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Abstract: This study presents design approach for realizing miniaturized Substrate Integrated Waveguide (SIW) 
Band Pass Filter (BPF) using Low Temperature Co-fired Ceramic (LTCC) technology at TMRND’s LTCC Lab. 
Design method for the SIW BPF is based on the circular cavity structure with four pole Chebyshev and operating at 
center frequency of 38 GHz. This SIW BPF is an important part of the Remote Antenna Unit (RAU) transceiver for 
the Radio over Fiber (RoF) system. Two types of circular SIW BPF have been designed and investigated in term of 
performance and structure size which are planar SIW BPF and compact SIW BPF. Both SIW BPF were developed 
using LTCC Ferro A6M materials with dielectric constant of 5.8, loss tangent of 0.002 and metallization of gold. 
The insertion loss for planar SIW BPF and compact SIW BPF were measured at 6.2 dB and 6.3 dB, respectively. 
The passband return losses for both types of the SIW BPF were measured at more than 10 dB. The size of the 
compact SIW BPF is 6.94×6.94 mm  meanwhile size for planar SIW BPF is 12.15×4.145 mm . The size of the 
compact SIW BPF is reduced to nearly 10% compared to a planar SIW BPF structure. 
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INTRODUCTION 

 
A band pass filter is a key component for passive 

element in Remote Antenna Unit (RAU) transceiver for 
Radio over Fiber (RoF) systems. Generally, RoF 
systems have some advantages, such as low-loss and 
high speed wireless and wireline data transmission over 
fiber links which support high speed multimedia 
services and high defination video. The millimeter 
wave (mm-wave) frequency is started from 30 to 300 
GHz have received more attracted because of possible 
miniaturization of the analog components such as filter 
and antennas. Although it has been known for many 
decades, this technology has attracted significant 
interest from researcher, academia and industry when 
advances in silicon process technology and low cost 
integration solution in Hizan et al. (2014). Huge 
demand of the higher data-speeds and high bandwidth 
applications is increasing recently, such as point to 
point wireless communication was reported (Van 
Heijningen and Gauthier, 2004), wireless indoor 

communication network (Dang et al., 2007), radio over 
fiber (Yaakob et al., 2014).  

One of the main issue to realize the mm-wave radio 
system is related with cost effective packaging and the 
size of the mm-wave modules structure like filter 
modules and amplifier modules. The waveguide filters 
are widely used because of their high Q value, high 
power capability and outstanding selective. However, 
they are bulky, heavy and not suited for high density 
integration. The present microwave and mm-wave 
filters are bulky and heavily that give a significant 
limitation when it comes to fabrication. Several 
microwave filter have been reported with new 
innovative design on size reduction. There are many 
types of filter topologies and structures to realize 
miniaturized microwave and mm-wave filter such as 
Substrate Integrated Waveguide (SIW), Stub Loaded 
Resonator (SLR) and Stepped Impedance Resonator 
(SIR) as reported by Vidhya and Jayanthy (2013). Wu 
et al. (2003) introduced the substrate integrated circuit 
in 2003  which  is  the  new  concept for high-frequency     
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Fig. 1: Block diagram of the 38GHz RAU uplink for RoF systems 
 
electronics and optoelectronics. Losses of SIW 
components are lower than the corresponding 
microstrip devices. In terms of size, SIW is more 
compact and easy to integrate with other microwave 
and millimeter-wave circuits in the same substrate 
compared to the conventional waveguide. SIW circuits 
are fabricated by application of either a standard Printed 
Circuit Board (PCB) or a Low Temperature Co-fired 
Ceramic (LTCC) process. Generally, the conventional 
structure of SIW filters are predominantly based on 
rectangular and circular cavities as reported by Xu et al. 
(2013) and De Carlo and Tringàli (2010). 

In this study, in regard tominiaturized which 
combine performance of circular Substrate Integrated 
Waveguide (SIW) Band Pass Filter (BPF) using Low 
Temperature Co-fired Ceramic (LTCC) technology was 
proposed. Design method for the SIW BPF is based on 
the circular cavity structure with four pole Chebyshev 
and operating at center frequency of 38 GHz. Two 
types of experimental SIW BPF structures at the same 
central frequency of 38 GHz are fabricated using Low 
Temperature Co-fired Ceramic (LTCC) technology. 
Design details are decribed and both simulated and 
experimental results are presented and discussed. 
 

SIW BAND PASS FILTER DESIGN 
 

This study focuses on miniaturizing the circular 
Substrate Integrated Waveguide (SIW) band pass filter 
which will be employed as important part of the 
Remote Antenna Unit (RAU) for RoF applications as 
shown in Fig. 1. SIW band pass filter provides a low-
profile, low-cost, possible integration and low-weight 
scheme while maintaining high performance, which is 
satisfied with the needs perfectly.  

A basic structure of an SIW band pass with 1-pole 
Chebyshev characteristic was reported by Hizan et al. 
(2015) as shown in Fig. 2. The measured results of an 
insertion loss of -1.954 dB and the passband return loss 
of greater than 10 dB with 640 MHz bandwidth 
operating at 38 GHz.  

In this study, a forth order Chebyshev SIW BPF 
with 4 pole Chebyshev characteristic is designed and 
developed using in-house TMRND’s LTCC 
technology. Two types of experimental SIW band pass 
filter  structures   have  been   designed   and  developed  

which are planar SIW BPF as shown in Fig. 3 and 
compact SIW BPF as shown in Fig. 4. Table 1 shows 
the geometric dimension for both SIW BPFs.  

The similar design technique as reported by Hizan 
et al. (2015) was applied. The filter’s specification was 
shown in Table 2. However, in this design the number 
of order was changed from first degree Chebyshev to 
four orders for both filter types. The operating mode for 
the forth order SIW filters are TM010. From the filter 
design theory in Hunter (2001) and Matthaei et al. 
(1980), the admittance inverter and capacitance values 
of the low pass prototype can be determined using the 
following formulas: 
 

Cγ η
 sin γ π                                             (1) 

 

Jγ,γ
η  γπ/ /

η
               (2) 

 
where, by N is the degree of the network and ƞ is 
defined as: 
 

sinh                              (3) 
 

And ɛ related to the insertion loss ripple and hence 
the passband return loss: 
 

ε 10 1                                             (4) 
 

The lowpass prototype is transformed into 
bandpass filter at 38 GHz centre frequency with -10 dB 
passband return loss bandwidth of 100 MHz. Under the 
transformation, the inverter values are invariant. Then, 
the lowpass ptototype equivalent circuit can 
transformed into a bandpass equivalent circuit using the 
formulas (5-7): 
 

α                                                                 (5) 
 
L ′

α ω  
                                                           (6) 
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