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Abstract: Intelligent systems based on machine learning techniques. such as classification.
clustering. are gaining Wide spread popularity in real world applications. This paper presents
work on developing a software system for predicting rice yield from climate and plantation
data. In this work. the main focus is on classification and clustering techniques for data
analysis based on statistical and machine learning approaches. Support vector machine
algorithm is developed for classification of rice plantation data. Whereas kernel-based
clustering algorithm is developed for find ing clusters in climate data. The values of these
param eters at various points of time constitute time series. As the next step, correlation and
regression analysis is applied for analyzing the impact of various parameters on the rice
yield. and also for predicting the yield.
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1. Introduction

Rice is the primary food source for more than half of world population . United Nations

declared 2004 as the International Year of Rice and recognized the needs for tools to monitor

changes expected in the coming decades, due to: i) demand for rice in Asia projected to

increase by 70% over the next 30 years; ii) at the same time, decline of harvest area (recent

projections made by the International Food Policy Research Institute).

Malaysia is among the 12 mega bio-diversity countries in the world and offers tremendous

business opportunities in the bio-industry which is a more sustainable new industry [1].

Agriculture is the third important engine of economic growth of Malaysia alongside

manufacturing and services [2]. Broadly speaking, agriculture is still the most important

sector in the context of Malaysia's socio-economic development. This sector absorbs a large

part of the labor force. But, the contribution of agriculture in GDP is little, which can be

substantially improved through better management practices. Rice is the most important food

crop in Malaysia, but it has to import around 60% of the rice consumed here. The potential of

rice production is reduced when its plantation is exposed to stressful weather conditions. So

lilid 18, Bil. 2 (Disember 2006) Jurnal Teknologi Maklumat



74

monitoring rainfall and other related parameters (e.g. temperature, pressure, soil moisture,

sun-shine duration, humidity, etc.) is useful in predicting rice yield levels. The study of

various factors impacting the yield is helpful in looking for measures for improving rice yield

values. Moreover, pre-harvest estimates of rice production are indispensable for national food

security including policy determinations of import/export plans and prices. Yield prediction

models based on meteorological variables and agronomic parameters have been used till

recently. However, in spite of a significant influence of solar radiation on rice yield, none of

these models used solar radiation as one of the predictors. Keeping this in view, this study is

aimed at investigating the impacts of hydrological and meteorological conditions on rice

plantation using computational machine learning and statistical techniques. One goal in this

investigation is to achieve an improved understanding of the effect of various parameters

(including hydrological and meteorological parameters) on rice plantation to enhance its

productivity.

Machine learning is the science of discovering and recognizing patterns in data, of acting and

decision making in uncertainty. It relies strongly on probability theory and statistics, which it

combines with algorithmic techniques often in elegant and surprising ways. In this study, the

main focus is on machine learning classification and clustering techniques such as kernel

machines, support vector machine along with elegant optimization techniques. Initially, a

small area is selected as a study region. Later, the study can be extended to the whole

Malaysia.

This paper is organized as follows. In the next section, a brief overview of the problem area

and methodology is given. In section 3, it is pointed out how kernel-based methods can be

useful for clustering non-linearly separable and high-dimensional spatial (climate) data. In

section 4, the proposed algorithm-a weighted kernel k-means algorithm with spatial

constraints-is presented which can be useful for handling noise, outliers and auto-correlation

in the spatial data . How support vector machines can be used for classifying rice plantation

areas is described in section 5. In section 6, some related work on using clustering approach

for studying the effect of climate on vegetation is given. Some experimental results of the

proposed clustering algorithm on rainfall data are given in section 7. Finally the paper

concludes in section 8.
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2. Application Area and Methods

Keeping the importance in view, this study is aimed at investigating the impacts of

meteorological conditions and other related parameters on rice plantation using computational

machine learning techniques. Resulting improved understanding of the factors affecting rice

yield would not only help in accurately predicting yield levels but would also help

substantially in looking for mitigating solutions.

Intelligent systems based on machine learnirig techniques are gaining wide spread popularity

in real world applications. Classification and clustering are useful machine learning

techniques which can capture meaningful patterns in our target meteorological and plantation

data. Nevertheless, complexity of such data precludes the use of general purpose pattern

discovery and data analysis techniques [3].

This work focuses on classification and clustering techniques for data analysis based on

statistical and machine learning approaches. Classification algorithm is to be developed for

classification of rice plantation data. Whereas clustering algorithm is to be developed and

applied for fmding clusters in climate data. The values of these parameters at various points of

time constitute time series. As the last step, correlation and regression analysis can be applied

for analyzing the impact of various parameters on the rice yield, and also for predicting the

yield.

In other words, this work can constitute three modules as shown in Figure I.

The first module consists of classification technique based on machine learning approach such

as support vector machine. The data about rice plantation is to be obtained both from field

surveys, at first instance. The purpose of this module is to classify rice plantation into

characteristic groups (e.g. based on rice varieties, soil type, weeds, pests, irrigation practices,

age groups, fertilizers, sowing dates, etc.).
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Fig. I: A simplified architecture of the system

The second module is based on clustering technique based on statistical and machine learning

approaches such as kernel machines for clustering climate data (like the daily meteorological

data- temperature, sun-shine duration, humidity, wind speed, precipitation, etc). The analysis

of these time series is to be conducted using clustering technique, because clustering can be

helpful in analyzing the impact of various meteorological variables on the rice plantation. It

enables us to identify regions of the land whose constituent points have similar short-term and

long-term characteristics. Given relatively uniform clusters we can then identify how various

parameters, such as precipitation, temperature, etc, influence the rice produce of different

areas using correlation and regression analysis.

However, the spatial and temporal nature of our target data poses a number of challenges. For

instance, such type of data has peculiar characteristics such as auto-correlation, non-linear

separability, outliers, noise, highdimensionality, and clusters of widely differing shapes and

sizes. Therefore, we propose a weighted kernel kmeans clustering algorithm incorporating

spatial constraints, bearing spatial neighborhood information, in order to handle spatial auto­

correlation, outliers and noise in the spatial data. It will result in further effective and efficient

data analysis.

The third module leads to a user-friendly software system, i.e. an intelligent system for

analyzing the effect of climate and hydrological data on rice yield, and for predicting the rice

yield from the climate and plantation data using techniques like support vector regression and

correlation analysis.

Jilid 18, au 2 (Disember 2006) Jumal Teknologi Maklumat



77

A number of kernel-based learning methods have been proposed in recent years [4--11].

However, much research effort is being put up for improving these techniques and in applying

these techniques to various applicati.on domains. Generally speaking, a kernel function

implicitly defines a non-linear transformation that maps the data from their original space to a

high dimensional space where the data are expected to be more separable. Consequently, the

kernel methods may achieve better performance by working in the new space. While powerful

kernel methods have been proposed for supervised classification and regression problems, the

development of effective kernel method for clustering, aside from a few tentative solutions [4,

7, 12], needs further investigation.

Finding good quality clusters in spatial data (e.g., temperature, precipitation, pressure, etc.) is

more challenging because of its peculiar characteristics such as auto-correlation (i.e.,

measured values that are close in time and space tend to be highly correlated, or similar), non­

linear separability, outliers, noise, high-dimensionality, and when the data have clusters of

widely differing shapes and sizes [13-15]. The popular clustering algorithms, like k-means,

have some limitations for this type of data [15, 16]. Therefore, we propose a weighted kernel

k-means clustering algorithm incorporating spatial constraints, bearing spatial neighborhood

information, in order to handle spatial auto-correlation, outliers and noise in the spatial data,

as described in section 4.

2.1 Problems with classical data analysis techniques for spatial data

Classical statistical data analysis algorithms often make assumptions (e.g., independent,

identical distributions) that violate the first law of Geography, which says that everything is

related to everything else but nearby things are more related than distant things. Ignoring

spatial autocorrelation may lead to residual errors that vary systematically over space

exhibiting high spatial autocorrelation [14]. The models derived may not only tum out to be

biased and inconsistent, but may also be a poor fit to the dataset [15].

One way of modeling spatial dependencies is to add a spatial autocorrelation term in the

regression equation. This term contains a neighborhood relationship contiguity matrix. Such

spatial statistical methods, however, are computationally expensive due to their reliance on

contiguity matrices that can be larger than the spatial datasets being analyzed [14] (for detail,

pls, refer to [14]).
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3. Kernel-Based Methods

The kernel methods are among the most researched subjects within machine-learning

community in recent years and have been widely applied to pattern recognition and function

approximation. Typical examples are support vector machines [17-19], kernel Fisher linear

discriminant analysis [20], kernel principal component analysis [12], kernel perceptron

algorithm [21], just to name a few. The fundamental idea of the kernel methods is to first

transform the original low-dimensional inner-product input space into a higher dimensional

feature space through some nonlinear mapping. The complex nonlinear problems in the

original low-dimensional space can more likely be linearly treated and solved in the

transformed space according to the well-known Cover's theorem. However, usually such

mapping into high-dimensional feature space will undoubtedly lead to an exponential increase

of computational time, i.e., so-called curse of dimensionality. Fortunately, adopting kernel

functions to substitute an inner product in the original space, which exactly corresponds to

mapping the space into higher-dimensional feature space, is a favorable option. Therefore, the

inner product form leads us to applying the kernel methods to cluster complex data l" 19, 22].

Support vector machines and kernel-based methods: Support vector machines (SVM),

having its roots in machine learning theory, utilizes optimization tools that seek to identify a

linear optimal separating hyperplane to discriminate any two classes of interest [20, 23].

When the classes are linearly separable, the linear SVM performs adequately.

There are instances where a linear hyperplane cannot separate classes without

misclassification, an instance relevant to our problem domain. However, those classes can be

separated by a nonlinear separating hyperplane. In this case, data may be mappedto a higher

dimensional space with a nonlinear transformation function. In the higher dimensional space ,

data are spread out, and a linear separating hyperplane may be found. This concept is based

on the Cover's theorem on the separability of patterns. According to the Cover's theorem, an

input space made up of nonlinearly separable patterns may be transformed into a feature space

where the patterns are linearly separable with high probability, provided the transformation is

nonlinear and the dimensionality of the feature space is high enough. Figure 2 illustrates that

two classes in the input space may not be separated by a linear separating hyperplane, a

common property of spatial data, e.g . rainfall patterns in a green mountain area might not be

linearly separable from those in the surrounding plain area . However, when the two classes

are mapped by a nonlinear transformation function, a linear separating hyperplane can be

found in the higher dimensional feature space.
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Fig. 2: Mapping nonlinear data to a higher dimensional feature space where

a linear separating hyperplane can be found

Let a nonlinear transformation function ¢ maps the data into a higher dimensional space.

Suppose there exists a function K, called a kernel function, such that,

A kernel function is substituted for the dot product of the transformed vectors, and the explicit

form of the transformation function ¢ is not necessarily known. In this way, kernels allow

large non-linear feature spaces to be explored while avoiding curse of dimensionality. Further,

the use of the kernel function is less computationally intensive. The formulation of the kernel

function from the dot product is a special case of Mercer's theorem [9].

Some common kernel functions are shown in Table I.

4. Weighted Kernel K-Means with Spatial Constraints (SWK-means)

Clustering has received a significant amount of renewed attention with the advent of

nonlinear clustering methods based on kernels as it provides a common means of identifying

structure in complex data [4,5, 7, 17, 24]. In order to handle spatial autocorrelation, noise and

outliers present in the spatial data, we propose an algorithm as weighted kernel k-means with

spatial constraints (SWK-means).
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TABLE 1: Common kernel functions

Kernel

Linear

Function

x·y

Polynomial d is a positive integer

Radial Basis Function (RBF) K(x"x
j

) =exp(-llx, -xJ f2u') CT is a user defmed value

Let X = { x, }i=l, . . .n be a data set with Xi ERN. We call codebook the set W =

{WjL=I. .. .. .k with Wj E RN and k « n. The k-rneans clustering algorithm can be enhanced by

the use of a kernel function; by using an appropriate nonlinear mapping from the original

(input) space to a higher dimensional feature space, one can extract clusters that are non­

linearly separable in input space. The kernel k-means algorithm can be generalized by

introducing a weight for each point X, denoted by u(x). Using the non-linear function rjJ, the

objective function of weighted kernel k-means can be defined as:

where,

E(W) = t Lu(x,)II¢(x,)-W,11'
;-IA;lf"J

LU(X)¢(x)
w = -c.-"·-c.-'i=-__

, LU(X)
.I,Illl)

(1)

(2)

The Euclidean distance from rjJ(x) to center Wj is given by the following eq.

If we adopt Guassian radial basis function (RBF), viz., K(x"x,) = exp(_I>">jl;':'), then K(x,x)=1.

And, writing the last term in eq. (3) as Ci. we can get:

(3)

(4)

For increasing the robustness offuzzy c-means to noise, an approach is proposed in [25].

Here we propose a modification to the weighted kernel k-means to increase the robustness to

noise and to account for spatial autocorrelation in the spatial data. It can be achieved by a
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modification to eq. (1) by introducing a penalty term containing spatial neighborhood

information , as:

(5)

where N, stands for the set of neighbors that exist in a window around XI and NR is the

cardinality ofNi . The parameter r controls the effect of the penalty term. The distance in the

last term of eq. (5), can be calculated as

(6)

The expression for effective minimum distance from each point to every cluster representative

can be obtained from eq. (5) using eq. (4) and (6):

(7)

As K(x;,xj) measures similarity between Xi and Xj, and when Xi is an outlier , then K(x;,xj) will be

very small. So, the second term in the above expression will get very low value. The total

expression will get higher value and hence results in robustness by not assigning the point to

the cluster. For detail about the algorithm, pIs. see [24].

5. Classification of rice plantation data using SYM

Land cover is one of the crucial elements for scientific research and real-life earth science

applications [26-32]. For many years, global, national , and regional managers and planners

have recognized the importance of land cover for a variety of development activities as it has

also been used as a fundamental variable in several fields such as agriculture, environment,

forestry, geology, and hydrology . Due to the large scale proliferation of remote sensing data ,

they have become attractive sources of land cover information. Several classification

algorithms have been developed and successfulIy implemented to produce land cover

classification from multispectral data. However, these algorithms fail to deliver high

accuracies for classifying hyperspectral images [31,33-35].

Classification algorithms may be grouped into parametric and non-parametric techniques.

For parametric classifiers, such as the maximum likelihood classifier (MLC) , the data are

assumed to folIow a statistical distribution to estimate accurate parameters, which in tum
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depend on the selection of appropriate training sample size. In case of hyperspectral data

acquired in several dimensions, these classifiers suffer from the problem of the curse of

dimensionality, also referred to as the Hughes phenomenon [34, 36]. As a result,

nonparametric classifiers such as neural networks and decision trees have often been

implemented to classify hyperspectral data. In fact, neural network classifiers, particularly the

one based on the back propagation algorithm, have been viewed as a substitute for the most

widely used MLC. Though neural networks have an advantage as they can work with

complex data sets, they are slow during the training phase. Moreover, they work as a black

box in which the internal architecture is hidden. Support Vector Machine can overcome the

limitations of the other non-parametric classifiers. It can be used for classifying land cover

information of rice plantation from remote sensing data. Moreover, rice plantation can also be

classified into various categories based on related parameter values, e.g., soil, age, irrigation,

usage of fertilizers, pests, weeds, etc.

SVM has originated from statistical learning theory pioneered by Boser et al. [37] in the

middle of the 1990's. Statistical learning theory establishes bounds on the error rate of a

learning machine on unseen data, called the generalization error rate. These bounds are a

function of the sum of the training error rate and the terms that measure classifier complexity.

To minimize the bounds on the generalization error rate, both the sum of the training error

rate and the classifier complexity must be minimized. Vapnik [17] shows that the bounds on

the generalization error rate can be minimized by explicitly maximizing the margin of

separation. Consequently, a better classification performance on unseen data can be expected,

and thus high generalization can be achieved. Moreover, since the margin of separation is not

dependent on the dimensionality of the data, accurate classification from high dimensional

data is possible.

SVM aims to maximize the margin between two classes of interest and place a linear

separating hyperplane between them. Moreover, SVM can adapt itself to become a nonlinear

classifier by simply mapping data into a higher dimensional feature space that spreads the

data out. This is equivalent to a nonlinear classifier in the original input space. Because SVM

can adequately classify data in a higher dimensional feature space with a limited number of

training data sets, it overcomes the Hughes Phenomenon.

Jilid 18, Bil. 2 (Disember 2006) Jumal Teknologi Maklumat



83

6. Related Work

In this section we discuss some of the related work for illustrating issues involved in

clustering our application domain data.

In [38], a mixture model approach is used to identify the cluster structure in atmospheric

pressure data. (Mixture models assume that the data are generated probabilistically from a

mixture of Gaussian distributions and use the data to estimate the parameters of these

distributions). This approach is related to k-means [39], but has two advantages. First, it

assigns a "membership" probability to each data point and each cluster. These probabilities

provide a measure of the uncertainty in cluster membership. Second, it is sometimes possible

to estimate the most appropriate choice for k [38]. (It is also possible to estimate the best k for

k-means by plotting the overall error or similarity for different values ofk and looking for the

knee in the plot).

Another possible approach to clustering, particularly in spatially oriented domains, is to use

"region growing." Starting with individual points as clusters, each cluster is grouped with the

most similar, physically adjacent cluster, until there is only one cluster. (Sometimes various

criteria are applied to prevent clusters from being merged if the resulting cluster is too "poor").

This approach can be viewed as a form of hierarchical clustering which has the constraint that

clusters can only be merged if the resulting cluster is contiguous, i.e., not split into

disconnected sets of points [40].

However, it is sometimes desirable to have clusters that are "piecewise contiguous," i.e.,

consist of points which are similar, but not all in one contiguous region. An example of such

an approach is presented in [41] and was applied to the problem of land use classification

based on spectral image data. The technique, Recursive Hierarchical Image Segmentation,

consists of alternating steps in which similar, adjacent regions are merged (a region growing

step) and similar, non-adjacent regions are merged (a spectral clustering step). For land use

classification, this allows the grouping of points, which may represent the same type of land

cover, but which are in disconnected regions.

A related work [42] introduces ACTS (Automatic Classification of Time Series), a clustering

method for remote sensing time series. (The data considered are NDVI, the Normalized

Difference Vegetation Index, or greenness index [43D. The goal of this work is to use

clustering as an initial step for deriving continental-scale to global-scale vegetation maps.
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After the removal of components with a period of one year or less, clustering is also used to

group points that had similar patterns of inter-annual variation in NDVI. However, there was

no investigation of the relationships between different regions of the land and the climate

factors.

Another related work is reported in [15]. The goal of this work is to use climate variables,

such as long term sea level pressure (SLP) and sea surface temperature (SST), to discover

interesting patterns relating changes in NPP (Net Primary Production-plant growth) to land

surface climatology and global climate. (NPP is the net assimilation of atmospheric carbon

dioxide into organic matter by plants). In this work, ocean climate indices (OCIs) and rainfall

indices are found from the relevant time series using shared nearest neighbor clustering

technique. This way clustering is used to find interesting connections between land and ocean

regions for the discovery of interesting ecosystem patterns.

While there has been considerable research into hierarchical clustering and spatial clustering

[13], many issues still remain. Some of the new issues of zone formation are zonal formation

over time, the multi-scale nature of the data, and constrained zone formation.

7. Experimentation

The system is implemented in C++. We get very hopeful results regarding analyzing various

factors impacting the rice yield. Here we mention the results in a brief manner, especially of

the clustering algorithm as the SWt<. algorithm is at the core of the overall system.

We tested the algorithm both with synthetic and real data sets. The synthetic data set is a two­

dimensional set formed by 424 points. Delta Set is shown in Figure 3 and also given in

appendix. This data set is formed by points of two classes nonlinearly separable. Therefore

the two classes cannot be separated by clustering algorithms that use only two codevectors in

the input space, since two codevectors permit only linear separation of the data. In order to

confirm that, we tried K-means, using two codevectors, on the data set. As shown in the

Figure 4, K-means cannot separate the clusters. Then we tried SWK-means on this data set

using only two centers. As shown in Figure 5, SWK-means can separate, unlike K-means, the

two clusters.
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Fig. 5: Clustering results ofSWK-means algorithm showing two clusters

For real data sets, given a data matrix, whose rows consist of time series from various points

on the land (rainfall stations), the objective is to discover temporal and/or spatial patterns in

the data. If we apply clustering algorithm to the rainfall time series associated with points on

the land (surroundings of rainfall stations), we obtain clusters that represent land regions with

relatively homogeneous behavior. The centroids of these clusters are time series that

summarize the behavior of those land areas.

For experimentation we selected 24 rainfall stations. A 12-month moving average is used for

removing seasonality from the data. For monthly rainfall values for 5 years, we get a data

matrix of 24x60. SWK-means partitioned it into 2 clusters. We also applied the algorithm to

the monthly average rainfall values of this period, for easy visualization of results. Its results

are shown in Figure 6. As the locations of rainfall stations are known, the clustering results

can be easily mapped on the physical locations on the map. Actually the clusters will

summarize the time series associated with relevant regions, and when results are plotted for a

longer period, some contiguous regions will be formed.
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Fig. 6. Clustering results of SWK-means algorithm showing

two clusters of monthly rainfall (average) of 24 stations

Since the kernel matrix is symmetric, we only keep its upper triangular matrix in the memory .

For the next five year periods of time for the selected 24 rainfall stations, we may get data

matrices of 48x60, 72x60 and so on. The algorithm proportionally partitioned the data into

two clusters . The corresponding results are shown in Table II (a record represents 5-year

monthly rainfall values taken at a station). It also validates proper working of the algorithm.

For the overall system, the information about the landcover areas of rice plantation is to be

gathered. The values of some related parameters and expected yield values for these areas

over a span of time constitute time series . The analysis of these and other time series (e.g.,

precipitation, temperature, pressure , etc.) can be conducted using clustering. Clustering is

helpful in analyzing the impact of various hydrological and meteorological variables on the

rice plantation. It enables us to identity regions of the land whose constituent points have

similar short-term and long-term characteristics. Given relatively uniform clusters, we then

perform correlation analysis to identify how various parameters, such as precipitation,

temperature, etc., influence the climate and rice produce of different areas. This way we can

be able to predict rice yield on the basis of analysis of present plantation and meteorological

data.
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TABLE 2': Results of SWK-Means on Rainfall Data at 24

Stations for 5, 10, 15,20,25,30,35 years

No. of Records No. of records No. of records
in cluster 1 in cluster 2

24 10 14

48 20 28

72 30 42

96 40 56

120 50 70

144 60 84

168 70 98

8. Conclusion

It is highlighted how computational machine learning techniques, like clustering and

classification, can be effectively used in analyzing the impacts of various hydrological and

meteorological factors on vegetation. However, there are a few challenges especially related

to clustering spatial data as pointed out. Among these, the important issues/problems that

need to be addressed are: i) non-linear separability of data in input space, ii) outliers and noise,

iii) auto-correlation in the spatial data, iv) high dimensionality of data.

The kernel methods are helpful for clustering complex and high dimensional, and non-linearly

separable data. Consequently for developing a system for rice yield prediction, an algorithm,

weighted kernel k-means incorporating spatial constraints, is proposed. The proposed

algorithm has the mechanism to handle spatial autocorrelation, noise and outliers in the

spatial data. It is hoped that the algorithm would prove to be robust and effective for spatial

(climate) data analysis. Therefore, it is hoped that the proposed software system, based on

machine learning techniques, will prove to be very effective in predicting rice yield based on

sets of rice plantation parameters and meteorological data.
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