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ABSTRACT

The paper presents a novel approach to estimating the inertia

matrix of a robot arm adaptively and on-line using an iterative

learning algorithm. It is employed in conjunction with an active

force control strategy which has been shown to be very effective in

accommodating the disturbances. A comprehensive study is

performed on a rigid two link manipulator subject to a number of

loading conditions. Results clearly indicate the effectiveness ofthe

control scheme in compensating the disturbances and at the same

time the estimated inertia matrix is optimized to values

corresponding to the converged track error as learning progresses.

The viability ofthe proposed control scheme is illustrated through

an experimental work carried out on a robot arm.
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1.0 INTRODUCTION

The control of robot arm has been a subject of active research for the last two

decades. A number of control methods has been proposed ranging from a simple

classical proportional-plus-derivative (PD) control to the more recent adaptive

and intelligent control. The PD control [1] though simple is quite efficient and

provide stable performance at very low speed operation and without/little

disturbance. The performance, however, degrades considerably at high speed and

with the presence of disturbances. Thus, there is a need to overcome this critical

limitation as practical application is becoming increasingly difficult, complex and

challenging. This gives rise to a class of adaptive control techniques [2,3,4]'

which to certain extent successfully improve the stability and robustness of the

system by extending the ability to operate in a wider range of parametric or non­

parametric uncertainties. However, this often involves complex mathematical

manipulations and assumptions. It is thus common to find that this type of control

method is limited to theoretical and simulation study. There is a growing trend in

robot control in which intelligent mechanism is incorporated using features such

as knowledge-based (expert system) [5], neural network [6,7,8], fuzzy logics [9]

and iterative learning algorithm [10,11]. Intelligent robotic system is considered

the state-of-the art technology in which the machine is designed to emulate part

of human attributes especially in the aspects of learning and decision making. A

number of research works in this field demonstrated the advantages of the scheme

compared to other methods [11].

In this paper, iterative learning technique is used in conjunction with an

active force control (AFC) strategy to control a robot arm. It is shown that the

iterative learning control mechanism is able to compute continuously and on-line,

the estimated inertia matrix of the robot arm while the AFC component

excellently compensates for the disturbances.
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The paper is structured as follows. The first part deals with a description

of the problem statement and the fundamentals of both the AFC' and learning

control methods. Next, the integration of the iterative learning algorithm and

AFC applied to a two link rigid robot arm is demonstrated in the form of a

simulation study. This is followed by an analysis and discussion of the results

obtained. Experimental work is also carried out to verify the effectiveness of the

proposed scheme. Finally, a conclusion is derived and further works which could

be carried out are pointed out.

2.0 PROBLEM STATEMENT

Active force control applied to robot arm is first proposed by Hewit towards the

end of seventies [12]. The aim of this type of control method is to ensure that the

system is stable and robust even in the presence of known or unknown

disturbances. A distinct advantage about this method is the practical realization of

the system in which the method bases its concept on using mainly the estimated

or measured values of certain parameters to effect its compensating action. This

has the benefits of reducing the mathematical complexity of the robot system

which is known to be highly coupled and non-linear.

The main drawback of AFC is the computation of the estimated inertia

matrix which is required in the AFC feedforward loop. Previous methods relies

heavily on either perfect modelling of the inertia matrix, crude approximation or

the reference of a look-up table which although are quite effective in

implementation but lack in systematic approach and technique. Thus, a search for

a better way of obtaining the estimated inertia matrix is sought. If a suitable

method is found, then the practical value of implementing the AFC method is

considerably enhanced. A number. of proposals may be considered as potential
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options - all seemingly aiming towards the incorporation of intelligent

mechanism such as using neural network, fuzzy logics, genetic algorithm,

optimization technique and iterative learning method. Within this framework, and

with a clear direction in mind, a method has been devised which integrates the

intelligent control into the AFC strategy.

The paper describes a novel approach to control a robotic arm using an

iterative learning method coupled to the active force control (AFC) strategy. It is

demonstrated in this paper the effectiveness of the learning algorithm as an on­

line parameter estimator which provide the signal iteratively to the AFC section

for the compensation of the introduced disturbances. As a result, the control

scheme is able to operate within a wide range of parametric and non-parametric

uncertainties. In other words, the proposed system is robust against all forms of

disturbances.

The idea behind the scheme is to obtain a continuous computation of the

estimated inertia matrix of the arm by means of a suitable learning algorithm iri

which the arm is gradually forced to execute a prescribed task accurately even in

the presence of external disturbances. As the arm starts to move the internal

mechanism activates the learning process - identifying new inertia values of the

links at each iteration which is fed into the AFC loop, performing the required

task and eventually reducing the track error. This error is in tum fed back into the

learning algorithm section and the process is repeated iteratively until a suitable

error goal criterion is achieved. Figure I shows a block diagram representing the

interlinking of the proposed control scheme.

To provide better insight to the proposed scheme under study, the

fundamentals of both AFC and the iterative learning methods are briefly

explained in the following sections.
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Robot arm DesIred task

error

AFC control
LearnIng

estimated Inertl.
algorithm

matrix

Figure 1 Interlinking of the proposed control scheme

3.0 ACTIVE FORCE CONTROL (AFC) AND ITERATIVE
LEARNING CONTROL

3.1 Active Force Control

In AFC, it is shown that the system subjecting to a number of disturbances

remains stable and robust via the compensating action of the control strategy. The

full mathematical analysis of the AFC scheme can be found in [12,13,14]. For

brevity, the fundamentals of the AFC applied to a robot arm is given in the

following paragraph.

From the first principle, we have from Newton's second law of motion,

for a rotating mass, the sum of all torques (1) acting on the body is the product of

the mass moment of inertia (I) and the angular acceleration (a) of the body in the

direction of the applied torque, i.e.,

IT=/a

For a robot system having serial configuration, we have,

T+ Q =/(B) a

20
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We can obtain a measurement of Q' of Qas

Q '=J'a '-T' (3)

where the superscript' denotes a measured or computed (or estimated) quantity.

In this context, T' can be easily measured by means of a current sensor and a'

using accelerometer. J' may be obtained by assuming a perfect model or simply

crude approximation.

Figure 2 A schematic diagram of an AFC scheme

Consider the schematic diagram in Figure 2. The estimated variable Q' is passed

through a function G(s) , before subtraction from a command vector C at a

summing junction. A suitable choice of G(s) can cause the output X to be made

invariant with respect to the disturbances Q. A suitable set of control loop is

applied to the above open loop system, by first generating the world coordinate

error vector, E = (Xdesired - X) which would then process through a controller

function, Gc(s) (e.g., a PD controller). This is followed by a decoupling transfer

function (W')-l = rIM where M is a suitable constant. Thus, the system is

reduced to a set of non-interacting loops. An outer positional loop is formed

through the world coordinate error vector, E.
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The main computational burden in AFC is the multiplication of the

estimated inertia matrix with the angular acceleration of the arm before being fed

into the AFC feedforward loop. Apart from that, the output X needs to be

computed from the joint angle () via forward kinematics and also the controller

Gc(s) be determined.

For a given robot arm, the above expressions may be translated in the

form shown in Figure 3.

Figure 3 The AFC scheme applied to a robot arm

We have here,

G(s) W(s) = 1

i.e., G(s) = Ktn and W(s) = l/Km·

(4)

The controller Gc(s) chosen here is the resolved-motion-acceleration­

control (RMAC) employing a proportional-plus-derivative (PD) component. The

RMAC produces the acceleration command vector signal (}ddre! which when

multiplied with a decoupling transfer function gives the required command vector
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to the main AFC loop. The equation describing the disturbances is given as

follows:

(5)

In AFC, we can effectively accommodate the disturbances by obtaining

the measurements of the acceleration and the torque using physical accelerometer

and torque sensor respectively. More conveniently, we can rewrite Equation (5)

(based on the torque-current relationship) in the following form:

(6)

In this way, we can instead measure the controlled current It to the motor

and obtain exactly the same result. The AFC concept has been successfully

implemented to robot arm via simulation and experimental works [16,17,18,19].

The only additional and necessary requirement is the acquisition of an

appropriate estimated inertia matrix of the arm to be multiplied with the

'measured' acceleration as in Equation (6). Previous cited works on AFC use

traditional techniques which are rather crude, not systematic and mostly based on

rough estimation. Thus, it is highly desirable that a method should be devised in

such a manner that the inertial parameter can be identified intelligently without

having to resort to the conventional approaches described above. A novel method

has been proposed here using iterative learning algorithm which is described in

the following section. Results obtained through simulation and experimental

study demonstrate the effectiveness and simplicity of the proposed method.

3.2 Iterative Learning Control

One of the early proposer of the iterative learning method applied to robotic

control is Saguru Arimoto who proposes a number of learning algorithms and at

the same time provides analytical proof of their convergence, stability and
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robustness [10,20,21,22,23]. In other words, it can be shown that as the number

of iteration k(t) increases i.e k-+CXJ for t 6[0, tstop], the track error e converges to

zero (e~O). A suitable algorithm is described in this paper and later implemented

to the system under study. A learning algorithm of the following form is chosen:

Yk+] = Yk + (cj) + r dldt) ek (7)

It is obvious that the algorithm contains a constant and derivative

coefficients of the track error. In other words, the expression can be simply called

the proportional-derivative or PD type learning algorithm. The above algorithm

can be slightly modified to suit our application and is given as follows:

INk+] = INk + (cj) + r dldt) TEk

Figure 4 shows a block diagram describing the above expression.

from
memory

to
memory

Figure 4 A PD-type learning algorithm

(8)

3.3 The Proposed Control Scheme

We shall call the proposed scheme AFCAIL, an acronym for Active Force

Control And Iterative Learning. Since we use the PD type learning algorithm in

the study, the control scheme is known as AFCAIL-PD. The implementation of
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the PD type learning algorithm in AFC is shown in Figure 5. The box (shown by

dashed lines) represents the most important part of of the proposed scheme which

integrates AFC and the learning algorithm. Note that the learning algorithm is

easily embedded into the parent AFC scheme with the track error TE as the input

and the estimated inertia matrix IN as the output of the learning algorithm.

. .

Figure 5 The AFCAIL-PD control scheme

A flow chart showing the logical flow of the main algorithm is illustrated in

Figure 6.

A simulation study of the above integrated scheme is made considering a

number of varying parameters. The robot arm chosen is a rigid two-link arm

assuming to operate in a horizontal plane. Before proceeding to the main

simulation study, a brief description of the mathematical model of the robot arm

is given in the following section.
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Apply I•• rnlng .Igorllhm

IN(k+l)- IN(k) + (eI> + r d/dl) TE(k)

N.

Figure 6 The learning algorithm applied to the robot ann

4.0 MATHEMATICAL MODEL OF THE ROBOT ARM

The general equation of motion (dynamic model) of a robot ann can be described

as follows:

Tq == H (B) Bdd + h(fJ, BdJ + G(fJ) + Td (9)

For a horizontal two-link rigid planar manipulator as shown in Figure 7,

its dynamic model is given by,

26
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where

H11 = m21el2 + I] + m2 (lel 2 + Ic22 + 21]lc2 cos B2') + 12 (12)

H]2 =H21 =m21]lc2cosB2+m2Ic22 +12 (13)

H22 = m21c22 + 12 (14)

h = m21]lc2sin B2 (15)

Figure 7 A representation of a two-link arm

It should be noted that the gravitational term of Equation (9) has been ommitted

since the arm is assumed to move only in a horizontal plane.

5.0 SIMULATION

Simulation work is performed using the MATLAB® and SIMULINK@ software

packages. The SIMULINK@ block diagram for the proposed scheme is shown in

Figure 8. It comprises a number of components and subsystems; the trajectory

planner, the RMAC section, main AFC loop, robot dynamics, iterative learning

model and the disturbance model. These are interlinked by means of connecting

lines representing the flow of signals and the relevant building blocks acquired

from the SIMULINK@ library. In the simulation program, a number of

<Ill MATLAB and SIMULINK are registered trademarks of The Math Works Inc.
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disturbance torques can be described and introduced to the system. The

disturbance torques considered in the simulation are the harmonic force at end of

the second link.

ACTIVE FORCE CONTROL AND ITERATIVE LEARNING (AFCAIL) CONTROL SCHEME

Figure 8 A SIMULINKIlil representation of the AFCAIL scheme

5.1 Simulation parameters

The following parameters are used in the simulation study.

Robot parameters:

Link length,

Link mass,

Motor mass,

Payload mass,

28

l I = 0.25 m,

m] = 0.3 kg,

mot11 = 1.3 kg,

mot22 = 0.1 kg

/2 = 0.2236 m

m2 = 0.25 kg

mot2] = 0.8 kg
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Controller parameters:

Controller gain,

Motor torque constant,

Iterative learning parameters :

Proportional term,

Derivative term,

Main simulation parameters:

Integration algorithm

Simulation time start, tstart

Simulation time stop, tstop

Minimum step size

Maximum step size

~= 750 Is,

x, = 0.263 Nm/A

<1> = 0.005

r = 0.0075

Gear

0.0

25 s

0.01

0.1

K = 500 Is2
d

The gain constants, K,. and K, of the control scheme are assumed to be

satisfactorily tuned heuristically prior to the simulation work. The motor torque

constant Km=0.263 Nm/A is obtained from the actual data sheet for the DC torque

motor. Simulation is performed first without considering any external

disturbances acting on the system. Later, the applied disturbance is assumed.

5.2 The Initial Conditions

In this study, we consider the initial state of the estimated inertia matrix of the

arm to start from 0 kgrrr or specifically IN] = 0.0 kgrrr and IN2 = 0.0 kgrrr'. In

other words, no prior knowledge of the inertial parameter is assumed - which is a

very important contribution of the research work.
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5.3 The Sample Time

The sample time instant for the learning algorithms is set to O.Ols. This implies

that the next step value of IN is updated every O.Ols, i.e., if the initial value of

INk (initial k=0) is 0 s then the next value INk+1 is sampled at O.Ols and so forth.

For the purpose of the analysis of the results obtained, rather than using iteration

number, it is preferred that the description of the convergence of the algorithms is

based on the number of cycles of the circular trajectory generated which is

calculated from the time it takes for the trajectory to complete a perfect circle (for

the simulation this time is calculated to be te =3.14 s). Thus, 2 cycles would be

2*te, 5 cycles is 5*te etc.

5.4 The Stopping Criteria

A stopping criterion should be specified especially if convergence of the desired

parameter (or learning) has taken place. In this paper, we consider a suitable

elapsed time of 25s or approximately 8 cycles (8td of a complete circular

trajectory as the stopping mechanism so that the behaviour of the system can be

observed and critically analyzed especially on-line.

5.5 The Prescribed Trajectory

A prescribed circular trajectory as shown in Figure 9 is considered in the

simulation study. The trajectory is generated using the following time (t)

dependent functions:

30

Xbarl = 0.25 + 0.1 sin (Veut tiD. 1)

xbar2 = 0.1 + 0.1 cos(Veut tiD. 1)

(16)
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Desired trajectory of the ann
0.5 .---------,r---'--=----.-----,

0.4 . __ __.;. __ ; .

0.60.40.2

;~I::([J'
· .· .· .· .· .· .

x,(m)

Figure 9 The desired trajectory of the arm

5.6 The Applied Disturbances

An explicit account of the effect of the disturbances applied to the robot arm is

given. This is performed to investigate the robustness of the proposed scheme.

The simulation is first carried out without considering any external disturbances

acting on the system. Later, we introduce a harmonic force which is applied at the

end of second link. We have the harmonic force,

Fh = h sin t

where the magnitude of force is h = 30 N.

(18)

6.0 RESULTS AND DISCUSSION

Figure 10 and 11 show the detailed results obtained through the simulation work.

The graphical results are related to the trajectory obtained, the track error

produced, the estimated inertia matrix computed and the resulting torque

actuated.
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Figure 10 Results for the AFCAIL-PD scheme, no disturbance, Fa
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Figure 11 Results for the AFCAIL-PD scheme, harmonic force, Fh
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It is obvious that the learning process is accomplished gradually with the initial

generated trajectory appearing distorted and disoriented. Figure lO(a) and 11(a)

show the actual trajectories of the arm after the robot performs 1 complete cycle

of trajectory tracking. As the iteration proceeds, the eventual trajectory almost

replicates the desired one, signifying that learning process has indeed ocurred.

This is especially observed after the learning has reached 7 cycles as depicted in

Figure lO(b) and ll(b). The track error curves confirm this fact - the initial stage

is characterized by very large error but as learning takes place, the track error is

observed to continually and gradually decrease and this applies for all conditions

considering with or without external disturbances as shown in Figure IO(c) and

11(c). In addition to that, it is also noticed that the pattern of the trajectory track

error corresponds to the types of external disturbances applied to the system.

The proposed control scheme is shown to have fast learning characteristic

- the trajectory track error for all the cases dips to below the 2.5 mm margin at

the end of the simulation period. The gradual mapping of the trajectory to the

desired one is found to be smooth and the final track error is acceptably small.

Generally, the computed IN for all the cases, is seen to rise steadily and

upwardly from the given initial conditions as shown in Figure lO(d) and 11 (d).

The initial state of the inertia matrix is characterized by a sharp jump to a value

which more or less stabilizes and later gradually and steadily increases in a non­

linear fashion as iteration continues and the learning rule computes new value of

IN for the next sample instant. It is essential to ensure that IN should be positive

definite which would otherwise causes the system to become unstable. The

choice of suitable learning parameters (~ and f) for the learning rules is also

important as this affects the slope of the IN curve. For instance, inappropriate

value of the parameters would cause the gradient of IN curve to increase

dramatically and thus lead to instability. A slight and gradual increase in the slope

would be sufficient to yield a very good response. A number of trials is
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performed to determine the value of these constants and the results suggested that

the values assumed are acceptable.

It is also obvious that the inertia matrix varies with the type of applied

disturbances. The IN curve shows small fluctuating pattern corresponding to the

harmonic input as hown in Figure II(d).

6.1 Initial Value of the Estimated Inertia Matrix

A significant and indeed a desirable feature of the employed learning scheme is

realized when the initial estimated inertia matrix is assumed to be of the same

value. This implies that only a single value of the estimated inertia matrix is

needed to perform the required task. Thus, by putting the initial value IN]=IN2

=0.0 kgm', we have both the computed values to be exactly the same and yet

producing stable performances with the trajectory track error reduced to

acceptable tolerance. This has the added advantage in terms of less computation

is required to determine IN especially if the degrees of freedom of the arm is

greater than two. In this context, we can assume all the diagonal terms of the

inertia matrix to be of the same value. As far as the two-link arm is concerned, the

simulation results indicate that the assumption is valid.

Thus, as an example, for a three degree of freedom robot arm, we may

have,

(19)

where IN]=IN2=IN3 assuming that the learning algorithm has optimized' the

IN.

Figure 1O(d) and 11(d) show the computed IN for the different types of

disturbances but having the same initial conditions ofIN.
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6.2 The Computed Inertia Matrix

The computed estimated inertia matrix varies in a range of values as summarized

in Table I.

Table I Range of computed estimated inertia matrix

Types of Range of computed IN

disturbances IN] = IN2 (kgm")

No disturbance, Fo 0.0 - 0.007

Harmonic force, Fh 0.0 - 0.042

From the table, it can be seen that the range of IN varies positively from 0

kgm" to a maximum value of 0.042 kgrrr'. The harmonic force produces higher IN

due to the fact that the force is continuously acting on the system. In other words,

IN is influenced considerably by the nature of the forces applied. The robot arm

responds to these disturbances by adaptively updates the IN via the control

strategy. Since the error is considered 'minimum' at the end of the simulation

period, this corresponds to the optimum value of the computed IN. On the whole,

even though there is a variation in the computed IN for different cases, the results

have clearly indicated that the trajectory track error converges to acceptable value

signifying that the system is very stable and robust. It also suggests that the

intelligent mechanism has successfully adapted the inertial parameter to the

changes in the environment. The other reason is attributed to the fact that the

AFC scheme is very tolerant to variation in the estimated inertia matrix - which

somehow explains the successful implementation of AFC by using only crude

approximation.

An interesting feature can be derived from the study - we can identify a

'safety zone' for a range of suitable IN. We know that as learning progresses, IN

approaches the tolerable range in which the system behaves robustly even in the
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presence of large external disturbances. We can determine this range by

observing the characteristics of the trajectory track error from which an error

margin can be specified and thus, a range of IN values can be easily determined.

As an example, by assuming a starting error margin, we can obtain the

corresponding time t it occurs and then relates it to the IN curve. Figure 12(a) and

(b) shows how this is accomplished. By setting the track error TE to 6.0 mm, we

project a line (dashed lines) to the horizontal axis and obtain t to be about 3.8 s.

Referring to the IN curve at time /=3.8 s, we have IN value equals 0.018 kgrrr'.

This can be regarded as the starting IN at which the system behaves stably and

robustly. The other extreme end of the range can be obtained by extending the

simulation time to such an extent that the. error margin increases dramatically or

when the system starts to behave awkwardly or erratically .

Computed IN, and IN,

, . . .
0.04 : ; ~ ; ..

0.05 .----,----'-r--.:.....,----=----r------,
Trajectory track error0.011!+-_--,-_...:-,,----;._-,--_ _ ,__-.,

. .
0.008 : : ; ; __

25

IN O.OJ ~ i.... ..';" ~ .
Ikgm') ; ::. . . .

0.02 : ; ~ ; .

I: . . .
0 .01 l .. ; i ; ; .

I: : : :
I : . : :
I : : :.

5 10 15 20
t (5)

(a) (b)

Figure 12 Determining the 'safety zone'

6.3 The Actuated Torques

It can be seen that the controlling torque varies non-linearly and is influenced by

the disturbances applied (see Figure 10(e) and 11(c)). In this study, the saturation

value of the torque is not considered at all in order to observe the system's
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robustness against large forces. The saturation value of the torque can be easily

calculated from the following equation:

(20)

From the actual data sheet, K, is found to be 0263 Nm/A and the

maximum permissible motor current is 12.3A. Thus the maximum torque is ±3.3

Nm. In practice, this value must be kept within the maximum allowable limit to

avoid damage to the motor. From the results, it can be deduced that, apart from

the case where there is no disturbances acting on the robot ann, others with

various applied disturbances produce torques which are by far greater than the

saturated value. This implies that the AFC scheme is excellent in 'cancelling' the

disturbances even though the forces present are much larger than the system can

physically tolerate. It is also obvious that the controlling torque at the first joint is

greater than that at the second joint, i.e, Tq]>Tq2. This may be contributed to

the coupling effect of the ann and the accumulated load with respect to the first

joint.

7.0 EXPERIMENTAL RESULTS

An experiment was carried out using a single link robot arm as shown in Figure

13. We use a non-linear spring of unknown stiffness attached to the tip of the ann

as the force controlled element.
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Figure 13 A view of the experimental robot arm with a spring attached to
the tip of the link

The following parameters were used in the experiment :

~= 115, K;=20, Kd = 1

x,= 0.3387 Nm/A

Learning parameter: <I> = 0.05, I' = 0.0001

A sinusoidal input with peak amplitude of 0.1745 rad.

Referring to Figure 14, the trajectory of the arm as shown in (a) gradually

improves with the number of iteration showing that the learning process has

indeed taken place. The initial stage of the experiment is characterized by the

inconsistent fluctuating movement of the arm for the first 0.5 s or so but as the

learning process commences, the trajectory considerably improves.
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Figure 14 Experimental results

This is verified by observing the characteristic of the track error curve in

(b) which shows the corresponding gradual decrease in the error. The learning

algorithm is evidently forcing the track error to converge to values approaching

the zero datum as time increases. It is also noted that the curve of the estimated

inertia of the arm (c) follows the same pattern to that the track error curve, which
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is understandable since the estimated inertia matrix is a function of the track error

according to the learning rule in Equation (8). The varying inertias of the arm are

obviously having positive values as expected from the theoretical point of view.

The maximum inertia occurs at the beginning of the cycle which is approximately

0.01 kgm'. The value drops to around 0.0025 kgm' at t = 2.1 s. We can calculate

the average inertia value to be 0.00032 kgm', The torque curve can seen to vary

in sinusoidal fashion peaking at approximately ±0.6 Nm. Again we can see that

the initial stage is governed by the high oscillatory feature of the torque prior to

the learning process

We can deduct" that the iterative learning control algorithm has been

effectively and successfully incorporated into the AFC scheme without any

difficulty. The learning process is found to be very fast; about 1 s for the

sinusoidal responses. It is thought that one of the contributing factors that makes

it easy to be implemented is due to the fact that the actual inertia of the arm is

comparatively small (about 0.002 kgnr'). Since IN is assumed to start at 0 kgrrr'

and the characteristic of the proposed learning algorithm is such that it only

computes positive values (IN>O) at every successive trials, the outcome is

expectedly to be very favourable. Thus, the experimental results obtained verify

the above condition.

8.0 CONCLUSION

The proposed scheme has been shown to be very effective in generating the

estimated inertia matrix automatically and on-line. The learning strategy causes

the trajectory track error to gradually converge to acceptable error margin

indicating that the learning process is successful. The AFC part is. found to be

very robust in tackling the disturbances and can operate effectively in a wide
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range of estimated inertia values supplied iteratively by the learning algorithm.

Thus the 'twinning' of both the learning and AFC schemes proves to be

compatible and very feasible. The learning of the system is reasonably fast - it

takes about 25 s to produce an error margin of below 2.5 mm. A significant

feature of the proposed scheme is that only a single value of the estimated inertia

matrix IN can be used for the same initial condition. This implies less

computational burden since the scheme is considered to have optimized the value

of computed IN for the robot ann. The experimental results prove the viability

and the effectiveness of the proposed control scheme and also illustrate the ease

of embedding the learning rule in the parent AFC section. The performance of the

scheme should be further investigated, considering a number of varying

parameters such as the changes in the payload mass, learning parameters, initial

values of IN, types of disturbances and other prescribed trajectories

NOTATION:

ek current positional error input given by ek = Xd - Xk

G vector of the gravitational torques

H NxN dimensional manipulator and actuator inertia matrix

H vector of the Coriolis and centrifugal torques

I mass moment of inertia of the link

f(O) mass moment of inertia of the robot ann and () is the robot joint

angle

IN estimated inertia matrix

INk current value of the estimated inertia matrix

INk+l next step value of estimated inertia matrix

It armature current for the torque motor

K, motor torque constant

( vector of link lengths
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lc vector of link lengths from the joint to the centre of gravity of link

m vector of link masses

Q disturbance torques

T applied torque

Td vector of the external disturbance torques

T'd" estimate of all the disturbance torques

TEk current root of sum-squared positional track error,

TEk = V(xbar xkJ2

Tq applied control torque

Tq vector of actuator torques

Yk current (k) output value

Yk+ 1 next step value of the output

a angular acceleration of the robot arm

4>, T suitable constants or learning parameters

0d vector ofjoint velocity

Odd vector ofjoint acceleration
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