

Neural Network Corner Detection of Vertex Chain Code

S. H. Subri, H. Haron, R. Sallehuddin
Department of Modeling and Industrial Computing, Faculty of Computer Science & Information Systems, University

Technology of Malaysia, 81310 UTM Skudai, Johor, Malaysia
syhaniz@hotmail.com, habib@fsksm.utm.my, lina@fsksm.utm.my

Abstract
This paper presents a Neural Network Classifier to be
implemented in corner detection of chain code series.
The classifier directly uses chain code which is
derived using Freeman chain code as training, testing
and validation set. The steps of developing Neural
Network Classifier are included in this paper.
Comparison results between Neural Network
Classifier corner detection and other computational
corner detection are presented to show the reliability
of the proposed classifier. This paper ends with the
discussions on the implementation of proposed neural
network in corner detection of chain code series.
Experimental results have shown that the proposed
network has good robustness and detection
performance. This makes this method a great choice
for machine vision.

 Keywords: neural network, chain code, corner
detection, line drawing

1 Introduction
Corner detection is an important aspect in image
processing and researchers find many practical
applications in it. Corner that exists in any irregular
line must be detected so that the irregular line can be
interpreted to represent actual line. Corners serve to
simplify the analysis of images by drastically
reducing the amount of data to be processed [1].
 Contours are commonly codified with the
Freeman chain-code [2] where, assuming 8-
connectivity, eight different values are given to the
eight possible neighbours of a point. The Freeman
chain code consists of eight different
numbers, where

 represents the position of point according to the
eight possible neighbours. In this paper, contours or

regular line drawings and irregular line drawings were
presented by Freeman chain-code.

nid i,3,2,1},7,6,5,4,3,2,1,0{ =∈

id

 Many researchers’ studies show that corner
detection of chain-code use computational method as their
main methodology. This computational method was used
by Haron [3], Ji [4] and Lee [5]. Nevertheless, very few
research is done on the corner detection of chain code
series based on artificial intelligence approach such as
neural network and fuzzy logic. Therefore, this paper
discussed a biological system which used Artificial
Neural Network technique as a methodology. The neural
network applied Freeman chain code directly to the
network and no computational method was used in this
corner detector.
 Artificial intelligence becomes more popular
nowadays. This paper presents an Artificial Neural
Network based approach to corner detection in two
dimensional (2D) line drawing. The idea for initializing
this neural network techniques in corner detection is
based on past works which were done by Dias [6], Tsai
[7] and Sanchiz [8]. However based on the research done,
there was no latest further work done to enhance and
improve this method. This paper is expected to lead other
researchers to do research in this area.
 The organization of this paper is as follows. It is
divided into five sections. Section (1) gives introduction,
several past works and application on neural network to
corner detection using chain code series. Section (2) gives
details of the proposed methodology are discussed.
Section (3) presents experimental result and comparison
of the result with computational method. Section (4) gives
conclusion and finally Section (5) presents future works.

2 Neural Network Classifier
The Neural Network (NN) Classifier in this paper
identifies the corner detection of 2D line drawing. The
line drawing was codified to chain code using Freeman
chain code and was directly used as an input of the NN

AIML Journal, Volume (6), Issue (1), January, 2006

37

mailto:habib@fsksm.utm.my

Classifier. The outputs of the NN Classifier are
represented either by number 1 or 0. Number 1
represents corner. On the other hand 0 means no
corner.

Analysis is done to determine the best network
architecture of NN Classifier. The analysis was based
on trial and error. From the analysis done, the best
network architecture for NN Classifier is a three-
layer network model which consists of one input
layer, one hidden layer and one output layer. Figure 1
shows the three-layer neural network architecture.

Figure 1: Architecture of the Neural Network

Classifier

This analysis is done by training the network
using variation of parameter, training function and
differences of network structure. Three training
functions were used in this analysis. The training
functions are:

• Traingdx (batch gradient descent with momentum
and adaptive learning rate). The function of
Traingdx combines adaptive learning rate with
momentum training. The performance of the
algorithm is very sensitive to the proper setting of
the learning rate.

• Traingd (batch gradient descent backpropagation)
is the batch steepest descent training function. The
weights and biases are updated in the direction of
the negative gradient of the performance function.

• Traingdm (batch gradient descent with
momentum). Momentum allows a network to
respond not only to the local gradient, but also to
recent trends in the error surface. Acting like a
low-pass filter, momentum allows the network to
ignore small features in the error surface.

Traingdx and Traingdm training functions use
momentum (β) for their training. The momentum is
set to 0.1, 0.25, 0.5 or 0.9 while Traingd training
function does not use momentum in its training. All
these training function use learning rate (α) in their
training. The value of this rate is set to 0.1, 0.25, 0.3,

0.5 or 0.75. The analysis was also done using variation of
network structure. As shown in Table 1, 2 and 3 there are
training model either with one hidden node or two hidden
nodes. All hidden nodes in this analysis used Log-
Sigmoid (Logsig) transfer function.

More than 71 models were trained during the
analysis. Each training functions have their best model
but for the NN Classifier the best model among the three
models were chosen. Table 1 shows the training model of
Traingdx training function. Table 2 show the training
model of Traingd training function and Table 3 shows the
training model of Traingdm training function. The best
model for every training function is the model whose row
was shaded in each table. Among these three models, one
of the models has been identified as the best model with
the highest percentage of accuracy and closest condition
with exact output validation.
The best model is model number 20 which is in Table 1.
This model uses Traingdx training function. As a three-
layer network, this model only has one hidden node with
nine nodes. These nine nodes were determined by using
Tang and Fishwick Formula which is ‘n’ where n
represents input nodes. Hidden node used Log-Sigmoid
transfer function while output node used Linear transfer
function.

This model used feed-forward backpropagation as
its network type. Mean square error (MSE) function was
chosen to evaluate network performance. One value was
set as a goal. All training network should be trained until
the performance of the networks lower than a value of the
goal. For this model, 0.01 has been chosen as a goal
parameter. The other parameters of this model are
learning rate (α) which was set for 0.25, momentum (β)
which has been set for 0.5 and finally maximum epoch
which was set for 200,000. For training models which had
reached 200,000 epochs but the performance was still
above the goal value, this means the network was failed.
The step on how to train network and how NN Classifier
is developed will be discussed in Section 2.1.

2.1 Training the Network
The NN Classifier uses supervised training technique. The
process of training the network consists of feeding it with
a set of training samples which is provided with input and
output. The input sets are pieces of chain code which are
9 codes in length for every one output which is extracted
from 2D line drawing. The teaching output is a value
related to the result of the input set.
 A total of 197 sets of input and output were
involved in the training sessions while 103 sets of input
and output for testing and 103 sets of input and output for
validation session. A sample of 2D line drawing from
Haron [9] which used computational method has been
codified to chain code as an input and output set to train
the network in the training session. Below are the steps
taken to train the classifier.

1

1

9

2

9

1

2

3

AIML Journal, Volume (6), Issue (1), January, 2006

38

Step 1: The input and output were arranged as an
array. Figure 2 shows sets of half input and
Figure 3 shows set of half output. Figures 2
and 3 also show the input and output
arranged in column.

Step 2: Using Matlab, a network was trained using
the value and parameter which have been
discussed in section two.

Step 3: Trained network models are tested with a
sample of 103 sets of input and output. In
the testing stage, accuracy and MSE output
are determined. The percentage of the
accuracy is based on how many trained
outputs are the same with the real output.
All the trained output which are the same
with real output will be divided by 103 to
get the accuracy percentage. The model with
the highest accuracy percentage is the best
network model. This model is a neural
network corner detector and is known as NN
Classifier.

Step 4: The best network model is used as NN
Classifier to detect corner and this corner is
tested by using an image. The image has to
be first codified to chain code. The chain
code was arranged as an array and then it is
tested with the classifier to detect corner.
Experimental results are discussed in
Section 3.

3 Experimental Results
The classifier is tested on line drawing in Figure 4
where the chain code of the line drawing is shown in
Table 4. The line drawing is taken from Haron [3].
Line drawing in Figure 4 has been codified to chain-
code and the chain-code was arranged as an array in
length of nine codes every one column. The chain
code of the line drawing in Table 4 is a chain code of
boundary list only.

As shown in Table 6, there are columns which are not
the same as real output in Table 5. Column 13 and
column 79 show that corner exists in each column. In
the real output there was no corner in that column.
However in column 102, result shows that corner
does not exist but there should be a corner in that
column. The result shows that NN Classifier detected
9 correct corners out of 10.

3.1 Comparison of Results
In order to test the performance of the NN Classifier,
the experimental results are compared to the
computational method done by Haron [3]. Since the
boundary line chain code is used to test the classifier,

by looking at the sketch, there are 10 corners that exist
along the boundary line as shown in Figure 5.

Comparison results between proposed Artificial Neural
Network method and computational method is shown in
Table 7. Out of all 10 corners, the computational method
detects 9 corners and the proposed NN Classifier detects
all the corners. The corner at location 5 has not been
detected by computational method. Comparison results
between NN Classifier and computational method shows
that NN Classifier performance is better than the
computational method in terms of the number of corners
detected.

 Columns 1 through 13
 1 1 0 1 2 1 1 1 1 1 1 1 0
 1 0 1 2 1 1 1 1 1 1 1 0 1
 0 1 2 1 1 1 1 1 1 1 0 1 0
 1 2 1 1 1 1 1 1 1 0 1 0 1
 2 1 1 1 1 1 1 1 0 1 0 1 1
 1 1 1 1 1 1 1 0 1 0 1 1 1
 1 1 1 1 1 1 0 1 0 1 1 1 1
 1 1 1 1 1 0 1 0 1 1 1 1 1
 1 1 1 1 0 1 0 1 1 1 1 1 1

 Columns 14 through 26
 1 0 1 1 1 1 1 1 1 2 2 1 1
 0 1 1 1 1 1 1 1 2 2 1 1 2
 1 1 1 1 1 1 1 2 2 1 1 2 2
 1 1 1 1 1 1 2 2 1 1 2 2 2
 1 1 1 1 1 2 2 1 1 2 2 2 2
 1 1 1 1 2 2 1 1 2 2 2 2 2
 1 1 1 2 2 1 1 2 2 2 2 2 2
 1 1 2 2 1 1 2 2 2 2 2 2 2
 1 2 2 1 1 2

 to
 2 2 2 2 2 2 2

Columns 183 through 195
 0 1 2 2 5 6 0 6 2 5 7 0 3
 1 0 2 2 4 6 7 6 3 4 7 0 3
 0 1 2 2 4 7 0 6 3 4 0 0 4
 1 0 2 3 4 7 7 6 3 4 0 0 3
 0 1 2 3 5 0 6 7 4 5 0 7 5
 1 1 3 3 5 0 6 0 3 5 0 0 4
 1 0 3 4 5 0 6 7 3 5 7 7 4
 0 0 3 3 5 0 6 0 4 5 0 6 4
 0 1 4 3 5 7 6 7 4 5 7 6 5

 Columns 196 through 197
 0 6
 0 6
 7 7
 0 0
 7 7
 6 0
 6 7
 6 0
 6 7

Figure 2: Sets of Input

Columns 1 through 13

 0 0 0 0 0 0 0 0 0 0 0 0 0

 Columns 14 through 26

 0 0 0 0 0 1 0 0 0 0 0 0 0

 to

Columns 183 through 195

 0 0 0 0 1 1 1 1 0 1 0 1 0

 Columns 196 through 197

 0 0

Figure 3: Sets of Output

Figure 4: A Stair

AIML Journal, Volume (6), Issue (1), January, 2006

39

After the chain code was arranged as an array, the
boundary list in Figure 4 becomes 103 inputs. There
are 10 corners found in the 103 inputs. Table 5 shows
the real output and Table 6 shows output using NN
Classifier to detect corner where 0 means it’s not a
corner and 1 means there is a corner in that column.

4 Conclusions

The results show that there are advantages and
disadvantages of using neural network in corner
detection of chain code series. This section gives the
strength and drawbacks of the method which is based
on the experiments of training conducted on the
network model.
 The results shows that the strength of applying
neural network in corner detection is it makes corner
detector more sensitive in detecting a corner. That is
the reason why more corners are detected using this
method. Corner detection in neural network is based
on pattern training sample which trained the network.
Corner is detected when there is a similarity between
corner chain-code trained pattern and chain code of
the line drawing. The proposed method used chain
code series directly without any calculation to fit it
with the network. It makes this method easy to be
used and applied. The chain code series just need to
be arranged as an array to make it an input.
The drawbacks of the this method is it can be
classified as tedious and trial and error process. It is

tedious because it involves training samples that have to
pass through three stages while the trial and error process
will sometime lead to no result.

Table 4 Boundary List Chain Code

BOUNDARY
AND
INTERNAL
LIST
List of
Direction
0:
Row Col
Code
1 26 -1
2 27 1
3 28 1
3 29 0
4 30 1
4 31 0
5 32 1
5 33 0
6 34 1
7 35 1
7 36 0
7 37 0
8 38 1
9 39 1
10 40 1
11 41 1
12 41 2
13 41 2
14 41 2
15 41 2
16 41 2
17 41 2
18 41 2
19 41 2
20 41 2
21 41 2

22 41 2
23 41 2
24 41 2
25 41 2
26 41 2
27 41 2
28 41 2
29 41 2
30 41 2
31 41 2
32 41 2
33 40 3
34 39 3
35 38 3
35 37 4
36 36 3
37 35 3
37 34 4
37 33 4
38 32 3
38 31 4
38 30 4
39 29 3
39 28 4
39 27 4
40 26 3
40 25 4
41 24 3
42 23 3
42 22 4
43 21 3
44 20 3
44 19 4
45 18 3
44 17 5

44 16 4
44 15 4
44 14 4
43 13 5
42 12 5
41 11 5
40 10 5
39 9 5
38 8 5
37 7 5
36 6 5
35 5 5
34 4 5
33 4 6
32 4 6
31 4 6
30 4 6
29 4 6
28 5 7
27 6 7
27 7 0
27 8 0
27 9 0
27 10 0
26 11 7
26 12 0
25 13 7
24 13 6
23 13 6
22 13 6
21 13 6
20 13 6
19 13 6
18 13 6
17 14 7

17 15 0
16 16 7
16 17 0
15 18 7
15 19 0
14 20 7
13 20 6
12 20 6
11 20 6
10 20 6
9 20 6
8 20 6
7 21 7
6 21 6
5 22 7
4 23 7
3 24 7
2 25 7

This proposed method is limited for 2D line
drawings only. However, this method can be applied in
line drawing interpretations. It is not possible to
implement this method to sketch interpreter like SILK
which was developed by Landay [10] and made the
sketch interpreter faster and more efficiently.

 The experiment shows that the optimal parameter
of the classifier are alpha is equal to 0.25, and beta is
equal to 0.5, and finally maximum epoch is equal to
200,000. The parameters is considered the optimal
parameter after the training is conducted.

 Table 5 Real Outputs

Columns 1 through 13

 0 0 0 0 0 0 0 0 0 0 1 1 0

 Columns 14 through 26

 0 0 0 0 0 0 0 0 0 0 0 0 0

 Columns 27 through 39

 0 0 0 0 0 1 0 0 0 0 0 0 0

 Columns 40 through 52

 0 0 0 0 0 0 0 0 0 0 0 0 0

 Columns 53 through 65

 0 0 0 0 0 0 1 0 0 0 0 0 0

 Columns 66 through 78

 0 0 1 0 0 0 0 0 0 1 0 0 0

 Columns 79 through 91

 0 0 0 1 0 0 0 0 0 0 1 0 0

 Columns 92 through 103

 0 0 0 0 1 0 0 0 0 0 1 0

 Figure 5: Corner of boundary line

AIML Journal, Volume (6), Issue (1), January, 2006

40

Table 6 Neural Network Classifier
 Outputs

 Columns 1 through 13

 0 0 0 0 0 0 0 0 0 0 1 1 1

 Columns 14 through 26

 0 0 0 0 0 0 0 0 0 0 0 0 0

 Columns 27 through 39

 0 0 0 0 0 1 0 0 0 0 0 0 0

 Columns 40 through 52

 0 0 0 0 0 0 0 0 0 0 0 0 0

 Columns 53 through 65

 0 0 0 0 0 0 1 0 0 0 0 0 0

 Columns 66 through 78

 0 0 1 0 0 0 0 0 0 1 0 0 0

 Columns 79 through 91

 1 0 0 1 0 0 0 0 0 0 1 0 0

 Columns 92 through 103

 0 0 0 0 1 0 0 0 0 0 0 0

Table 7 Comparison Table

Method No. of
Corner

Corner
Location

The Proposed NN Classifier 10 1, 2, 3, 4,5, 6,
7, 8, 9 and 10

Computational Method
(Haron [3]) 9 1, 2, 3, 4, 6, 7,

8, 9 and 10

5. Future Works
This proposed method is a 2D line drawing corner
detector. The corner detection by neural network
Classifier is based on chain code series by Freeman
[2]. An improvement can be done to this proposed
method. The lists of the improvement are given
below:

• Chain code techniques are widely used because
they preserve information and allow considerable
data reduction. In this proposed method, we use
the existing Freeman chain code. Besides
Freeman, chain code representation has also been
proposed by Bribiesca [11, 12] to represent 2D
and 3D curve. For detecting corner of these
curves using NN classifer, the Vertex Chain
Code (VCC) and the 3D chain code proposed by
Bribiesca [11, 12] can be used to replace the
Freeman chain code.

• Besides neural network, fuzzy logic is another
one of the artificial intelligence techniques. A

research of fuzzy in corner detection done by Pahor
[13] can be applied to detect corner of chain code
series.

References
[1] H.C. Liu and M.D Srinath, Corner Detection From

Chain-Code. Patt. Recognition Lett., vol. 23, pp. 51-68,
1990.

[2] H. Freeman, On the Encoding of Arbitrary Geometric
Configurations, IRE Trans. On Electronic Computers,
EC-10, pp. 260-268, 1961.

[3] H. Haron, S. M Shamsuddin and D. Mohamed, A New
Corner Detection Algorithm for Chain-Code
Representation of Thinned Binary ImageT, International
Journal of Computer Mathematics, U.K., vol. 81 no. 3/4,
2004.

[4] Q. Ji and R.M. Haralick, Corner Detection of Covariance
Propagation, Computer Vision and Pattern Recognition,
pp. 362-367, 1997.

[5] J. Lee, Y-N Sun and C-H Chen, Boundary-Based corner
Detection Using Wavelet Transform, Systems, Man and
Cybernetics, vol. 4, pp. 513-516, 1993.

[6] P.G.T. Dias, A.A. Kassim and V. Srinivasan, neural
Network Classifier for detecting Corners in 2D Images,
Systems, Man and Cybernetics.’Intelligent for the 21st
Century, vol. 1, pp. 661-666, 1995.

[7] D-M Tsai, Boundary-Based Corner Detection Using
Neural Networks, Pattern Recognition, vol. 30 no. 1,
1997, pp. 85-97, 1997.

[8] J.M. Sanchiz, J.M. Inesta and F. Pla, A Neural Network-
Based Algorithm to Detect Dominant Points From the
Chain-Code of a Contour, Pattern Recognition
Proceeding of ICPR, vol. 4, pp. 325-329, 1996.

[9] H. Haron, Enhanced Algorithms for Three-Dimensional
Object Interpreter, PhD Thesis, University Technology
of Malaysia, 2004.

[10] J.A. Landay and B.A. Myers, Sketching Interfaces:
Toward more human Interface, Computer, vol. 34, pp.
56-64, 2001.

[11] E. Bribiesca, A New Chain Code, Pattern Recognition,
vol. 32, pp. 235-251, 1999.

[12] E. Bribiesca, A Chain Code for Representing 3D Curves,
Pattern Recognition, vol. 33, pp. 755-765, 2000.

[13] V. Pahor and S. Carrato, A Fuzzy Approach to Mouth
Corner Detection, Image Processing, ICIP 99, vol. 1, pp.
667-671, 1999

.

AIML Journal, Volume (6), Issue (1), January, 2006

41

http://www.fsksm.utm.my/~habib/fail2/iajit_04.pdf
http://www.fsksm.utm.my/~habib/fail2/iajit_04.pdf

No. Input Hidden 1 Hidden 2 Output α β Goal Epochs Accuracy (%) MSE Output

1 9 9 Logsig 9 Logsig 1 Purelin 0.1 0.5 0.01 6504 92.3 0.0933

2 9 9 Logsig 9 Logsig 1 Purelin 0.25 0.5 0.01 10446 94 0.0844

3 9 9 Logsig 9 Logsig 1 Purelin 0.5 0.5 0.01 25395 95.1 0.0488

4 9 9 Logsig 9 Logsig 1 Purelin 0.5 0.25 0.01 18035 94.2 0.057

5 9 9 Logsig 9 Logsig 1 Purelin 0.5 0.1 0.01 22708 93.2 0.0635

6 9 9 Logsig 9 Logsig 1 Purelin 0.1 0.1 0.01 44797 91.2 0.08

7 9 18 Logsig 18 Logsig 1 Purelin 0.1 0.5 0.01 5348 92.2 0.1078

8 9 18 Logsig 18 Logsig 1 Purelin 0.25 0.5 0.01 9366 91.3 0.0823

9 9 18 Logsig 18 Logsig 1 Purelin 0.5 0.5 0.01 21938 85.4 0.1028

10 9 18 Logsig 18 Logsig 1 Purelin 0.5 0.25 0.01 22141 87 0.1194

11 9 18 Logsig 18 Logsig 1 Purelin 0.5 0.1 0.01 15900 90.3 0.1097

12 9 18 Logsig 18 Logsig 1 Purelin 0.1 0.1 0.01 21624 86 0.1995

13 9 19 Logsig 19 Logsig 1 Purelin 0.1 0.5 0.01 7676 91.2 0.0964

14 9 19 Logsig 19 Logsig 1 Purelin 0.25 0.5 0.01 8278 93.2 0.0636

15 9 19 Logsig 19 Logsig 1 Purelin 0.5 0.5 0.01 7681 91.2 0.1082

16 9 19 Logsig 19 Logsig 1 Purelin 0.5 0.25 0.01 11413 94.2 0.0573

17 9 19 Logsig 19 Logsig 1 Purelin 0.5 0.1 0.01 18272 92.2 0.1351

18 9 19 Logsig 19 Logsig 1 Purelin 0.1 0.1 0.01 11362 90.3 0.1092

19 9 9 Logsig 1 Purelin 0.1 0.5 0.01 11223 93.2 0.068

20 9 9 Logsig 1 Purelin 0.25 0.5 0.01 2969 98 0.0281

21 9 9 Logsig 1 Purelin 0.5 0.5 0.01 nil nil nil

22 9 9 Logsig 1 Purelin 0.5 0.25 0.01 11725 90.3 0.0764

23 9 9 Logsig 1 Purelin 0.5 0.1 0.01 13120 90.3 0.0939

24 9 9 Logsig 1 Purelin 0.1 0.1 0.01 5389 96.1 0.039

25 9 18 Logsig 1 Purelin 0.25 0.5 0.01 nil nil nil

26 9 18 Logsig 1 Purelin 0.1 0.5 0.01 5368 96.1 0.0241

27 9 18 Logsig 1 Purelin 0.1 0.1 0.01 nil nil nil

28 9 19 Logsig 1 Purelin 0.1 0.5 0.01 nil nil nil

Table 1 Traingdx

No. Input Hidden 1 Hidden 2 Output α β Goal Epochs Accuracy (%) MSE Output

1 9 9 Logsig 1 Purelin 0.1 nil 0.01 65314 98% 0.0281

2 9 18 Logsig 1 Purelin 0.1 nil 0.01 nil nil nil

3 9 19 Logsig 1 Purelin 0.1 nil 0.01 nil nil nil

4 9 9 logsig 1 Purelin 0.5 nil 0.01 nil nil nil

5 9 18 Logsig 1 Purelin 0.5 nil 0.01 nil nil nil

6 9 19 Logsig 1 Purelin 0.5 nil 0.01 nil nil nil

7 9 9 Logsig 1 Purelin 0.25 nil 0.01 58475 96.1 0.038

8 9 18 Logsig 1 Purelin 0.25 nil 0.01 nil nil nil

9 9 19 Logsig 1 Purelin 0.25 nil 0.01 nil nil nil

10 9 9 Logsig 9 Logsig 1 Purelin 0.5 nil 0.01 103022 84.5 0.1799

11 9 9 Logsig 9 Logsig 1 Purelin 0.25 nil 0.01 59277 90.3 0.0846

12 9 9 Logsig 9 Logsig 1 Purelin 0.1 nil 0.01 23798 88.3 0.1043

13 9 18 Logsig 18 Logsig 1 Purelin 0.1 nil 0.01 21155 93 0.1114

14 9 18 Logsig 18 Logsig 1 Purelin 0.25 nil 0.01 16909 96 0.1153

15 9 18 Logsig 18 Logsig 1 Purelin 0.5 nil 0.01 nil nil nil

16 9 19 Logsig 19 Logsig 1 Purelin 0.1 nil 0.01 24360 92.2 0.0691

17 9 19 Logsig 19 Logsig 1 Purelin 0.25 nil 0.01 98795 94.1 0.0471

Table 2 Traingd

AIML Journal, Volume (6), Issue (1), January, 2006

42

 No. Input Hidden 1 Hidden 2 Output α β Goal Epochs Accuracy (%) MSE Output

1 9 9 Logsig 1 Purelin 0.1 0.5 0.01 35167 78.6 0.3658

2 9 9 Logsig 1 Purelin 0.1 0.1 0.01 39477 78.6 0.254

3 9 18 Logsig 1 Purelin 0.1 0.5 0.01 34963 78.6 0.3219

4 9 19 Logsig 1 Purelin 0.1 0.5 0.01 24794 73.8 0.2971

5 9 9 Logsig 1 Purelin 0.1 0.5 0.005 152416 77 0.3802

6 9 18 Logsig 1 Purelin 0.1 0.5 0.01 31714 74 0.4366

7 9 19 Logsig 1 Purelin 0.5 0.5 0.01 60161 83.4 0.1539

8 9 9 Logsig 1 Purelin 0.5 0.5 0.01 168160 78 0.3756

9 9 19 Logsig 1 Purelin 0.75 0.5 0.01 195154 79 0.2084

10 9 19 Logsig 1 Purelin 0.3 0.5 0.01 12497 74 0.4651

11 9 18 Logsig 1 Purelin 0.5 0.5 0.01 10902 82.5 0.1804

12 9 19 Logsig 19 Logsig 1 Purelin 0.5 0.5 0.01 nil nil nil

13 9 19 Logsig 19 Logsig 1 Purelin 0.25 0.5 0.01 6005 82.5 0.1672

14 9 9 Logsig 9 Logsig 1 Purelin 0.5 0.5 0.01 12294 89.3 0.0978

15 9 9 Logsig 9 Logsig 1 Purelin 0.5 0.25 0.01 82095 82 0.1931

16 9 18 Logsig 18 Logsig 1 Purelin 0.1 0.1 0.01 10217 82 0.1991

17 9 9 Logsig 9 Logsig 1 Purelin 0.5 0.5 0.01 6255 87.4 0.1697

18 9 18 Logsig 18 Logsig 1 Purelin 0.25 0.5 0.01 9788 92.3 0.0738

19 9 9 Logsig 9 Logsig 1 Purelin 0.5 0.5 0.01 4160 87 0.1884

20 9 19 Logsig 19 Logsig 1 Purelin 0.1 0.5 0.01 13069 91.2 0.0732

21 9 18 Logsig 18 Logsig 1 Purelin 0.1 0.5 0.01 14938 93.2 0.0725

22 9 18 Logsig 18 Logsig 1 Purelin 0.1 0.9 0.01 84869 92.2 0.092

23 9 9 Logsig 9 Logsig 1 Purelin 0.25 0.5 0.01 6968 90 0.0968

24 9 9 Logsig 9 Logsig 1 Purelin 0.1 0.5 0.01 19768 95.1 0.0691

25 9 9 Logsig 9 Logsig 1 Purelin 0.1 0.1 0.01 34174 92.2 0.0737

26 9 9 Logsig 9 Logsig 1 Purelin 0.25 0.25 0.01 18588 92.2 0.07

Table 3 Traingdm

AIML Journal, Volume (6), Issue (1), January, 2006

43

