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ABSTRACT 
Wavelet analysis has been proven to be effective in 

analysing non-stationary vibration signals. However, the 

interpretation of the wavelet analysis results, such as a wavelet 

scalogram, requires high levels of knowledge and experience, 

which remains a great challenge to practitioners in the field. 

Recently, the rapid development and advancement of image 

processing technologies have shed new light on this challenge. 

In this study, image features such as Harris Stephens (Harris); 

speeded-up robust features (SURFs); and binary, robust, 

invariant, scalable keypoints (BRISKs) were obtained from a 

red, green, and blue (RGB) colour-filtered wavelet scalogram. 

Each colour filter generates a set of image features from an 

RGB-filtered wavelet scalogram. Then, the features were 

utilised as inputs to the fault classifier, namely the support 

vector machine (SVM), for fault classification. However, 

there will be a situation where the classification results from 

the fault classifier, based on the image generated from the 

different colour filters, are contradictory to each other. No 

conclusion can thus be made in these situations. This paper 

employed the Dempster-Shafer (DS) theory to refine the 

contradicting results and provide an ultimate conclusion to the 

machine condition. Therefore, the proposed method has 

improved the fault classification accuracy from 69% to 78%.  

INTRODUCTION 
The vibration signals that are collected from turbine blades, 

bearings, and gears are usually non-stationary signals. 

Wavelet analysis has emerged as a powerful tool for non-

stationary signal analysis (Konar and Chattopadhyay, 2011; 

Bayram and Şeker, 2013; Li et al., 2013; Du et al., 2014; 

Jamadar and Vakharia, 2016). However, the interpretation of 

a wavelet map is not as simple as that of a frequency spectrum 

(Ngui et al., 2017). It is highly dependent on the knowledge 

and experience of the personnel. Figure 1 illustrates an 

example of a wavelet scalogram for different types of bearing 

faults. The difficulty in interpreting a wavelet scalogram has 

constrained its development and application in the field. 

Recent developments and advancements of image processing 

and machine learning technologies have shed new light on this 

challenge. The adaptation of these technologies in machinery 

fault classification seems promising. This study proposes 

decomposing a wavelet scalogram by red, green, and blue 

(RGB) colour filters. Then, a set of image features, including 

features from an accelerated segment test (FAST); minimum 

eigenvalues (MinEigen); Harris Stephens (Harris); speeded-

up robust features (SURFs); binary, robust, invariant, scalable 

keypoints (BRISKs); and maximally stable extremal regions 

(MSERs), are extracted from each filtered wavelet scalogram. 

Each colour-filtered wavelet scalogram may be sensitive 

toward certain types of faults, and the fault classification result 

generated based on each colour filter may be contradictory. 

Therefore, the Dempster-Shafer (DS) theory is employed to 

refine the contradicting results in order to provide a final 

classification result. 

Figure 1. Wavelet Scalogram of Rolling Element 

Fault (left) and Inner Raceway Fault (right) 
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DEMPSTER-SHAFER THEORY 
The concept of the DS theory was introduced by Arthur 

P. Dempster (1967), and it was subsequently completed by 

Glenn Shafer (1976). It is a mathematical theory that deals 

with uncertain information reasoning. It allows for the 

combination of evidence from multiple sources, and it 

provides a measure of confidence (belief function, Bel) that a 

given event will occur. Let Θ be a finite set of possible answers 

and ϕ represent an empty set; the belief function should satisfy 

the three axioms represented by Equations 1-3. 

Bel(ϕ) = 0  (1) 

Bel(Θ) = 1  (2) 

Bel(⋃ Ai
n
i=1 ) ≥ ∑ (−1)|I|+1Bel(⋂ Aii∈I )I⊂{1,2,…,n}

I≠ϕ

  (3) 

The DS theory consists of three important parameters, 

namely the mass function (m), belief function (Bel), and 

plausibility (Pl). Mass function (m) is a basic probability 

assignment that measures the belief that is committed exactly 

to a subset. Belief function (Bel) is a lower probability that 

measures the total belief mass that is confined to a subset, 

while plausibility (Pl) is a higher probability that measures the 

total belief mass that can move into a subset.  

The most recent applications of the DS theory can be 

found in the fields of medical diagnostics (Guil and Marín, 

2013), aviation (Phillips and Diston, 2011), machinery 

condition monitoring and fault diagnosis (Cao et al., 2013; He 

et al., 2014), maintenance management (Potes Ruiz, Kamsu-

Foguem and Noyes, 2013), chemical engineering (Natarajan 

and Srinivasan, 2014), defence (Avci, 2013), the power 

generation industry (Bhalla, Bansal and Gupta, 2013), and 

engineering design (Browne et al., 2013), to name a few. To 

date, the DS theory has been proven to be effective in 

combining evidence to provide a high level of confidence in 

the occurrence of an event. 

DATA COLLECTION 
The vibration signals in the study were downloaded from 

the Case Western Reserve University Bearing Data Centre 

website to represent rolling element bearing in healthy and 

faulty conditions, such as a rolling element fault, an inner 

raceway fault, and an outer raceway fault. The test rig was 

constructed by a 2-HP motor, a torque transducer, and a 

dynamometer. The test rig arrangement is presented in Figure 

2. The motor was operated at 1,750 rpm with 1-HP loading. 

Vibration signals were sampled at 12 kHz by an accelerometer 

that was attached to the bearing housing. 

Figure 2. The Test Rig Arrangement 

A total of 400 sets of wavelet scalograms were generated 

by continuous wavelet transform (CWT) from the raw, 

continuous vibration signal collected from a 7-mil fault 

diameter with a 1-HP loading. Then, the 400 sets of wavelet 

scalograms were split into two groups of data; one was used 

to synthesize the machine learning model (the training phase), 

while the other group was used to validate the synthesized 

machine learning model (the testing phase). The distribution 

of the vibration dataset in this study is tabulated in Table 1. 

 

Table 1. Vibration Data Distribution 

Bearing condition Training data Testing data 

Healthy 50 50 

Rolling element fault 50 50 

Inner raceway fault 50 50 

Outer raceway fault 50 50 

IMAGE FEATURE EXTRACTION 
Before proceeding to examine the performance of the 

classifier, it is important to explain the process of image 

feature extraction. In this study, an RGB filter will be applied 

to filter an original wavelet scalogram (Figure 3); then, six 

standardized image features in Matlab software were used to 

extract the image features of each colour-filtered wavelet 

scalogram. These features specifically represent the 

characteristics of each wavelet scalogram for different bearing 

conditions. Table 2 summarises all the image features that 

were extracted in this study and their characteristic values. 

Figure 3. Example of RGB-Filtered Wavelet 

Scalogram 

 

Table 2. Image Features from each Wavelet 

Scalogram 

No. Feature 
Characteristic 

Value 

1 Features from FAST Corner Points 

2 Minimum Eigenvalues Corner Points 

3 Harris Stephens Corner Points 
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4 Speeded-Up Robust Features Blob 

5 Binary Robust Invariant Scalable 

Keypoints 
Multiscale 

Corner 

6 Maximally Stable Extremal 

Regions 
Regions 

RESULTS  
The SVM remains one of the most favourable classifiers 

in machine learning due to its capability of handling a high 

number of input features with low sampling data sets. 

However, its classification accuracy reduces significantly in 

multi-fault classification as it was originally designed for 

binary classification. Therefore, the SVM-DS model (Hui et 

al., 2017) was employed in this paper as a multi-fault classifier 

as a result of its outstanding performance in multi-fault 

classification. Tables 2 to 4 list the confusion matrices of each 

colour-filtered wavelet scalogram. Their classification 

accuracies ranged from 61.5% to 73.5%. Table 5 summarises 

the sensitivity of each colour-filtered wavelet scalogram to 

different bearing conditions. The analysis results demonstrate 

that the green colour-filtered wavelet scalogram is more 

sensitive to healthy or rolling element fault bearing, whilst the 

blue colour-filtered wavelet scalogram is more sensitive to 

inner or outer raceway fault bearing. Therefore, the best 

classification results could not be obtained by focusing on any 

of the colour-filtered wavelet scalograms. This paper proposes 

a decision-making model in the next section that fully utilises 

the information obtained from each colour-filtered wavelet 

scalogram to make an ultimate decision on the machine health 

condition. 

 

Table 2. Confusion Matrix for Testing Phase (Red 

Colour-Filtered Wavelet Scalogram) 

Condition 
Actual 

1 2 3 4 

P
re

d
ic

ti
o

n
 1 (healthy) 48 1 0 0 

2 (rolling element fault) 2 21 6 9 

3 (inner raceway fault) 0 11 41 4 

4 (outer raceway fault) 0 17 3 37 

Sensitivity (%) 96.0 42.0 82.0 74.0 

Accuracy (%) 73.5 

 

Table 3. Confusion Matrix for Testing Phase (Green 

Colour-Filtered Wavelet Scalogram) 

Condition 
Actual 

1 2 3 4 

P
re

d
ic

ti
o
n

 1 (healthy) 49 3 2 1 

2 (rolling element fault) 0 28 8 18 

3 (inner raceway fault) 0 7 29 14 

4 (outer raceway fault) 1 12 11 17 

Sensitivity (%) 98.0 56.0 58.0 34.0 

Accuracy (%) 61.5 

 

 

 

 

Table 4. Confusion Matrix for Testing Phase (Blue 

Colour-Filtered Wavelet Scalogram) 

Condition 
Actual 

1 2 3 4 

P
re

d
ic

ti
o

n
 1 (healthy) 48 0 0 2 

2 (rolling element fault) 0 4 0 2 

3 (inner raceway fault) 0 26 48 5 

4 (outer raceway fault) 2 20 2 41 

Sensitivity (%) 96.0 8.0 96.0 82.0 

Accuracy (%) 70.5 

 

Table 5. Sensitivity of each Colour-Filtered Wavelet 

Scalogram to Different Bearing Conditions 

Bearing Condition 
Colour Filter 

Red Green Blue 

Healthy 96.0 98.0 96.0 

Rolling Element Fault 42.0 56.0 8.0 

Inner Raceway Fault 82.0 58.0 96.0 

Outer Raceway Fault 74.0 34.0 82.0 

THE PROPOSED DECISION-MAKING MODEL 
The previous section explained that each colour-filtered 

wavelet scalogram may be biased toward a certain bearing 

condition. However, fault classification based on an original 

wavelet scalogram (i.e. without a colour filter) does not 

guarantee a better classification accuracy. Table 6 presents a 

confusion matrix of the original wavelet scalogram in the 

testing phase. The analysis results demonstrated that the 

classification accuracy is 67.5%, which is lower than the 

classification accuracy based on a red or blue colour-filtered 

wavelet scalogram. The authors believed that a better 

classification result could be obtained by treating each 

classification result from each colour-filtered wavelet 

scalogram as a piece of evidence that finally leads to an 

ultimate decision. Figure 4 illustrates the proposed decision-

making model flowchart. Basically, the training accuracy of 

each colour-filtered wavelet scalogram was calculated and 

assigned as a weighting function to each colour filter. This 

quantified the decision made by each colour filter. By 

combining each of these decisions, a better classification 

result can be obtained. Table 7 presents a confusion matrix of 

the proposed decision-making model in the testing phase. The 

analysis results demonstrate that the RGB-filtered wavelet 

scalogram classification accuracy can be improved from an 

average of 68.5% to 77.5%. Therefore, the proposed decision-

making model has been proven to be more superior, compared 

to a discrete decision made by each colour-filtered wavelet 

scalogram. 
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Figure 4 Flowchart of the Proposed Decision-

Making Model 

 

Table 6. Confusion Matrix for Testing Phase 

(Original Wavelet Scalogram) 

Condition 
Actual 

1 2 3 4 

P
re

d
ic

ti
o
n

 1 (healthy) 49 2 1 0 

2 (rolling element fault) 1 40 10 16 

3 (inner raceway fault) 0 3 38 26 

4 (outer raceway fault) 0 5 1 8 

Sensitivity (%) 98.0 80.0 76.0 16.0 

Accuracy (%) 67.5 

 

 

 

 

 

 

Table 7. Confusion Matrix for Testing Phase (the 

Proposed Decision-Making Model) 

Condition 
Actual 

1 2 3 4 

P
re

d
ic

ti
o

n
 1 (healthy) 50 1 0 0 

2 (rolling element fault) 0 26 5 11 

3 (inner raceway fault) 0 8 43 3 

4 (outer raceway fault) 0 15 2 36 

Sensitivity (%) 100 52.0 86.0 72.0 

Accuracy (%) 77.5 

CONCLUSION 
This study presents the proposed decision-making model 

and demonstrates that combining each discrete decision made 

by each colour-filtered wavelet scalogram improves the 

accuracy of machinery fault classification. In addition, the 

human effort involved in interpreting a wavelet scalogram can 

be minimised or eliminated by a machine learning algorithm. 

This achievement also sheds new light on fault location 

identification and its severity by using a wavelet scalogram. 
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