying them in 

contemporary architectural design.  . 

 

 

 
 

Figure 1: Typical cross section of a Traditional Malay House (Source: Yuan, Lim 

Jee 1987) 

 

 

2.2 Instrumentation 

 

The physical measurements were carried out using air temperature and humidity data 

loggers and surface temperature data loggers.  The temperatures for both internal and 

external were recorded at every 10 minutes.  The data were averaged for every hour 

to obtain the hourly values.  The positions and the measured variables of the data 

loggers are described in table 1.  The building was unoccupied during this period.  

The measurements were collected for one-month period starting from 20 September 

to 10 October 2007.   

 

 

 

 

 

Roof 

Middle Space 

Floor Space 
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Table 1:  Description of data logger positions and measured variables installed at 

Taman Tropika UTM 
No Position & Description Measured variable  

1 Middle of the Space on the timber floor surface Internal floor surface temperature  

2 Middle of the Space, 1.5m from floor level Internal air temperature & humidity at 

human body level 

3 Middle of the space, 3m from floor level Internal air temperature & humidity 

under the roof space  

4 Outdoor weather station Outdoor air temperature 

 

 
 

Figure 2: Physical data collection at interior and the exterior views of TTH 

 

 

The analytical method of evaluating the comfort zone for Malaysia have been studied 

by several authors (Rajeh, 1988, Jones, P. J, 1993), using the “Neutrality 

Temperature”.  This study uses the neutrality temperature as a base to determine the 

thermal performance of the taman tropika house.  In various studies, neutrality 

temperature is defined as the temperature that gives a thermal experience neither 

warm nor cool, which is a state of “neutral” or “comfortable”.  It is the mid point of 

the comfort zone, as an average value for many experimental subjects.  According to 

Auliciems, A. and S. Szokolay (1997) with the range of the comfort zone is taken as 

5°C, thermal comfort temperatures extends approximately about 2.5°C above and 

below the neutral temperature.  According to Szokolay comfort formula, the neutral 

temperature needed to maintain at 26ºC.  With the width of the comfort zone taken to 

be 5ºC (Auliciems, A. and S. Szokolay, 1997), thermal comfort temperatures extends 

approximately about 2.5ºC above and below the neutral temperature.  Taking the 

neutral temperature of 26ºC in free running building, the upper and lower limits of 

the comfort zone would then be 28.5ºC and 23.5 
o
C respectively.  This neutral 

temperature is for conditions without air movement.  

 

 

3.0 RESULTS AND ANALYSIS 

 

3.1 Comparison of Internal and External Temperature  

 

The purpose of this paper is to discuss the influence of the tropical design strategies 

on the thermal performance of the taman tropika house at UTM. The results are 

analysed by comparing the internal and external temperatures of the three zones 

identified, namely, top zone covered by the roof element, middle zone enclosed by 

the wall element and the elevated floor space.  Figure 3 & 4 illustrate the results of 

the internal temperatures obtained at 1.5m and 3m height from the floor level over 

the period of three weeks.  This period was taken in order to establish the trend of the 

temperature over a period longer than a day (24 hours).  The external and internal air 
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temperatures did not vary very much during the three week period and therefore any 

24-hour period selected would be representative.  
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Figure 3: Comparison of internal and external temperature at 1.5m height from floor 

level - 20
th

 September to 10
th

 October at TTH 
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Figure 4: Comparison of external and internal air temperature at 3m height from 

floor level - 20
th

 September to 10
th

 October at TTH  

 

 

The internal surface temperature of the raised floor was measured and the results are 

illustrated in figure 5.  The internal floor surface temperature showed higher value 

during night time, while lower value during daytime compared to the external 

temperature. This pattern was consistent throughout the measured experiment days. 

Therefore two dates are selected to compare the external and internal temperatures of 

the physical measurement.  
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Figure 5: Comparison of external and internal air temperature and indoor floor 

surface temperature at 1.4m height from natural ground level - 20
th

 September to 10
th

 

October at TTH  

 

The reveiw of maximum and minimum temperature data on each day indicated that 

the air temperature vary little between the day and night.  External, internal and 

surface maximum and minimum temperature resulted an average 8.2 
o
C, 7.9

o
C  and 

5.3
o
C temperature differences respectively.  The comparatively smaller temperature 

differences indicates that building envelope cannot cool down sufficiently at night 

therefore use of lightweight construction is recommended.  
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Figure 6: The external and internal temperature profile for the selected days 

 

As illustrated in figure 6, 30
th

 September and 5
th

 October were selected to analyse the 

internal and external temperatures. These two days were selected as they indicated 

the minimum and maximum external temperatures respectively, during the 

experiment period. The external and internal temperatures illustrate a similar pattern 

during day and night time. Similarly, the roof zone (3m height) and middle zone 

Neutral Temperature Limits 
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(1.5m height) of the internal space indicated insignificant temperature difference. 

This may be due to the exposed nature with louvers of the external walls of the TTH. 

This means that the effect of the wall design for cross ventilation with louvers had 

influence on the internal temperature to be similar as the external temperature during 

the day time. Further, the roof does not include any insulation materials. Therefore 

the heat transfer through the roof element is high.  It is important to reflect or re-

radiate the heat to outdoors as much as possible before entering to the space inside. 

Thus, the use of insulation material is inevitable with the roofing material. Use of 

dark colour surfaces for roof, wall, louvers and the floor also may have influenced on 

the high internal temperature.    

 

The external maximum temperatures were recorded as 32.7
0
C (14:00hr) and 33.85

0
C 

(15:00hr) on 30
th

 September and 5
th

 October respectively. The maximum internal 

temperatures at 1.5m height were recorded as 32.6
0
C (14:00-16:00hrs) and 34.1

0
C 

(15:00hr) on respective days. The internal temperature recorded above the comfort 

range (28.5
0
C) between 10:00-19:00hrs on both days. This emphasises that during 

daytime TTH is uncomfortable with louvered openings.   

 

The minimum external and internal temperatures were indicated at 6:00 AM on both 

days. On 30
th

 September, the minimum internal temperature indicated below the 

comfort limits at 1.5m height between 3:00 – 8:00 AM.  Although, the internal 

temperature increased above the external temperature during night hours (between 

20:00 to 07:00 hours), the house is under comfort range between 20:00 hours at night 

to 9:00 hour next morning. Thus, uses of louvers are inadequate to control the hot air 

during daytime although it may control the glare and direct radiation. But during 

night time the louvers may help to reduce the internal air temperature through stack 

effect.  Hence, the design principles for cross ventilation need to rethink considering 

the time of day and especially in areas with minimum ventilation. Further, the results 

emphasise the importance of the use of night ventilation in hot and humid climate.   
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Figure 7: Internal to External air temperature difference on 30

th
 September and 5

th
 

October at TTH 

 

Figure 7 illustrates the differences obtained by comparing the internal and external 

temperatures. Positive values means the external is cooler than the internal 

temperatures, while negative value means the external is hotter than the internal 
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temperatures. The maximum difference between internal and external air 

temperatures is within 3
 
degree and this transpires during daytime.  Night-time 

temperature difference is less compared to the daytime temperature difference. The 

temperature differences between internal and external are relatively very small.  This 

is due to lightweight and low thermal capacity materials used for construction.   
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Figure 8: Comparison of floor and wall surface temperature with internal and 

external air temperature 

 

The surface temperatures of the floor and wall were measured to understand the 

influence of the heat towards achieving a comfortable interior. According to a study 

conducted by Zhang, L et. al (1998), to achieve internal air temperature within 21-

23
o
C, the floor surface temperature need to maintain within 26-30

o
C.   The reradiated 

heat from the floor surface is high compared to the wall surface during night time 

(figure. 8). Both surface temperatures indicated a higher value compared to internal 

and external air temperatures in the night.  During the daytime the internal wall 

surface temperature measured higher temperature than the floor surface temperature. 

The maximum external temperature was indicated at 14:00 and 15:00 hours on 

respective days. However, the maximum internal floor surface temperatures were 

measured at 16:00 hour on both days.  This means the thermal lag properties of the 

material used at TTH are low.  Use of light weight materials at TTH has reduced the 

amount of heat stored by the wall.  
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Figure 9: Comparison of temperature differences between external air temperatures 

and internal surface temperature 

 

 

The difference between external and internal wall and floor surfaces temperatures are 

illustrated in figure 9. Positive values indicate that internal surface temperature is 

cooler than the external temperatures, while negative values means the internal 

surface temperatures are hotter than the external temperatures. According to figure 9, 

the temperature difference between floor surface and internal air temperature is 

higher compared to the wall surface and internal air temperature. Smaller the 

temperature difference higher the amount of heat transferred through the material. 

Further, figure 9 illustrated that wall surface temperature is lower than the outdoor 

temperature (To>TiWs) from 9:00AM to 12:00 noon and 8:00AM to 12:00 noon on 

respective days. Thus, over 80% of hours of the day, the internal surface temperature 

of the wall is higher than the outdoor temperature. Internal floor surface temperature 

indicated a lower value (To>TiFs) compared to outdoor temperature during 9:00AM 

to 18:00PM and 8:00AM to 17:00PM on respective days. This means the internal 

floor surface temperature measured high over 60% of hours within a day.  This 

indicates that the reradiating temperature from the wall surface influence on the 

internal air temperature compared to the reradiating temperature from the floor 

surface, especially during the daytime. The use of 12mm thick timber as wall 

element had little effect on reducing the heat transfer from outside to inside during 

daytime compared to 25mm thick timber floor. Further, the dark coloured surfaces of 

the wall also reflected poorly and allow more heat gains.  The elevated floor reduced 

the heat gains from the floor surface to the interior during daytime. However, the 

stored heat from the floor influenced the indoor air temperature to be higher than the 

external air temperature during the night time.    

 

 

4.0 CONCLUSION 

 

The results of the physical measurements of the air temperatures of the existing 

Taman Tropika house proved that the internal air temperature is similar to the 

external temperature. The results were compared for the neutral temperature and 

received higher than upper limit of neutral temperature for comfort zone. This is due 

to the low maximum and minimum temperature difference experienced in the warm 

humid zone and due to the use of lightweight materials for construction. The TTH is 
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within the comfort range during late night time and in the morning hours when the 

external environment is cooler, while during the daytime the air temperatures were 

above the comfort range.   During the day time, efficiency of the roof, wall and 

louvered panels are low in order to reduce the internal air temperature than the 

external air temperature at TTH.  Louvered panels provide required night ventilation 

to bring the temperature within comfort range at night. However, the design 

principles for cross ventilation need to rethink considering the time of day and 

especially in areas with minimum ventilation.  

 

The elevated floor reduced the heat gains from the floor surface to the interior during 

daytime. However, the stored heat from the floor influenced the indoor air 

temperature to be higher than the external air temperature during the night time. The 

heat gain from the floor surface enabled to maintain the internal temperature within 

the comfort temperatures.  
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