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Abstract 
This paper presents a Neural Network Classifier to be 
implemented in corner detection of chain code series. 
The classifier directly uses chain code which is 
derived using Freeman chain code as training, testing 
and validation set. The steps of developing Neural 
Network Classifier are included in this paper. 
Comparison results between Neural Network 
Classifier corner detection and other computational 
corner detection are presented to show the reliability 
of the proposed classifier. This paper ends with the 
discussions on the implementation of proposed neural 
network in corner detection of chain code series. 
Experimental results have shown that the proposed 
network has good robustness and detection 
performance. This makes this method a great choice 
for machine vision. 
 
 Keywords: neural network, chain code, corner 
detection, line drawing 
 
1 Introduction 
Corner detection is an important aspect in image 
processing and researchers find many practical 
applications in it.  Corner that exists in any irregular 
line must be detected so that the irregular line can be 
interpreted to represent actual line. Corners serve to 
simplify the analysis of images by drastically 
reducing the amount of data to be processed [1].  
 Contours are commonly codified with the 
Freeman chain-code [2] where, assuming 8-
connectivity, eight different values are given to the 
eight possible neighbours of a point. The Freeman 
chain code consists of eight different 
numbers,  where 

 represents the position of point according to the 
eight possible neighbours. In this paper, contours or 

regular line drawings and irregular line drawings were 
presented by Freeman chain-code.   

nid i ....,3,2,1},7,6,5,4,3,2,1,0{ =∈

id

 Many researchers’ studies show that corner 
detection of chain-code use computational method as their 
main methodology. This computational method was used 
by Haron [3], Ji [4] and Lee [5]. Nevertheless, very few 
research is done on the corner detection of chain code 
series based on artificial intelligence approach such as 
neural network and fuzzy logic. Therefore, this paper 
discussed a biological system which used Artificial 
Neural Network technique as a methodology. The neural 
network applied Freeman chain code directly to the 
network and no computational method was used in this 
corner detector.  
 Artificial intelligence becomes more popular 
nowadays. This paper presents an Artificial Neural 
Network based approach to corner detection in two 
dimensional (2D) line drawing.  The idea for initializing 
this neural network techniques in corner detection is 
based on past works which were done by Dias [6], Tsai 
[7] and Sanchiz [8]. However based on the research done, 
there was no latest further work done to enhance and 
improve this method. This paper is expected to lead other 
researchers to do research in this area. 
           The organization of this paper is as follows. It is 
divided into five sections. Section (1) gives introduction, 
several past works and application on neural network to 
corner detection using chain code series. Section (2) gives 
details of the proposed methodology are discussed. 
Section (3) presents experimental result and comparison 
of the result with computational method. Section (4) gives 
conclusion and finally Section (5) presents future works. 

2 Neural Network Classifier 
The Neural Network (NN) Classifier in this paper 
identifies the corner detection of 2D line drawing. The 
line drawing was codified to chain code using Freeman 
chain code and was directly used as an input of the NN 
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Classifier. The outputs of the NN Classifier are 
represented either by number 1 or 0. Number 1 
represents corner. On the other hand 0 means no 
corner. 

Analysis is done to determine the best network 
architecture of NN Classifier. The analysis was based 
on trial and error. From the analysis done, the best 
network architecture for NN Classifier is a three-
layer network model which consists of one input 
layer, one hidden layer and one output layer. Figure 1 
shows the three-layer neural network architecture.  

 
Figure 1:    Architecture of the Neural Network  

Classifier 

This analysis is done by training the network 
using variation of parameter, training function and 
differences of network structure. Three training 
functions were used in this analysis. The training 
functions are: 

• Traingdx (batch gradient descent with momentum 
and adaptive learning rate). The function of 
Traingdx combines adaptive learning rate with 
momentum training. The performance of the 
algorithm is very sensitive to the proper setting of 
the learning rate. 

• Traingd (batch gradient descent backpropagation) 
is the batch steepest descent training function.  The 
weights and biases are updated in the direction of 
the negative gradient of the performance function.   

• Traingdm (batch gradient descent with 
momentum). Momentum allows a network to 
respond not only to the local gradient, but also to 
recent trends in the error surface. Acting like a 
low-pass filter, momentum allows the network to 
ignore small features in the error surface. 

Traingdx and Traingdm training functions use 
momentum (β) for their training. The momentum is 
set to 0.1, 0.25, 0.5 or 0.9 while Traingd training 
function does not use momentum in its training. All 
these training function use learning rate (α) in their 
training. The value of this rate is set to 0.1, 0.25, 0.3, 

0.5 or 0.75. The analysis was also done using variation of 
network structure. As shown in Table 1, 2 and 3 there are 
training model either with one hidden node or two hidden 
nodes. All hidden nodes in this analysis used Log-
Sigmoid (Logsig) transfer function. 

More than 71 models were trained during the 
analysis. Each training functions have their best model 
but for the NN Classifier the best model among the three 
models were chosen. Table 1 shows the training model of 
Traingdx training function. Table 2 show the training 
model of Traingd training function and Table 3 shows the 
training model of Traingdm training function. The best 
model for every training function is the model whose row 
was shaded in each table. Among these three models, one 
of the models has been identified as the best model with 
the highest percentage of accuracy and closest condition 
with exact output validation.  
The best model is model number 20 which is in Table 1. 
This model uses Traingdx training function. As a three-
layer network, this model only has one hidden node with 
nine nodes. These nine nodes were determined by using 
Tang and Fishwick Formula which is ‘n’ where n 
represents input nodes. Hidden node used Log-Sigmoid 
transfer function while output node used Linear transfer 
function.  

This model used feed-forward backpropagation as 
its network type. Mean square error (MSE) function was 
chosen to evaluate network performance. One value was 
set as a goal. All training network should be trained until 
the performance of the networks lower than a value of the 
goal. For this model, 0.01 has been chosen as a goal 
parameter.  The other parameters of this model are 
learning rate (α) which was set for 0.25, momentum (β) 
which has been set for 0.5 and finally maximum epoch 
which was set for 200,000. For training models which had 
reached 200,000 epochs but the performance was still 
above the goal value, this means the network was failed. 
The step on how to train network and how NN Classifier 
is developed will be discussed in Section 2.1.  

2.1  Training the Network  
The NN Classifier uses supervised training technique. The 
process of training the network consists of feeding it with 
a set of training samples which is provided with input and 
output. The input sets are pieces of chain code which are 
9 codes in length for every one output which is extracted 
from 2D line drawing. The teaching output is a value 
related to the result of the input set.  
 A total of 197 sets of input and output were 
involved in the training sessions while 103 sets of input 
and output for testing and 103 sets of input and output for 
validation session. A sample of 2D line drawing from 
Haron [9] which used computational method has been 
codified to chain code as an input and output set to train 
the network in the training session. Below are the steps 
taken to train the classifier.   
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Step 1: The input and output were arranged as an 
array. Figure 2 shows sets of half input and 
Figure 3 shows set of half output. Figures 2 
and 3 also show the input and output 
arranged in column. 

Step 2: Using Matlab, a network was trained using 
the value and parameter which have been 
discussed in section two. 

Step 3: Trained network models are tested with a 
sample of 103 sets of input and output. In 
the testing stage, accuracy and MSE output 
are determined. The percentage of the 
accuracy is based on how many trained 
outputs are the same with the real output. 
All the trained output which are the same 
with real output will be divided by 103 to 
get the accuracy percentage. The model with 
the highest accuracy percentage is the best 
network model. This model is a neural 
network corner detector and is known as NN 
Classifier. 

Step 4: The best network model is used as NN 
Classifier to detect corner and this corner is 
tested by using an image. The image has to 
be first codified to chain code.  The chain 
code was arranged as an array and then it is 
tested with the classifier to detect corner. 
Experimental results are discussed in 
Section 3. 

3 Experimental Results 
The classifier is tested on line drawing in Figure 4 
where the chain code of the line drawing is shown in 
Table 4. The line drawing is taken from Haron [3]. 
Line drawing in Figure 4 has been codified to chain-
code and the chain-code was arranged as an array in 
length of nine codes every one column. The chain 
code of the line drawing in Table 4 is a chain code of 
boundary list only. 

As shown in Table 6, there are columns which are not 
the same as real output in Table 5. Column 13 and 
column 79 show that corner exists in each column. In 
the real output there was no corner in that column. 
However in column 102, result shows that corner 
does not exist but there should be a corner in that 
column. The result shows that NN Classifier detected 
9 correct corners out of 10.   

 

 

3.1 Comparison of Results 
In order to test the performance of the NN Classifier, 
the experimental results are compared to the 
computational method done by Haron [3]. Since the 
boundary line chain code is used to test the classifier, 

by looking at the sketch, there are 10 corners that exist 
along the boundary line as shown in Figure 5.  

Comparison results between proposed Artificial Neural 
Network method and computational method is shown in 
Table 7. Out of all 10 corners, the computational method 
detects 9 corners and the proposed NN Classifier detects 
all the corners. The corner at location 5 has not been 
detected by computational method. Comparison results 
between NN Classifier and computational method shows 
that NN Classifier performance is better than the 
computational method in terms of the number of corners 
detected. 

 Columns 1 through 13  
     1     1     0     1     2     1     1     1     1     1     1     1     0 
     1     0     1     2     1     1     1     1     1     1     1     0     1 
     0     1     2     1     1     1     1     1     1     1     0     1     0 
     1     2     1     1     1     1     1     1     1     0     1     0     1 
     2     1     1     1     1     1     1     1     0     1     0     1     1 
     1     1     1     1     1     1     1     0     1     0     1     1     1 
     1     1     1     1     1     1     0     1     0     1     1     1     1 
     1     1     1     1     1     0     1     0     1     1     1     1     1 
     1     1     1     1     0     1     0     1     1     1     1     1     1 
 
  Columns 14 through 26  
     1     0     1     1     1     1     1     1     1     2     2     1     1 
     0     1     1     1     1     1     1     1     2     2     1     1     2 
     1     1     1     1     1     1     1     2     2     1     1     2     2 
     1     1     1     1     1     1     2     2     1     1     2     2     2 
     1     1     1     1     1     2     2     1     1     2     2     2     2 
     1     1     1     1     2     2     1     1     2     2     2     2     2 
     1     1     1     2     2     1     1     2     2     2     2     2     2 
     1     1     2     2     1     1     2     2     2     2     2     2     2 
     1     2     2     1     1     2

                 to 
     2     2     2     2     2     2     2 

Columns 183 through 195  
     0     1     2     2     5     6     0     6     2     5     7     0     3 
     1     0     2     2     4     6     7     6     3     4     7     0     3 
     0     1     2     2     4     7     0     6     3     4     0     0     4 
     1     0     2     3     4     7     7     6     3     4     0     0     3 
     0     1     2     3     5     0     6     7     4     5     0     7     5 
     1     1     3     3     5     0     6     0     3     5     0     0     4 
     1     0     3     4     5     0     6     7     3     5     7     7     4 
     0     0     3     3     5     0     6     0     4     5     0     6     4 
     0     1     4     3     5     7     6     7     4     5     7     6     5 
 
  Columns 196 through 197  
     0     6 
     0     6 
     7     7 
     0     0 
     7     7 
     6     0 
     6     7 
     6     0 
     6     7  

Figure 2:    Sets of Input 

     

 

 

       

 

 

 

 

 

 

 

 

 

 

 

 
Columns 1 through 13  
 
     0     0     0     0     0     0     0     0     0     0     0     0     0 
 
  Columns 14 through 26  
 
     0     0     0     0     0     1     0     0     0     0     0     0     0 

                                           to 
 
Columns 183 through 195  
 
     0     0     0     0     1     1     1     1     0     1     0     1     0 
 
  Columns 196 through 197  
 
     0     0 
 

Figure 3:    Sets of Output 

 

 

 

 

 

 

 

 
Figure 4:    A Stair 
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After the chain code was arranged as an array, the 
boundary list in Figure 4 becomes 103 inputs. There 
are 10 corners found in the 103 inputs. Table 5 shows 
the real output and Table 6 shows output using NN 
Classifier to detect corner where 0 means it’s not a 
corner and 1 means there is a corner in that column.    

4 Conclusions 

The results show that there are advantages and 
disadvantages of using neural network in corner 
detection of chain code series. This section gives the 
strength and drawbacks of the method which is based 
on the experiments of training conducted on the 
network model. 
 The results shows that the strength of applying 
neural network in corner detection is it makes corner 
detector more sensitive in detecting a corner. That is 
the reason why more corners are detected using this 
method. Corner detection in neural network is based 
on pattern training sample which trained the network. 
Corner is detected when there is a similarity between 
corner chain-code trained pattern and chain code of 
the line drawing. The proposed method used chain 
code series directly without any calculation to fit it 
with the network. It makes this method easy to be 
used and applied. The chain code series just need to 
be arranged as an array to make it an input.  
The drawbacks of the this method is it can be 
classified as tedious and trial and error process. It is 

tedious because it involves training samples that have to 
pass through three stages while the trial and error process 
will sometime lead to no result.  

Table 4    Boundary List Chain Code 
 

BOUNDARY 
AND 
INTERNAL 
LIST 
List of 
Direction 
0:  
Row Col 
Code 
1 26 -1 
2 27 1 
3 28 1 
3 29 0 
4 30 1 
4 31 0 
5 32 1 
5 33 0 
6 34 1 
7 35 1 
7 36 0 
7 37 0 
8 38 1 
9 39 1 
10 40 1 
11 41 1 
12 41 2 
13 41 2 
14 41 2 
15 41 2 
16 41 2 
17 41 2 
18 41 2 
19 41 2 
20 41 2 
21 41 2 

22 41 2 
23 41 2 
24 41 2 
25 41 2 
26 41 2 
27 41 2 
28 41 2 
29 41 2 
30 41 2 
31 41 2 
32 41 2 
33 40 3 
34 39 3 
35 38 3 
35 37 4 
36 36 3 
37 35 3 
37 34 4 
37 33 4 
38 32 3 
38 31 4 
38 30 4 
39 29 3 
39 28 4 
39 27 4 
40 26 3 
40 25 4 
41 24 3 
42 23 3 
42 22 4 
43 21 3 
44 20 3 
44 19 4 
45 18 3 
44 17 5 

44 16 4 
44 15 4 
44 14 4 
43 13 5 
42 12 5 
41 11 5 
40 10 5 
39 9 5 
38 8 5 
37 7 5 
36 6 5 
35 5 5 
34 4 5 
33 4 6 
32 4 6 
31 4 6 
30 4 6 
29 4 6 
28 5 7 
27 6 7 
27 7 0 
27 8 0 
27 9 0 
27 10 0 
26 11 7 
26 12 0 
25 13 7 
24 13 6 
23 13 6 
22 13 6 
21 13 6 
20 13 6 
19 13 6 
18 13 6 
17 14 7 

17 15 0 
16 16 7 
16 17 0 
15 18 7 
15 19 0 
14 20 7 
13 20 6 
12 20 6 
11 20 6 
10 20 6 
9 20 6 
8 20 6 
7 21 7 
6 21 6 
5 22 7 
4 23 7 
3 24 7 
2 25 7 
 

This proposed method is limited for 2D line 
drawings only. However, this method can be applied in 
line drawing interpretations. It is not possible to 
implement this method to sketch interpreter like SILK 
which was developed by Landay [10] and made the 
sketch interpreter faster and more efficiently. 

 The experiment shows that the optimal parameter 
of the classifier are alpha is equal to 0.25, and beta is 
equal to  0.5, and finally maximum epoch is equal to 
200,000. The parameters is considered the optimal 
parameter after the training is conducted.  

 

 

 Table 5    Real Outputs 
 
Columns 1 through 13  
 
     0     0     0     0     0     0     0     0     0     0     1     1     0 
 
  Columns 14 through 26  
 
     0     0     0     0     0     0     0     0     0     0     0     0     0 
 
  Columns 27 through 39  
 
     0     0     0     0     0     1     0     0     0     0     0     0     0 
 
  Columns 40 through 52  
 
     0     0     0     0     0     0     0     0     0     0     0     0     0 
 
  Columns 53 through 65  
 
     0     0     0     0     0     0     1     0     0     0     0     0     0 
 
  Columns 66 through 78  
 
     0     0     1     0     0     0     0     0     0     1     0     0     0 
 
  Columns 79 through 91  
 
     0     0     0     1     0     0     0     0     0     0     1     0     0 
 
  Columns 92 through 103  
 
     0     0     0     0     1     0     0     0     0     0     1     0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5:    Corner of boundary line
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Table 6    Neural Network Classifier   
                 Outputs 
 
 Columns 1 through 13  
 
     0     0     0     0     0     0     0     0     0     0     1     1     1 
 
  Columns 14 through 26  
 
     0     0     0     0     0     0     0     0     0     0     0     0     0 
 
  Columns 27 through 39  
 
     0     0     0     0     0     1     0     0     0     0     0     0     0 
 
  Columns 40 through 52  
 
     0     0     0     0     0     0     0     0     0     0     0     0     0 
 
  Columns 53 through 65  
 
     0     0     0     0     0     0     1     0     0     0     0     0     0 
 
  Columns 66 through 78  
 
     0     0     1     0     0     0     0     0     0     1     0     0     0 
 
  Columns 79 through 91  
 
     1     0     0     1     0     0     0     0     0     0     1     0     0 
 
  Columns 92 through 103  
 
     0     0     0     0     1     0     0     0     0     0     0     0 

 

 

 

 

 

 

 

 

 

 

 

 

 
                       

Table 7  Comparison Table 

Method No. of 
Corner 

Corner 
Location 

The Proposed NN Classifier 10 1, 2, 3, 4,5, 6, 
7, 8, 9 and 10 

Computational Method 
(Haron [3]) 9 1, 2, 3, 4, 6, 7, 

8, 9 and 10 
 
5. Future Works 
This proposed method is a 2D line drawing corner 
detector. The corner detection by neural network 
Classifier is based on chain code series by Freeman 
[2]. An improvement can be done to this proposed 
method. The lists of the improvement are given 
below: 

• Chain code techniques are widely used because 
they preserve information and allow considerable 
data reduction. In this proposed method, we use 
the existing Freeman chain code. Besides 
Freeman, chain code representation has also been 
proposed by Bribiesca [11, 12] to represent 2D 
and 3D curve. For detecting corner of these 
curves using NN classifer, the Vertex Chain 
Code (VCC) and the 3D chain code proposed by 
Bribiesca [11, 12] can be used to replace the 
Freeman chain code. 

• Besides neural network, fuzzy logic is another 
one of the artificial intelligence techniques. A 

research of fuzzy in corner detection done by Pahor 
[13] can be applied to detect corner of chain code 
series.  
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No. Input Hidden 1 Hidden 2 Output α β Goal Epochs Accuracy (%) MSE Output 

1 9 9 Logsig 9 Logsig 1 Purelin 0.1 0.5 0.01 6504 92.3 0.0933 

2 9 9 Logsig 9 Logsig 1 Purelin 0.25 0.5 0.01 10446 94 0.0844 

3 9 9 Logsig 9 Logsig 1 Purelin 0.5 0.5 0.01 25395 95.1 0.0488 

4 9 9 Logsig 9 Logsig 1 Purelin 0.5 0.25 0.01 18035 94.2 0.057 

5 9 9 Logsig 9 Logsig 1 Purelin 0.5 0.1 0.01 22708 93.2 0.0635 

6 9 9 Logsig 9 Logsig 1 Purelin 0.1 0.1 0.01 44797 91.2 0.08 

7 9 18 Logsig 18 Logsig 1 Purelin 0.1 0.5 0.01 5348 92.2 0.1078 

8 9 18 Logsig 18 Logsig 1 Purelin 0.25 0.5 0.01 9366 91.3 0.0823 

9 9 18 Logsig 18 Logsig 1 Purelin 0.5 0.5 0.01 21938 85.4 0.1028 

10 9 18 Logsig 18 Logsig 1 Purelin 0.5 0.25 0.01 22141 87 0.1194 

11 9 18 Logsig 18 Logsig 1 Purelin 0.5 0.1 0.01 15900 90.3 0.1097 

12 9 18 Logsig 18 Logsig 1 Purelin 0.1 0.1 0.01 21624 86 0.1995 

13 9 19 Logsig 19 Logsig 1 Purelin 0.1 0.5 0.01 7676 91.2 0.0964 

14 9 19 Logsig 19 Logsig 1 Purelin 0.25 0.5 0.01 8278 93.2 0.0636 

15 9 19 Logsig 19 Logsig 1 Purelin 0.5 0.5 0.01 7681 91.2 0.1082 

16 9 19 Logsig 19 Logsig 1 Purelin 0.5 0.25 0.01 11413 94.2 0.0573 

17 9 19 Logsig 19 Logsig 1 Purelin 0.5 0.1 0.01 18272 92.2 0.1351 

18 9 19 Logsig 19 Logsig 1 Purelin 0.1 0.1 0.01 11362 90.3 0.1092 

19 9 9 Logsig  1 Purelin 0.1 0.5 0.01 11223 93.2 0.068 

20 9 9 Logsig  1 Purelin 0.25 0.5 0.01 2969 98 0.0281 

21 9 9 Logsig  1 Purelin 0.5 0.5 0.01 nil nil nil 

22 9 9 Logsig  1 Purelin 0.5 0.25 0.01 11725 90.3 0.0764 

23 9 9 Logsig  1 Purelin 0.5 0.1 0.01 13120 90.3 0.0939 

24 9 9 Logsig  1 Purelin 0.1 0.1 0.01 5389 96.1 0.039 

25 9 18 Logsig  1 Purelin 0.25 0.5 0.01 nil nil nil 

26 9 18 Logsig  1 Purelin 0.1 0.5 0.01 5368 96.1 0.0241 

27 9 18 Logsig  1 Purelin 0.1 0.1 0.01 nil nil nil 

28 9 19 Logsig  1 Purelin 0.1 0.5 0.01 nil nil nil 

Table 1 Traingdx 
 

No. Input Hidden 1 Hidden 2 Output α β Goal Epochs Accuracy (%) MSE Output 

1 9 9 Logsig  1 Purelin 0.1 nil 0.01 65314 98% 0.0281 

2 9 18 Logsig  1 Purelin 0.1 nil 0.01 nil nil nil 

3 9 19 Logsig  1 Purelin 0.1 nil 0.01 nil nil nil 

4 9 9 logsig  1 Purelin 0.5 nil 0.01 nil nil nil 

5 9 18 Logsig  1 Purelin 0.5 nil 0.01 nil nil nil 

6 9 19 Logsig  1 Purelin 0.5 nil 0.01 nil nil nil 

7 9 9 Logsig  1 Purelin 0.25 nil 0.01 58475 96.1 0.038 

8 9 18 Logsig  1 Purelin 0.25 nil 0.01 nil nil nil 

9 9 19 Logsig  1 Purelin 0.25 nil 0.01 nil nil nil 

10 9 9 Logsig 9 Logsig 1 Purelin 0.5 nil 0.01 103022 84.5 0.1799 

11 9 9 Logsig 9 Logsig 1 Purelin 0.25 nil 0.01 59277 90.3 0.0846 

12 9 9 Logsig 9 Logsig 1 Purelin 0.1 nil 0.01 23798 88.3 0.1043 

13 9 18 Logsig 18 Logsig 1 Purelin 0.1 nil 0.01 21155 93 0.1114 

14 9 18 Logsig 18 Logsig 1 Purelin 0.25 nil 0.01 16909 96 0.1153 

15 9 18 Logsig 18 Logsig 1 Purelin 0.5 nil 0.01 nil nil nil 

16 9 19 Logsig 19 Logsig 1 Purelin 0.1 nil 0.01 24360 92.2 0.0691 

17 9 19 Logsig 19 Logsig 1 Purelin 0.25 nil 0.01 98795 94.1 0.0471 

 
Table 2 Traingd

   

AIML Journal, Volume (6), Issue (1), January, 2006

42



 
 
 
 
 
 No. Input Hidden 1 Hidden 2 Output α β Goal Epochs Accuracy (%) MSE Output 

1 9 9 Logsig  1 Purelin 0.1 0.5 0.01 35167 78.6 0.3658 

2 9 9 Logsig  1 Purelin 0.1 0.1 0.01 39477 78.6 0.254 

3 9 18 Logsig  1 Purelin 0.1 0.5 0.01 34963 78.6 0.3219 

4 9 19 Logsig  1 Purelin 0.1 0.5 0.01 24794 73.8 0.2971 

5 9 9 Logsig  1 Purelin 0.1 0.5 0.005 152416 77 0.3802 

6 9 18 Logsig  1 Purelin 0.1 0.5 0.01 31714 74 0.4366 

7 9 19 Logsig  1 Purelin 0.5 0.5 0.01 60161 83.4 0.1539 

8 9 9 Logsig  1 Purelin 0.5 0.5 0.01 168160 78 0.3756 

9 9 19 Logsig  1 Purelin 0.75 0.5 0.01 195154 79 0.2084 

10 9 19 Logsig  1 Purelin 0.3 0.5 0.01 12497 74 0.4651 

11 9 18 Logsig  1 Purelin 0.5 0.5 0.01 10902 82.5 0.1804 

12 9 19 Logsig 19 Logsig 1 Purelin 0.5 0.5 0.01 nil nil nil 

13 9 19 Logsig 19 Logsig 1 Purelin 0.25 0.5 0.01 6005 82.5 0.1672 

14 9 9 Logsig 9 Logsig 1 Purelin 0.5 0.5 0.01 12294 89.3 0.0978 

15 9 9 Logsig 9 Logsig 1 Purelin 0.5 0.25 0.01 82095 82 0.1931 

16 9 18 Logsig 18 Logsig 1 Purelin 0.1 0.1 0.01 10217 82 0.1991 

17 9 9 Logsig 9 Logsig 1 Purelin 0.5 0.5 0.01 6255 87.4 0.1697 

18 9 18 Logsig 18 Logsig 1 Purelin 0.25 0.5 0.01 9788 92.3 0.0738 

19 9 9 Logsig 9 Logsig 1 Purelin 0.5 0.5 0.01 4160 87 0.1884 

20 9 19 Logsig 19 Logsig 1 Purelin 0.1 0.5 0.01 13069 91.2 0.0732 

21 9 18 Logsig 18 Logsig 1 Purelin 0.1 0.5 0.01 14938 93.2 0.0725 

22 9 18 Logsig 18 Logsig 1 Purelin 0.1 0.9 0.01 84869 92.2 0.092 

23 9 9 Logsig 9 Logsig 1 Purelin 0.25 0.5 0.01 6968 90 0.0968 

24 9 9 Logsig 9 Logsig 1 Purelin 0.1 0.5 0.01 19768 95.1 0.0691 

25 9 9 Logsig 9 Logsig 1 Purelin 0.1 0.1 0.01 34174 92.2 0.0737 

26 9 9 Logsig 9 Logsig 1 Purelin 0.25 0.25 0.01 18588 92.2 0.07 

Table 3 Traingdm 
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