
67

MULTIFACETED APPROACH IN GENERATING AND

RECOVERING REQUIREMENT TRACEABILITY

Siti Rochimahl
, Wan M. N. Wan Kadir, Abdul H. Abdullah2

IFaculty of Infonnation Technology, Sepuluh Nopember Institute of Technology, Surabaya,

Indonesia 60111
2
Faculty of Computer Science and Information System, University Technology Malaysia,

Malaysia 81310
I 2

E-mail: siti@its-sby.edu.{wnasir.hanan}@utm.my

Abstract: Software evolution is inevitable. When a system evolves, there are certain

relationships among software artifacts that must be maintained. Software must be continually

changed to remain satisfactory in use. Requirement traceability is one of importance factor in

facilitating software evolution since it maintains the artifacts relationship before and after a

change is perfonned. This position paper aims at hypothesizing that utilizing a multifaceted

approach to traceability generation and recovery can provide significant support for

facilitating software evolution process. The multifaceted traceability approach contains three

main facets that compose the whole traceability approach. Facet-l is a syntactical similarity

matching process, Facet-2 is a link prioritization process, and Facet-3 is a heuristic-based

process. Those three facets works in an integrated mode to construct traceability links among

artifacts and are run on top of a particular ready-to-use integrated environment development

(IDE) in order to facilitate the traceability generation and recovery as well as to ease the

artifacts maintenance.

Keyword: software evolution, requirement traceability, traceability generation, traceability

recovery, multifaceted traceability approach.

1. INTRODUCTION

Software traceability is becoming increasingly significant element in software

development life cycle. It provides critical function in the development and maintenance of

software systems during its life cycle. There are many traceability approaches that have been

proposed from a very simple way using manual and spreadsheet tools to the latestmodels that

apply some fonnal or complex techniques. Most of them apply a particular technique specific

for the related approach.

Jilid 19, Bit. 2 (Disember 2007) Jurnal Teknologi Maklumat

67

MULTIFACETED APPROACH IN GENERATING AND

RECOVERING REQUIREMENT TRACEABILITY

Siti Rochimahl
, Wan M. N. Wan Kadir, Abdul H. Abdullah2

IFaculty of Infonnation Technology, Sepuluh Nopember Institute of Technology, Surabaya,

Indonesia 60111
2
Faculty of Computer Science and Information System, University Technology Malaysia,

Malaysia 81310
I 2

E-mail: siti@its-sby.edu.{wnasir.hanan}@utm.my

Abstract: Software evolution is inevitable. When a system evolves, there are certain

relationships among software artifacts that must be maintained. Software must be continually

changed to remain satisfactory in use. Requirement traceability is one of importance factor in

facilitating software evolution since it maintains the artifacts relationship before and after a

change is perfonned. This position paper aims at hypothesizing that utilizing a multifaceted

approach to traceability generation and recovery can provide significant support for

facilitating software evolution process. The multifaceted traceability approach contains three

main facets that compose the whole traceability approach. Facet-l is a syntactical similarity

matching process, Facet-2 is a link prioritization process, and Facet-3 is a heuristic-based

process. Those three facets works in an integrated mode to construct traceability links among

artifacts and are run on top of a particular ready-to-use integrated environment development

(IDE) in order to facilitate the traceability generation and recovery as well as to ease the

artifacts maintenance.

Keyword: software evolution, requirement traceability, traceability generation, traceability

recovery, multifaceted traceability approach.

1. INTRODUCTION

Software traceability is becoming increasingly significant element in software

development life cycle. It provides critical function in the development and maintenance of

software systems during its life cycle. There are many traceability approaches that have been

proposed from a very simple way using manual and spreadsheet tools to the latestmodels that

apply some fonnal or complex techniques. Most of them apply a particular technique specific

for the related approach.

Jilid 19, Bit. 2 (Disember 2007) Jurnal Teknologi Maklumat

68

Besides, there is a fact that soflware evolution is inevitable since .software must be

continually changed to remain satisfactory in use. It is recognized that software evolution is

about changes to software. From the software evolution point of view, software traceability is

one of important factors in facilitating software evolution as it maintains the artifacts

relationship before and after a change is performed.

However, research has shown that evolution (and maintenance) are the most expensive

activities in the software process, consuming 60% to 80% of the total time spent ona software

system [1-3]. Besides, based on the literature, it is found that software traceability is not easy

in practice. Nevertheless, most of traceability approaches focus only on limited aspects in

generating traceability. Usually, the aspects lead to creating an automated model of

traceability generation and maintenance. Most of approaches aim to automate requirements

tracing, but tracing automation is still complex and error prone [4], in term of the obtained

results. Furthermore, automation alone cannot really reduce efforts ofsoftware evolution.

This position· paper aims at hypothesizing that utilizing a multifaceted approach to

traceability generation and recovery can provide significant support for facilitating software

evolution process. Facilitating software evolution process can provide minimal software

evolution effort. The paper is organized as follows: Section 2 describes the literature reviews,

i.e. the software evolution defmition, taxonomy and the state-of-the-art traceability

approaches in a brief way, as well as an evaluation of the approaches. Section 3 presents the

conceptual framework of the proposed approach, followed by descriptions of the .facets' in

Section 4. Section 5 describes future works of the research and fmally, Section 6 discusses the

conclusion.

2. LITERATURE REVIEW

2.1 Definition and Taxonomy of Software Evolution

The standard defmition of software evolu~ion has not been established. Different

researchers use the term in different ways. Belady and Lehman in [5, 6] defmesoftware

evolution as "... the dynamic behavior ofprogramming systems as they are maintained and

enhanced over their life times." Somerville in [7] views software evolution as a spiral model.

Some researchers use the term software evolution as a synonym or preferable substitution for

software maintenance, due to their similarity in the basic operation, i.e. changing the software

artifacts, especially in the source code [8, 9].

Chapin et al. in [10] refmes the typology into 12 types of software evolution and

maintenance based on the purpose of change. Recently, Buckley et al. [11] defines software

evolution taxonomy based on the characterizing mechanisms of change and the factors that

Jilid 19, Bil. 2 (Disember 2007) Jumal TCkDologi Maklutnat

68

Besides, there is a fact that soflware evolution is inevitable since .software must be

continually changed to remain satisfactory in use. It is recognized that software evolution is

about changes to software. From the software evolution point of view, software traceability is

one of important factors in facilitating software evolution as it maintains the artifacts

relationship before and after a change is performed.

However, research has shown that evolution (and maintenance) are the most expensive

activities in the software process, consuming 60% to 80% of the total time spent ona software

system [1-3]. Besides, based on the literature, it is found that software traceability is not easy

in practice. Nevertheless, most of traceability approaches focus only on limited aspects in

generating traceability. Usually, the aspects lead to creating an automated model of

traceability generation and maintenance. Most of approaches aim to automate requirements

tracing, but tracing automation is still complex and error prone [4], in term of the obtained

results. Furthermore, automation alone cannot really reduce efforts ofsoftware evolution.

This position· paper aims at hypothesizing that utilizing a multifaceted approach to

traceability generation and recovery can provide significant support for facilitating software

evolution process. Facilitating software evolution process can provide minimal software

evolution effort. The paper is organized as follows: Section 2 describes the literature reviews,

i.e. the software evolution defmition, taxonomy and the state-of-the-art traceability

approaches in a brief way, as well as an evaluation of the approaches. Section 3 presents the

conceptual framework of the proposed approach, followed by descriptions of the .facets' in

Section 4. Section 5 describes future works of the research and fmally, Section 6 discusses the

conclusion.

2. LITERATURE REVIEW

2.1 Definition and Taxonomy of Software Evolution

The standard defmition of software evolu~ion has not been established. Different

researchers use the term in different ways. Belady and Lehman in [5, 6] defmesoftware

evolution as "... the dynamic behavior ofprogramming systems as they are maintained and

enhanced over their life times." Somerville in [7] views software evolution as a spiral model.

Some researchers use the term software evolution as a synonym or preferable substitution for

software maintenance, due to their similarity in the basic operation, i.e. changing the software

artifacts, especially in the source code [8, 9].

Chapin et al. in [10] refmes the typology into 12 types of software evolution and

maintenance based on the purpose of change. Recently, Buckley et al. [11] defines software

evolution taxonomy based on the characterizing mechanisms of change and the factors that

Jilid 19, Bil. 2 (Disember 2007) Jumal TCkDologi Maklutnat

69

influence these mechanisms. The taxonomy is organized into the following logical groupings:

temporal properties that is a dimension of software evolution that captures timing aspect of

change; objects ofchange that captures location aspect of change, Le. which part of software

can be changed; system properties that captures the characteristic of software while it is

changed; and change support that captures support mechanism while software is being

changed.

2.2 Overview of Traceability Approaches

Gotel and Finkelstein in [12] define requirement traceability as "the ability to describe

and follow the life of a requirement, in both a forwards and backwards direction". IEEE

Standard 830-1998 [13] states that "An SRS is traceable if the origin of each of its

requirements is clear and if it facilitates the referencing of each requirement in future

development or enhancement documentation ". From those defmitions, it is showed that

traceability involves various relationships among artifacts that are produced during a software

development projects.

After reviewing about hundred of recent papers relating traceability topics, the authors

interested in seven approaches that include specific subject, Le. they put the requirement as

one of the main artifacts to perfonn traceability.

It is resumed here the traceability approaches, which will be further evaluated. E~ch

approach is cited in tenn of the mechanisms and algorithms that are utilized, metrics that are

used to measure the results, and scope of tracing that is covered. Those characteristics will be

used to evaluate the approach in the next sections.

2.2.1 Information Retrieval Based Approach (IR)

Recently, there are many researchers attempting to establish traceability link via

infonnation retrieval approach [14-26]. This approach focuses on automating the generation

of traceability link by similarity comparison between two types of artifacts. The two basic IR

models which commonly used in traceability generation are probabilistic and vector space

models. Numerous variant models have also been applied including the popular model Latent

Semantic Indexing (LSI) which is based on vector space model. In each model, one type of

particular artifacts treats as a query and another type of artifacts treats as a document being

searched intenn of the query. For example, source code treats as a query against requirements

specification as a document being searched based on the query.

The general steps include (i) preprocessing, ie. stop-word removal and or stemming, (ii)

analyzing and indexing of an incoming document collection, followed by constructing a

Jilid 19, Bil. 2 (Disember 2007) Jumal Teknologi Maklumat

69

influence these mechanisms. The taxonomy is organized into the following logical groupings:

temporal properties that is a dimension of software evolution that captures timing aspect of

change; objects ofchange that captures location aspect of change, Le. which part of software

can be changed; system properties that captures the characteristic of software while it is

changed; and change support that captures support mechanism while software is being

changed.

2.2 Overview of Traceability Approaches

Gotel and Finkelstein in [12] define requirement traceability as "the ability to describe

and follow the life of a requirement, in both a forwards and backwards direction". IEEE

Standard 830-1998 [13] states that "An SRS is traceable if the origin of each of its

requirements is clear and if it facilitates the referencing of each requirement in future

development or enhancement documentation ". From those defmitions, it is showed that

traceability involves various relationships among artifacts that are produced during a software

development projects.

After reviewing about hundred of recent papers relating traceability topics, the authors

interested in seven approaches that include specific subject, Le. they put the requirement as

one of the main artifacts to perfonn traceability.

It is resumed here the traceability approaches, which will be further evaluated. E~ch

approach is cited in tenn of the mechanisms and algorithms that are utilized, metrics that are

used to measure the results, and scope of tracing that is covered. Those characteristics will be

used to evaluate the approach in the next sections.

2.2.1 Information Retrieval Based Approach (IR)

Recently, there are many researchers attempting to establish traceability link via

infonnation retrieval approach [14-26]. This approach focuses on automating the generation

of traceability link by similarity comparison between two types of artifacts. The two basic IR

models which commonly used in traceability generation are probabilistic and vector space

models. Numerous variant models have also been applied including the popular model Latent

Semantic Indexing (LSI) which is based on vector space model. In each model, one type of

particular artifacts treats as a query and another type of artifacts treats as a document being

searched intenn of the query. For example, source code treats as a query against requirements

specification as a document being searched based on the query.

The general steps include (i) preprocessing, ie. stop-word removal and or stemming, (ii)

analyzing and indexing of an incoming document collection, followed by constructing a

Jilid 19, Bil. 2 (Disember 2007) Jumal Teknologi Maklumat

70

representation of each document and then archiving them, (iii) analyzing and representing an

incoming queries, and using a matching or ranking algorithm to determine which document

representations are similar to the query representation.

Two commonly measurements for evaluating candidate links (for the tools that

implement IR) are recall and precision. Recall refers to the percentage of correct matches that

are found. Precision refers to the percentage of found matches that are correct. The scope of

tracing covers almost of artifacts including high-level and low-level requirements, manual

documents, design elements, test cases, and source code.

2.2.2 Rule..;Based Approach (RB)

Spanoudakis et a1. in [27,28] propose a method to automatically create traceability link

using rules. They use two traceability rules, Le. requirement-to-object-model traceability rule

(RTOM rule) and inter-requirement traceability rule (IREQ rule). The rules are deployed into

three specific documents types, Le. (i) requirements statement documents (RSD), (ii) use case

documents (UCD), and (iii) analysis object models (AOM). RTOM rules are used to trace the

RSD and UCD to an AOM, while IREQ rules are used to trace between RSD and the UCD.

The method assumes that all of document types are in XML-based format. The traceability

rules are also represented in XML-based markup language.

The method consists of four stages, Le. (i) grammatical tagging of the artifacts, (ii)

converting the tagged artifacts into XML representations (iii) generating traceability relations

between artifacts, and (iv) generating traceability relations between different parts of the

artifacts.

RB uses recall and precision to measure the result. Whereas it covers requirement statement

documents, use case documents, and analysis object models as the objects oftracing.

Also, Nentwich et a1. in [29]build rule-based tool for consistency management for XML­

based software artifacts, namely 'xlinkit'. First-order logics are utilized to describe

consistency rules. The tool can be applied to all kind of textual software artifacts as long as

these artifacts are in document-object-model (DOM) trees format.

2.2.3 Event-Based Approach (EB)

Cleland-Huang et a1. in [30-32] propose event-based approach for updating and

maintaining traceability relationships. Trac~ability relationships are defined as. publisher­

subscriber relationships in which dependent artifacts must subscribe to the. requirements on

which they depend. When a requirement change, the dependent artifacts. are notified and

subsequently proper action can be taken.

Jilid 19, Bil. 2 (Disember 2007) JumiP'I'emologi Maklumat

70

representation of each document and then archiving them, (iii) analyzing and representing an

incoming queries, and using a matching or ranking algorithm to determine which document

representations are similar to the query representation.

Two commonly measurements for evaluating candidate links (for the tools that

implement IR) are recall and precision. Recall refers to the percentage of correct matches that

are found. Precision refers to the percentage of found matches that are correct. The scope of

tracing covers almost of artifacts including high-level and low-level requirements, manual

documents, design elements, test cases, and source code.

2.2.2 Rule..;Based Approach (RB)

Spanoudakis et a1. in [27,28] propose a method to automatically create traceability link

using rules. They use two traceability rules, Le. requirement-to-object-model traceability rule

(RTOM rule) and inter-requirement traceability rule (IREQ rule). The rules are deployed into

three specific documents types, Le. (i) requirements statement documents (RSD), (ii) use case

documents (UCD), and (iii) analysis object models (AOM). RTOM rules are used to trace the

RSD and UCD to an AOM, while IREQ rules are used to trace between RSD and the UCD.

The method assumes that all of document types are in XML-based format. The traceability

rules are also represented in XML-based markup language.

The method consists of four stages, Le. (i) grammatical tagging of the artifacts, (ii)

converting the tagged artifacts into XML representations (iii) generating traceability relations

between artifacts, and (iv) generating traceability relations between different parts of the

artifacts.

RB uses recall and precision to measure the result. Whereas it covers requirement statement

documents, use case documents, and analysis object models as the objects oftracing.

Also, Nentwich et a1. in [29]build rule-based tool for consistency management for XML­

based software artifacts, namely 'xlinkit'. First-order logics are utilized to describe

consistency rules. The tool can be applied to all kind of textual software artifacts as long as

these artifacts are in document-object-model (DOM) trees format.

2.2.3 Event-Based Approach (EB)

Cleland-Huang et a1. in [30-32] propose event-based approach for updating and

maintaining traceability relationships. Trac~ability relationships are defined as. publisher­

subscriber relationships in which dependent artifacts must subscribe to the. requirements on

which they depend. When a requirement change, the dependent artifacts. are notified and

subsequently proper action can be taken.

Jilid 19, Bil. 2 (Disember 2007) JumiP'I'emologi Maklumat

71

The method involves three main components, Le. (i) the requirement manager which

responsible for managing requirements and for publishing change event messages to the event

server, (ii) the event server which responsible for establishing traceability by handling initial

subscriptions placed by dependent entities, and also listening for event notifications from the

requirement manager(s) and forwarding event messages to relevant subscribers, and (iii) the

subscriber manager which responsible for listening on behalf of the subscribers that it

manages for event notifications forwarded by the event server.

EB assumes that the traceability links among artifacts are already established before

event-based algorithms are run. Consequently, the algorithms are focused only to manage up­

to-date traceability links based on changes that may occur during system operational time.

The algorithms have been implemented in a tool prototype to manage and maintain

traceability between requirements and UML artifacts as well as test cases. EB uses event

resolution, in term of path length and weighted measure as the metrics to evaluate the result

obtained by the tool.

2.2.4 Hypertext-Based Approach (HB)

Maletic et al. in [33, 34] propose an approach uses hypertext model that allow complex

linking as well as versioning of links. Also, Sherba in [35, 36] propose a hypertext-based

traceability relationships generation using open hypermedia and information integration.

The approach utilizes XML as the main tool for representing models and created links.

The models and their links are converted into XML-based representation. Models are

categorized into anchor model and target model. The links are established between anchor

and target model with particular link types, Le. causal, non-causal, and or navigational links.

Once the model-to-model traceability links have been established, meta-differencing

mechanism is used to indicate if some changes have been occurred in the models. The

evolution is supported by a fine-grained versioning teclmique.

A tool is built to implement the· method, but the metrics is not discussed. The scope of

tracing includes all types of artifacts.

2.2.5 Feature Model-Based Approach (FB)

Riebisch and Pashov in [37, 38] describe feature model-based method for requirement

traceability. They utilize feature modeling which describes a requirements as an overview and

models the variability of a product line. A feature model consists of a graph with features as

nodes and feature relations as edges. If the number of features is very high, then the

representation of features and their relations are displayed by tables. FB is applied for the

Jilid 19, BiL 2 (Disember 2007) Jurnal Teknologi Maklumat

71

The method involves three main components, Le. (i) the requirement manager which

responsible for managing requirements and for publishing change event messages to the event

server, (ii) the event server which responsible for establishing traceability by handling initial

subscriptions placed by dependent entities, and also listening for event notifications from the

requirement manager(s) and forwarding event messages to relevant subscribers, and (iii) the

subscriber manager which responsible for listening on behalf of the subscribers that it

manages for event notifications forwarded by the event server.

EB assumes that the traceability links among artifacts are already established before

event-based algorithms are run. Consequently, the algorithms are focused only to manage up­

to-date traceability links based on changes that may occur during system operational time.

The algorithms have been implemented in a tool prototype to manage and maintain

traceability between requirements and UML artifacts as well as test cases. EB uses event

resolution, in term of path length and weighted measure as the metrics to evaluate the result

obtained by the tool.

2.2.4 Hypertext-Based Approach (HB)

Maletic et al. in [33, 34] propose an approach uses hypertext model that allow complex

linking as well as versioning of links. Also, Sherba in [35, 36] propose a hypertext-based

traceability relationships generation using open hypermedia and information integration.

The approach utilizes XML as the main tool for representing models and created links.

The models and their links are converted into XML-based representation. Models are

categorized into anchor model and target model. The links are established between anchor

and target model with particular link types, Le. causal, non-causal, and or navigational links.

Once the model-to-model traceability links have been established, meta-differencing

mechanism is used to indicate if some changes have been occurred in the models. The

evolution is supported by a fine-grained versioning teclmique.

A tool is built to implement the· method, but the metrics is not discussed. The scope of

tracing includes all types of artifacts.

2.2.5 Feature Model-Based Approach (FB)

Riebisch and Pashov in [37, 38] describe feature model-based method for requirement

traceability. They utilize feature modeling which describes a requirements as an overview and

models the variability of a product line. A feature model consists of a graph with features as

nodes and feature relations as edges. If the number of features is very high, then the

representation of features and their relations are displayed by tables. FB is applied for the

Jilid 19, BiL 2 (Disember 2007) Jurnal Teknologi Maklumat

72

defmition of a product by a customer. Every feature describes a property of a product from

the customer's point of view. There are three categories of features, Le. (i) functional features

express the behavior or the way users may interact with a product, (ii) interface features

express the product's conformance to a standard or a subsystem, and (iii) parameter features

express enumerable, listable environmental or non-functional properties.

The features are structured by hierarchical relations. Classifications of feature relations

are (i) hierarchical relations which describe the sequence of decisions of products. The most

important features are placed higher in the hierarchy, (ii) refinement relations which describe

relations of generalization and specialization as well as aggregation, and (iii) requires or

excludes relations or multiplicity-grouping relations which describe constraints between

variable features that have an influence on the sequence of decisions ofproducts.

The scope of traceability includes requirements to features and elements of the solution,

i.e. object model and source code. Metrics and tool support are not discussed.

2.2.6 Value-Based Approach (VB)

Zemont in [39] proposes a framework for assessing the value that traceability can provide

to an organization. Furthermore, Heindl and Biffl in [4] propose value-based requirement

tracing. This approach provides technical support to perform requirements tracing as well as

take value and cost (economical aspect) considerations into· account. Thus, it provide~ a

technical model and an economic model for requirement tracing based on some criteria.

VB consists of five processes, Le. (i) requirements definition, that is identifying atomic

requirements and assigning an identifier to each of them, (ii) requirements prioritization, that

is estimating the value, risk, and effort of each requirement, (iii) requirements packaging, that

is identifying clusters of requirements, (iv) requirements linking, that is establishing

traceability links between requirements and other artifacts, and (v) evaluation, that is utilizing

generated traces for certain purposes, e.g. to estimate the impact of change for particular

requirements.

In the case study performed by [4], they use a manual way in obtaining the traceability

links and in performing a change in the software artifacts. Metrics and tool support are not

discussed.

2.2.7 Scenario-Based Approach (SB)

Egyed et al. in [40-42] propose scenario-based approach. SB uses a hypothesized trace

information that have to be manually entered. Then, it uses runtime information to creating

trace links. Test case scenarios are executed on a running system and execution information is

Jilid 19, Bit. 2 (Disember 2007) Jurnal Teknologi Maklumat

72

defmition of a product by a customer. Every feature describes a property of a product from

the customer's point of view. There are three categories of features, Le. (i) functional features

express the behavior or the way users may interact with a product, (ii) interface features

express the product's conformance to a standard or a subsystem, and (iii) parameter features

express enumerable, listable environmental or non-functional properties.

The features are structured by hierarchical relations. Classifications of feature relations

are (i) hierarchical relations which describe the sequence of decisions of products. The most

important features are placed higher in the hierarchy, (ii) refinement relations which describe

relations of generalization and specialization as well as aggregation, and (iii) requires or

excludes relations or multiplicity-grouping relations which describe constraints between

variable features that have an influence on the sequence of decisions ofproducts.

The scope of traceability includes requirements to features and elements of the solution,

i.e. object model and source code. Metrics and tool support are not discussed.

2.2.6 Value-Based Approach (VB)

Zemont in [39] proposes a framework for assessing the value that traceability can provide

to an organization. Furthermore, Heindl and Biffl in [4] propose value-based requirement

tracing. This approach provides technical support to perform requirements tracing as well as

take value and cost (economical aspect) considerations into· account. Thus, it provide~ a

technical model and an economic model for requirement tracing based on some criteria.

VB consists of five processes, Le. (i) requirements definition, that is identifying atomic

requirements and assigning an identifier to each of them, (ii) requirements prioritization, that

is estimating the value, risk, and effort of each requirement, (iii) requirements packaging, that

is identifying clusters of requirements, (iv) requirements linking, that is establishing

traceability links between requirements and other artifacts, and (v) evaluation, that is utilizing

generated traces for certain purposes, e.g. to estimate the impact of change for particular

requirements.

In the case study performed by [4], they use a manual way in obtaining the traceability

links and in performing a change in the software artifacts. Metrics and tool support are not

discussed.

2.2.7 Scenario-Based Approach (SB)

Egyed et al. in [40-42] propose scenario-based approach. SB uses a hypothesized trace

information that have to be manually entered. Then, it uses runtime information to creating

trace links. Test case scenarios are executed on a running system and execution information is

Jilid 19, Bit. 2 (Disember 2007) Jurnal Teknologi Maklumat

73

obtained using a monitoring tool. The information is then combined with the hypothesized

trace information to form a footprint graph. This graph shows the relationship among artifacts

in the system.

Ibrahim et al. propose document-based traceability to support software change impact

analysis, which basically adopt SB approach to obtain the relationship among artifacts [43,

44]. They extend the functionality by utilizing those relationships to provide software

traceability as well as for software change impact analysis visibility of different artifacts.

The traceability links are created automatically, but the hypothesized trace information

must be manually entered. In SB, traceability links can only be created once a running system

is available.

2.3 Evaluation of Traceability Approaches

In 1998 Von Knethen et al. [45] performed a comparative case study with industrial

requirement engineering approaches. More recently, Ingeniera TCP team [46] performed a

comparative study between requirement management and engineering tools.

Here, the authors specifically evaluate requirements traceability approaches in term of

their support for software evolution using the software evolution taxonomy proposed by [11].

The evaluation results are shown on Table 1 through Table 4 below. The justification of each

factor can be found at our previous paper [47].

Table 1. Evaluation Result on 'Temporal Properties' Dimension

Aspects IR RB EB HB FB VB SB......
c).........)' ") I·/i·· •• ···· ;;i···,.······.,· H)/· ',/<,<. c····.llmeOI

• Compile " -..j -..j -..j j -..j -..j

• Load

• Runtime
I •Change Histonr ,..'....'•.,.•.•.•. ,,. ,. : ..•.• ;.< , ..;.....,.......

• •
../

.'...........

• Versioning -..j -..j -..j -..j -..j

• Sequential

• Parallel -..j
, •......, .. .'.,. b·.· •...·./; ' 1,<••.•..• 1.'·'.< I........•.....

• Continuous

• Periodic

• Arbitrary -..j -..j -..j -..j -..j -..j -..j

Jilid 19, Bil. 2 (Disember 2007) Jurnal Teknologi Maklumat

73

obtained using a monitoring tool. The information is then combined with the hypothesized

trace information to form a footprint graph. This graph shows the relationship among artifacts

in the system.

Ibrahim et al. propose document-based traceability to support software change impact

analysis, which basically adopt SB approach to obtain the relationship among artifacts [43,

44]. They extend the functionality by utilizing those relationships to provide software

traceability as well as for software change impact analysis visibility of different artifacts.

The traceability links are created automatically, but the hypothesized trace information

must be manually entered. In SB, traceability links can only be created once a running system

is available.

2.3 Evaluation of Traceability Approaches

In 1998 Von Knethen et al. [45] performed a comparative case study with industrial

requirement engineering approaches. More recently, Ingeniera TCP team [46] performed a

comparative study between requirement management and engineering tools.

Here, the authors specifically evaluate requirements traceability approaches in term of

their support for software evolution using the software evolution taxonomy proposed by [11].

The evaluation results are shown on Table 1 through Table 4 below. The justification of each

factor can be found at our previous paper [47].

Table 1. Evaluation Result on 'Temporal Properties' Dimension

Aspects IR RB EB HB FB VB SB......
c).........)' ") I·/i·· •• ···· ;;i···,.······.,· H)/· ',/<,<. c····.llmeOI

• Compile " -..j -..j -..j j -..j -..j

• Load

• Runtime
I •Change Histonr ,..'....'•.,.•.•.•. ,,. ,. : ..•.• ;.< , ..;.....,.......

• •
../

.'...........

• Versioning -..j -..j -..j -..j -..j

• Sequential

• Parallel -..j
, •......, .. .'.,. b·.· •...·./; ' 1,<••.•..• 1.'·'.< I........•.....

• Continuous

• Periodic

• Arbitrary -..j -..j -..j -..j -..j -..j -..j

Jilid 19, Bil. 2 (Disember 2007) Jurnal Teknologi Maklumat

74

Table 2. Evaluation Result on 'Object of Change' Dimension

'" CIA: change Impact analySIS; TA: traceablhty analySIS; EE: effort estimation

Aspects IR RB EB HB FB VB SB
Anifact.• ·....•·./..i... '.', •............. /................ .•.... ,/ ;.,

I" ..•······,;'·., ••·'.•·
..,," i,i I"'"

• High-level ..J V '\ '\) ..J ..J ..J

• Low-level ..J V , V ..J ..J ..J
".;~';' •••• '}> ,.', ,.• "'\ ..' .. ,.' ,i' .',.. ,.. "L,·.··.'.. ,/"",,; I·,;· •.·•·• •

• Coarse

• Medium ..J ..J

• Fine ..J ..J " " ..J
Impact '.. '.. "

'.', I, "',",' ".. ,

• Local ..J ..J ..J ..J ..J

• System-wide ..j ..j ..j ..j ..j ..j ..j
ChproJ)agatiori"'.; •......., I" ." ',T I';' ,.,.,.' I" ''' ..

"",

• CIA ..J ..J ..J

• TA ..J ..J ..J ..J ..J ..J ..j

• EE ..

Table 3. Evaluation Result on 'System Properties' Dimension

Aspects IR RB EB HB FB VB SB
Availability'"" .. ,•...•.••,•..•.,., . ,....

"

", " ',;,•. ' " I'" "i"·'. ",;,."".'.;". I',,;,',.,".",".·"'"• ';.

• Partially avail. ..J ..J ..J ..J ..J ..J ..J

• Permanently av.
• 'A' '..·.·.,"" ..'··'i,,,', ·.i' I·.·,'·:; •.···'·";]·••; '/"."'.. ".

,x,··· ..,,·,··,)',:; ',,:.,

• Reactive " ..J ..J ..J ..J ..J ..j

• Proactive
.1 """,."""";,,',,,", ,'."

i'' ..'....". .'.c, .,'.. " .. , . ";,,,'; ·,;i;,"·· ',.... ;',}.
,."'.. '

• Open ..j ..J ..J ..J ..j ..j ..j

• Closed
Safety'··, ,,'.

. ,' ., "';'. ';".".,.,: '.'" •
.,

• Static ..J ..J ..J ..J ..J ..J ..J

• Dynamic

Table 4. Evaluation Result on 'Change Support' Dimension

Aspects
Deg; ofAlitomatiOIl

IR RB EB ,HB
'.' L ".' i ,.... ", "."';"1,"':1.

FD . VB·

• Automated
• Semi-automated
• Manual

DeweeofForlnality I . I···· .' . ,.,'., . "',",,':: ',i'" •.,.

• Ad-hoc
• Semi-formal
• Formal

ChangelY~""'"••.•..•••... ';·.'1."," ,:. .•.,.•.•...••...,. I··," ',".'.'••. }";/,'.",,,,,.:.•:',:..,'.','

• Structural ..j..J..j..J..j '\ ..J
• Semantic ..j..J..j..j..j '\ ..J

Jilid 19,'Bil. 2 (Disember 2007)

74

Table 2. Evaluation Result on 'Object of Change' Dimension

• CIA: change Impact analysIs; TA: traceablhty analYSIS; EE: effort estimation

Aspects IR RB EB HB FB VB SB
A: (act .'Yic ."'.,'c."" ,,; '. .•. ". C·,i· ',' ,•:.,.. :•. :....:...,..... ',.: •.', i':: ••:':

• High-level " 'J V "• Low-level " V V , ",GranllliUitYir.. ·.·,".'" ••" I":c' ."'." . i. 1\, ·'('c··' .! li·.:i' ,'.

• Coarse
• Medium v "• Fine V V V " "Impact '" i'" .. , , '}'.';':,'

• Local 'i " " 'i

• System-wide V " " " , " v
ChProDa ~.

,
I •• , ',-, '." I"~:' i, i,

• CIA " " v
• TA v " v " " v v
• EE ..

Table 3. Evaluation Result on 'System Properties' Dimension

Asoects IR RB EB HB FB VB SB
,'Availllbility'.,'.",cc [-, '.\ c,Ui ..:,;';,.

• Partially avail. v v " v " v "• Permanently av.
''".,...'.. , ",., "ii" .',"",

• Reactiye " " " v " " "• Proactive
0 ,:.i·, c, ,C: i

'"

,:, :',' :.'
• Open " " " " " " "• Closed

Safety .., "', . " '.·c .,jc,: "': ...
• Static " " " " " " "• Dynamic

Table 4. Evaluation Result on 'Change Support' DUnension

Aspects
Deg. ofAutomation .'

• Automated
• Semi-automated
• Manual

DemeofFdril\alitv"
• Ad-hoc
• Semi-formal
• Formal

Chan. '
• Structural
• Semantic

IR RB EB HB FB "'VB: SB

C '.
I'·,. ,," "":;j, "'..'.:"::,,,.,

" " " " " " "
I ' " I""" ,.",""'." 'P:,:" I"."" ",'

" " " " " " "
.'"I,"'"" ,. :, ""

..... ' :.-: 1,".""',,. ,'" ,.'.,'.•....:.

" " " " " ,
"" " " " " "

!!!]!ili!!!d~l!!!9~,'B!!i!!!I.!!!2~(!D!!!is!!e!!m!!!!be!!r~2!!!O!!107!!!!)!!·!!Ill!IU'!lIl·,IIl!···"."O·'81!!l!·Makllll!!l!!!!!!!u!!m!!a!!!!!t

75

2.4 Critical Discussion

In the context of software evolution support, the discussion can be divided into two

disjoint groups. The fIrst relates to the similarity characteristics belong to each approach, and

the second is the opposite.

The similarity values which arise among them are caused by the natural or inherent

characteristics of requirement traceability process. These values have to be taken for granted.

It means that no lacks has to be improved. It is mainly due to the natural characteristics such

as the need for user justifIcation in the fmal results, the nature of change that may occur

anytime, the origin of change that usually comes from the requirement as well as from other

artifacts, but rarely (or never) from the executable artifact, etc. Table 5 below lists the

similarity aspects among the approaches.

Table 5. Similarity Aspects among the Approaches

;N()~, 'ii"<>' ""i","""", ;,>i,;',.;;,;, ;li;;,.,·';"·.·,/' .. ,..,«<>.U<..',<"
1 Time of change: compile The origin of change usually comes from the requirement or other

artifacts, but rarely (or never) from the executable artifact

2 Change frequency: arbitrary The nature of change that can be occurred anytime

3 Artifacts: high and low Usually the traceability links covers all artifacts in the software
level systems

4 Impact: system-wide It is closely related to point (3) in which the link coverage are all
artifacts, thus the impact is also at a system-wide.

5 Change propagation: Traceability process is the main focus ofthe approaches
traceability analysis

6 Availability: partial The software systems can be stopped from running mode while it'
is being modified

7 Activeness: reactive The change performed on the artifacts must be driven by an
external agent, i.e. user or stakeholder

8 Openness: open Traceability process facilitates the software to be extended or
modified

9 Safety: static The traceability process guarantees a certain degree of behavioral
safety, in which the change is behavior-preserving with respect to
the original behavior

10 Degree of formality: semi- Approaches are implemented on some underlying mathematical
formal model especially for the core tracing algorithms while some other

parts are based on informal model (user's justification)

11 Change type: structural and The change is performed on any kind ofartifacts and it can be any
semantic kind of change type

The second group relate to the characteristics in which each approach have different

value. Actually, the aspects which are included in this group express their support for

software evolution. Based on the described evaluation, it is obviously cleared that some of the

approaches already have their support but some others do not have. For example, IR based

Jilid 19,Bi1. 2 (Disember 2007) Jurnal Teknologi Maklumat

75

2.4 Critical Discussion

In the context of software evolution support, the discussion can be divided into two

disjoint groups. The fIrst relates to the similarity characteristics belong to each approach, and

the second is the opposite.

The similarity values which arise among them are caused by the natural or inherent

characteristics of requirement traceability process. These values have to be taken for granted.

It means that no lacks has to be improved. It is mainly due to the natural characteristics such

as the need for user justifIcation in the fmal results, the nature of change that may occur

anytime, the origin of change that usually comes from the requirement as well as from other

artifacts, but rarely (or never) from the executable artifact, etc. Table 5 below lists the

similarity aspects among the approaches.

Table 5. Similarity Aspects among the Approaches

;N()~, 'ii"<>' ""i","""", ;,>i,;',.;;,;, ;li;;,.,·';"·.·,/' .. ,..,«<>.U<..',<"
1 Time of change: compile The origin of change usually comes from the requirement or other

artifacts, but rarely (or never) from the executable artifact

2 Change frequency: arbitrary The nature of change that can be occurred anytime

3 Artifacts: high and low Usually the traceability links covers all artifacts in the software
level systems

4 Impact: system-wide It is closely related to point (3) in which the link coverage are all
artifacts, thus the impact is also at a system-wide.

5 Change propagation: Traceability process is the main focus ofthe approaches
traceability analysis

6 Availability: partial The software systems can be stopped from running mode while it'
is being modified

7 Activeness: reactive The change performed on the artifacts must be driven by an
external agent, i.e. user or stakeholder

8 Openness: open Traceability process facilitates the software to be extended or
modified

9 Safety: static The traceability process guarantees a certain degree of behavioral
safety, in which the change is behavior-preserving with respect to
the original behavior

10 Degree of formality: semi- Approaches are implemented on some underlying mathematical
formal model especially for the core tracing algorithms while some other

parts are based on informal model (user's justification)

11 Change type: structural and The change is performed on any kind ofartifacts and it can be any
semantic kind of change type

The second group relate to the characteristics in which each approach have different

value. Actually, the aspects which are included in this group express their support for

software evolution. Based on the described evaluation, it is obviously cleared that some of the

approaches already have their support but some others do not have. For example, IR based

Jilid 19,Bi1. 2 (Disember 2007) Jurnal Teknologi Maklumat

76

approach already have an automated facility to generate traceability but VB approach does

not. The way to improve the value to achieve a better support for software evolution is by

modifying the approach itself (if the algorithms enable) or by combining a particular

approach to other approach that have a better value (if the technology is enable).

Furthermore, those which are in the second group can be classified into two categories,

Le. strong effect and optional. 'Strong effect' means that the aspect has a very strong

influence in addressing current traceability problems. An approach that already has strong

effect aspect is ready to solve more problems other than those which do not have this aspect.

'Optional' means that the aspect can be included in the approach to broaden its capabilitY, or

it can be excluded because it is not the main facility that has to be covered by the approach.

Table 6 below illustrates these aspects sorted by a priority in which strong effect aspect has a

higher priority other than optional aspect.

Table 6. Aspect Priority to Support Evolution Process

N& 1')i\i"""AQ.np.c r'i,'i' ,l1U1U.Y,'··.· ..(>i,·.' .•.,~\,<i;;,r ... ;·.·.,..'.'<,. / " ..,.;,.,•....••.' .. ','

1 Degree of Strong Automation may minimize human interaction and simplify
automation: effect traceability process.
automated versus It may address problems such as:

semi-automated - huge amount of artifacts
- human labor and error-

prone
- complicated tracing

procedure
- up to date link

maintenance

2 Change history: Strong Closely related to the automation aspect. Versioning facility i,s
versioning effect important to maintain the version ofartifacts configuration,

especially after a change is performed. Versioning mechanism
can be easily provided ifthe approach has an automated
traceability process.

3 Granularity: Strong Fine granularity is important since it indicates that the
medium versus effect traceability information covers the source-code. This aspect
fine-grained may address problem such as inaccurate and incomplete

traceability results

4 Impact: local Optional Although it is closely related to the granularity aspect, this
local impact is optional, since an approach may select the
level of source code to be covered in the process. This aspect
indicates that a change can be performed in the source code,
especially in the statement level ofgranularity, so that it is
possible to change a local variable that may affect only at the
related class.

5 Change Optional Change Impact Analysis facility can be provided separately
propagation: CIA from the traceability approach.

6 Change history: Optional A traceability approach can be implemented on a stand alone
parallel as well as on a distributed environment.

Jilid 19,'Bil. 2 (Disember 2007) Jurnal Teknologi Maklumat

76

approach already have an automated facility to generate traceability but VB approach does

not. The way to improve the value to achieve a better support for software evolution is by

modifying the approach itself (if the algorithms enable) or by combining a particular

approach to other approach that have a better value (if the technology is enable).

Furthermore, those which are in the second group can be classified into two categories,

Le. strong effect and optional. 'Strong effect' means that the aspect has a very strong

influence in addressing current traceability problems. An approach that already has strong

effect aspect is ready to solve more problems other than those which do not have this aspect.

'Optional' means that the aspect can be included in the approach to broaden its capabilitY, or

it can be excluded because it is not the main facility that has to be covered by the approach.

Table 6 below illustrates these aspects sorted by a priority in which strong effect aspect has a

higher priority other than optional aspect.

Table 6. Aspect Priority to Support Evolution Process

N& 1')i\i"""AQ.np.c r'i,'i' ,l1U1U.Y,'··.· ..(>i,·.' .•.,~\,<i;;,r ... ;·.·.,..'.'<,. / " ..,.;,.,•....••.' .. ','

1 Degree of Strong Automation may minimize human interaction and simplify
automation: effect traceability process.
automated versus It may address problems such as:

semi-automated - huge amount of artifacts
- human labor and error-

prone
- complicated tracing

procedure
- up to date link

maintenance

2 Change history: Strong Closely related to the automation aspect. Versioning facility i,s
versioning effect important to maintain the version ofartifacts configuration,

especially after a change is performed. Versioning mechanism
can be easily provided ifthe approach has an automated
traceability process.

3 Granularity: Strong Fine granularity is important since it indicates that the
medium versus effect traceability information covers the source-code. This aspect
fine-grained may address problem such as inaccurate and incomplete

traceability results

4 Impact: local Optional Although it is closely related to the granularity aspect, this
local impact is optional, since an approach may select the
level of source code to be covered in the process. This aspect
indicates that a change can be performed in the source code,
especially in the statement level ofgranularity, so that it is
possible to change a local variable that may affect only at the
related class.

5 Change Optional Change Impact Analysis facility can be provided separately
propagation: CIA from the traceability approach.

6 Change history: Optional A traceability approach can be implemented on a stand alone
parallel as well as on a distributed environment.

Jilid 19,'Bil. 2 (Disember 2007) Jurnal Teknologi Maklumat

77

3. CONCEPTUAL FRAMEWORK

From the evaluation it is cleared that the current approaches have variety of capability to

support software evolution, but none of them support the whole aspects. Most approaches

typically provide only limited supports to software evolution to perform requirements tracing

and maintaining the established links.

In contrast, software maintenance and evolution are the most expensive activities in the

software process. If an approach is designed to support software evolution activities, then to

be effectively utilized, it should take as much as possible important aspects for software

evolution into account.

Regarding traceability generation and recovery processes, there is one inherent

characteristic of requirement tracing process in that the fmal result must come from a user, i.e.

the analyst, or maintainer. The inherent characteristic of traceability is that the user

participation in the traceability process. can not be excluded. So, the automation is just to

minimize the effort required by the user. The lesser user effort required the better the

approach to support the software evolution, since it will minimize the effort.

This research proposed a multifaceted traceability generation and recovery to facilitate

software evolution. The conceptual framework of the research is shown on Figure 1 below.

----------------------------~~

user's action! response!
feedback

.. _------------

Figure 1. Conceptual Framework ofthe Research

Jilid 19, Bil. 2 (Disember 2007) Jurnal Teknologi Maklumat

77

3. CONCEPTUAL FRAMEWORK

From the evaluation it is cleared that the current approaches have variety of capability to

support software evolution, but none of them support the whole aspects. Most approaches

typically provide only limited supports to software evolution to perform requirements tracing

and maintaining the established links.

In contrast, software maintenance and evolution are the most expensive activities in the

software process. If an approach is designed to support software evolution activities, then to

be effectively utilized, it should take as much as possible important aspects for software

evolution into account.

Regarding traceability generation and recovery processes, there is one inherent

characteristic of requirement tracing process in that the fmal result must come from a user, i.e.

the analyst, or maintainer. The inherent characteristic of traceability is that the user

participation in the traceability process. can not be excluded. So, the automation is just to

minimize the effort required by the user. The lesser user effort required the better the

approach to support the software evolution, since it will minimize the effort.

This research proposed a multifaceted traceability generation and recovery to facilitate

software evolution. The conceptual framework of the research is shown on Figure 1 below.

----------------------------~~

user's action! response!
feedback

.. _------------

Figure 1. Conceptual Framework of the Research

Jilid 19, Bil. 2 (Disember 2007) Jumal Teknologi Maklumat

78

As depicted in the figure, there are three main elements involved in the approach, Le. the

software artifacts in which their traceability will be created and managed, the main

traceability generator which creates, recovers, and manages the traceability among artifacts,

and the traceability repository which records the linked artifacts. All of them are integrated

with (run on top of) a typical ready-to-use Integrated Development Environment (IDE).

The software artifacts that will be processed in this approach are the requirements

documents in the form of use case specifications, the design documents in the form of class

diagrams, and the source code. Those three types of artifacts represent the smaller scope of a

large complete system.

The multifaceted traceability generator contains two sub-elements for the process, Le. the

traceability-techniques element (Facet-I, Facet-2, and Facet-3) and the consistency checker

element. The traceability-techniques elements are composed from three different facets that

are integrated altogether. Facet-l is a syntactical similarity matching process. Facet-2 is a link

prioritization process, and Facet-3 is a heuristic-based process. Those three facets work in an

integrated mode to construct traceability links among artifacts. The traceability generation

and recovery process must be started. from Facet-I, and the subsequent process can be either

from Facet-2 to Facet-3 or from Facet-3 to Facet-2. The second element of the traceability

generator is the consistency checker which ensures that all of the artifacts are in the proper

configurations time to time, especially after a change has been made.

The traceability repository records all of the relationship information including up-to-date

links among artifacts, historical links, and other attributes related to the links. This element is

also responsible for providing the artifacts traceability information that is queried by the user.

Those three main elements that compose the whole traceability approach are integrated

with a particular ready-to-use integrated development environment (IDE) in order to facilitate

the traceability generation and recovery as well as to ease the artifacts maintenance. This is

due to the facts that the artifacts are usually be created and maintained in a particular IDE or

CASE tool.

The role of the user's response in this approach is related to the inherent characteristic of

traceability problem. As previously mentioned, the inherent characteristic of traceability

problem is that the user participation in the traceability process can not be excluded. (S)he has

to finally justify whether a created link is a true link or not. The knowledge about that is laid

on the human side. So, the automation is merely to minimize the effort required by the user.

Jilid 19, Bil. 2 (Disember 2007) Jumal Tekno1ogi Maklumat

78

As depicted in the figure, there are three main elements involved in the approach, Le. the

software artifacts in which their traceability will be created and managed, the main

traceability generator which creates, recovers, and manages the traceability among artifacts,

and the traceability repository which records the linked artifacts. All of them are integrated

with (run on top of) a typical ready-to-use Integrated Development Environment (IDE).

The software artifacts that will be processed in this approach are the requirements

documents in the form of use case specifications, the design documents in the form of class

diagrams, and the source code. Those three types of artifacts represent the smaller scope of a

large complete system.

The multifaceted traceability generator contains two sub-elements for the process, Le. the

traceability-techniques element (Facet-I, Facet-2, and Facet-3) and the consistency checker

element. The traceability-techniques elements are composed from three different facets that

are integrated altogether. Facet-l is a syntactical similarity matching process. Facet-2 is a link

prioritization process, and Facet-3 is a heuristic-based process. Those three facets work in an

integrated mode to construct traceability links among artifacts. The traceability generation

and recovery process must be started. from Facet-I, and the subsequent process can be either

from Facet-2 to Facet-3 or from Facet-3 to Facet-2. The second element of the traceability

generator is the consistency checker which ensures that all of the artifacts are in the proper

configurations time to time, especially after a change has been made.

The traceability repository records all of the relationship information including up-to-date

links among artifacts, historical links, and other attributes related to the links. This element is

also responsible for providing the artifacts traceability information that is queried by the user.

Those three main elements that compose the whole traceability approach are integrated

with a particular ready-to-use integrated development environment (IDE) in order to facilitate

the traceability generation and recovery as well as to ease the artifacts maintenance. This is

due to the facts that the artifacts are usually be created and maintained in a particular IDE or

CASE tool.

The role of the user's response in this approach is related to the inherent characteristic of

traceability problem. As previously mentioned, the inherent characteristic of traceability

problem is that the user participation in the traceability process can not be excluded. (S)he has

to finally justify whether a created link is a true link or not. The knowledge about that is laid

on the human side. So, the automation is merely to minimize the effort required by the user.

Jilid 19, Bil. 2 (Disember 2007) Jumal Tekno1ogi Maklumat

79

4. DESCRIPTION OF THE FACETS

This approach integrates three different processes. This integration is utilized to take

multiple aspects into account while generating the traceability links. The description of those

. facets is described below.

Facet-l is a syntactical similarity matching process. It allows dynamically generating

traceability links in a fully automated process. This technique is used to produce links with

highest recall, in order to ensure that all of candidate links have been generated. Thus,

candidate links with high and low confidence will be shown as well.

Facet-2 is a link prioritization process. This technique is used to refine the results

obtained by Facet-lor Facet-3, depending on the process sequence that is chosen. This facet

will prioritize the links according to the set of defmed value. The defined value is the value

that is assigned to each of the requirement based on its contribution or criticality in the whole

project. For example, the requirement that is closely related to the application core is assigned

a higher value than the others, or, the requirement that is related to government regulation

(must be obeyed) is assigned a high value as well. The user has to assign a value to each

requirement or group of requirements prior to the traceability generation. This isa semi­

automated process, since the user intervention can not be avoided to justify the value. Every

generated link is then examined and assigned a value according to its relation to the

requirement (its parent). Facet-2, thus, play an important role in defining which links have t9

be fIrstly prioritized to be ordered in evaluation, based on its value, upon a change has been

made on part of an artifact. This prioritization is crucial in order to minimize the effort of link .

evaluation conducted by the user, since only the links that have the high value is mandatory to

be firstly evaluated, while the links with low value are optional.

Facet-3 is a heuristic-rule based process. In order to maximize the precision of the

generated links, each of the candidate links has to be evaluated using heuristic list to filter

which is the 'possibly' true link and which is not. Those that are indicated as false links will

be sent to the 'recycle bin' to be evaluated later. The heuristic list works as a simple semantic

traceability relationship rule, Le. a simple rule to relate one artifact to another. For example, a

heuristic rule between use case specification and class diagram can be 'a class name in the

class diagram is related to an actor in the use case specification', or 'a method name in the

class diagram is related to a description in the use case specification'. Thus, if a link satisfies

the condition in the heuristic list, then the link confidence will. be increased and will be

indicated as true link.

Jilid 19, Bit 2 (Disember 2007) Jumal Teknologi Maklumat

79

4. DESCRIPTION OF THE FACETS

This approach integrates three different processes. This integration is utilized to take

multiple aspects into account while generating the traceability links. The description of those

. facets is described below.

Facet-l is a syntactical similarity matching process. It allows dynamically generating

traceability links in a fully automated process. This technique is used to produce links with

highest recall, in order to ensure that all of candidate links have been generated. Thus,

candidate links with high and low confidence will be shown as well.

Facet-2 is a link prioritization process. This technique is used to refine the results

obtained by Facet-lor Facet-3, depending on the process sequence that is chosen. This facet

will prioritize the links according to the set of defmed value. The defined value is the value

that is assigned to each of the requirement based on its contribution or criticality in the whole

project. For example, the requirement that is closely related to the application core is assigned

a higher value than the others, or, the requirement that is related to government regulation

(must be obeyed) is assigned a high value as well. The user has to assign a value to each

requirement or group of requirements prior to the traceability generation. This isa semi­

automated process, since the user intervention can not be avoided to justify the value. Every

generated link is then examined and assigned a value according to its relation to the

requirement (its parent). Facet-2, thus, play an important role in defining which links have t9

be fIrstly prioritized to be ordered in evaluation, based on its value, upon a change has been

made on part of an artifact. This prioritization is crucial in order to minimize the effort of link .

evaluation conducted by the user, since only the links that have the high value is mandatory to

be firstly evaluated, while the links with low value are optional.

Facet-3 is a heuristic-rule based process. In order to maximize the precision of the

generated links, each of the candidate links has to be evaluated using heuristic list to filter

which is the 'possibly' true link and which is not. Those that are indicated as false links will

be sent to the 'recycle bin' to be evaluated later. The heuristic list works as a simple semantic

traceability relationship rule, Le. a simple rule to relate one artifact to another. For example, a

heuristic rule between use case specification and class diagram can be 'a class name in the

class diagram is related to an actor in the use case specification', or 'a method name in the

class diagram is related to a description in the use case specification'. Thus, if a link satisfies

the condition in the heuristic list, then the link confidence will. be increased and will be

indicated as true link.

Jilid 19, Bit 2 (Disember 2007) Jumal Teknologi Maklumat

80

5. FUTURE WORK

This research is expected to produce a new traceability approach especially to support

software evolution. The future works include:

(i) Developing a software traceability model and approach;

(ii) Developing a supporting prototype tools in traceability generation and

recovery; and.

(iii) Analyzing results of conducted experiment to determine the effectiveness of

the approach.

6. CONCLUSION

This paper has presented the background and rationale behind a proposed multifaceted

traceability approach to support software evolution. It has described the evaluation of seven
~ .

recent requirements traceability approaches, especially in their support for software evolution.

It also described the conceptual framework of the multifaceted traceability approach. Finally,

it described some future works of this research.

REFERENCES

1. Carrol, P.B., Computer Glitch: Patching up Software Occupies Programmers and

Disables Systems. Wall Street Journal, 1988.

2. Hanna, M., Maintenance Burden Beggingfor a Remedy, in Datamation. 1993. p. 53­

63.

3. Pfleeger, S.L., Software Engineering: Theory and Practice. 1998: Prentice-Hall.

4. Heindl, M. and S. Bim. A Case Study on Value-Based Requirement Tracing. in

International Conference on Empirical Software Engineering (ESEC-FSE'05). 2005.

Lisbon, Portugal: ACM Press.

5. Belady, L.A. and M.M. Lehman, A Model of Large Program Development. IBM

System Journal, 1976. 15(1): p. 225-252.

6. Lehman, M.M., et al. Metrics and Laws ofSoftware Evolution - the Nineties View. in

4th International Symposium on Software Metrics (Metrics 97). 1997: IEEE

Computer Society.

7. Sommerville, I., Software Engineering. 7th ed. 2004: Addison-Wesley.

Jilid 19, Bil. 2 (Disember 2007) Jurnal Teknologi Maklumat

80

5. FUTURE WORK

This research is expected to produce a new traceability approach especially to support

software evolution. The future works include:

(i) Developing a software traceability model and approach;

(ii) Developing a supporting prototype tools in traceability generation and

recovery; and.

(iii) Analyzing results of conducted experiment to determine the effectiveness of

the approach.

6. CONCLUSION

This paper has presented the background and rationale behind a proposed multifaceted

traceability approach to support software evolution. It has described the evaluation of seven
~ .

recent requirements traceability approaches, especially in their support for software evolution.

It also described the conceptual framework of the multifaceted traceability approach. Finally,

it described some future works of this research.

REFERENCES

1. Carrol, P.B., Computer Glitch: Patching up Software Occupies Programmers and

Disables Systems. Wall Street Journal, 1988.

2. Hanna, M., Maintenance Burden Beggingfor a Remedy, in Datamation. 1993. p. 53­

63.

3. Pfleeger, S.L., Software Engineering: Theory and Practice. 1998: Prentice-Hall.

4. Heindl, M. and S. Bim. A Case Study on Value-Based Requirement Tracing. in

International Conference on Empirical Software Engineering (ESEC-FSE'05). 2005.

Lisbon, Portugal: ACM Press.

5. Belady, L.A. and M.M. Lehman, A Model of Large Program Development. IBM

System Journal, 1976. 15(1): p. 225-252.

6. Lehman, M.M., et al. Metrics and Laws ofSoftware Evolution - the Nineties View. in

4th International Symposium on Software Metrics (Metrics 97). 1997: IEEE

Computer Society.

7. Sommerville, I., Software Engineering. 7th ed. 2004: Addison-Wesley.

Jilid 19, Bil. 2 (Disember 2007) Jurnal Teknologi Maklumat

81

8. IEEE Std J219-1998: IEEE Standardfor Software Maintenance. 1999.

9. Bennett, K. and V. Rajlich. Software Maintenance and Evolution: A Roadmap. in

Proceedings of the Conference on the Future ofSoftware Engineering. 2000. USA:

ACMPress.

10. Chapin N., H.I., Khan K., Rami! I., Than W.G., Types of Software Evolution and

Software Maintenance. Iournal of Software Maintenance and Evolution, 2001: p. 3­

20.

11. Buckley, 1., et at, Towards a Taxonomy of Software Change. Journal of Software

Maintenance and Evolution: Research and Practice, 2003. 17(5): p. 309 - 332.

12. Gotel, O. and A. Finkelstein. An Analysis ofthe Requirements Traceability Problem.

in Proceeding of1st International Conf on Requirement Engineering. 1994.

13. IEEE Std 830-1998: IEEE Recommended Practice for Software Requirement

Specification. 1998.

14. Antoniol, G., et at, Recovering traceability links between code and documentation.

IEEE Transactions on Software Engineering, 2002.28(10): p. 970-983.

15. Antoniol, G., et at Information Retrieval Models for Recovering Traceability Links

between Code and Documentation. in IEEE International Conference on Software

Maintenance. 2000.

16. Cleland-Huang, J., et at Utilizing Supporting Evidence to Improve Dynamic

Requirements Traceability. in Proceedings of the 13th IEEE International

Conference on Requirements Engineering (RE'05). 2005.

17. De Lucia, A., et at ADAMS Re-Trace: a Traceability Recovery Tool. in 9th European .

Conference on Software Maintenance and Reengineering (CSMR'05). 2005: IEEE

Computer Society.

18. Hayes, J.H., A. Dekhtyar, and JM. Carigan. Recommending a Framework for

Comparison of Requirements Tracing Experiments. in Workshop on Empirical

Studies ofSoftware Maintenance (WESS 2004).2004. Chicago, IL.

19. Hayes, I.H., A. Dekhtyar, and J. Osborne. Improving Requirements Tracing via

Information Retrieval. in Proceedings of the 11th IEEE International Requirements

Engineering Conference. 2003.

20. Hayes, J.H., A. Dekhtyar, and S.K. Sundaram, Improving After-the-fact Tracing and

Mapping: Supporting Software Quality Predictions, .in IEEE Software. 2005. p. 30­

37.

21. Hayes, J.H., A. Dekhtyar, and S.K. Sundaram, Advancing candidate link generation

for requirements tracing: The study of methods. IEEE Transactions on Software

Engineering, 2006. 32(1).

Jilid 19, Bit. 2 (Disember 2007) Jurnal Teknologi Maklumat

81

8. IEEE Std J219-1998: IEEE Standardfor Software Maintenance. 1999.

9. Bennett, K. and V. Rajlich. Software Maintenance and Evolution: A Roadmap. in

Proceedings of the Conference on the Future ofSoftware Engineering. 2000. USA:

ACMPress.

10. Chapin N., H.I., Khan K., Rami! I., Than W.G., Types of Software Evolution and

Software Maintenance. Iournal of Software Maintenance and Evolution, 2001: p. 3­

20.

11. Buckley, 1., et at, Towards a Taxonomy of Software Change. Journal of Software

Maintenance and Evolution: Research and Practice, 2003. 17(5): p. 309 - 332.

12. Gotel, O. and A. Finkelstein. An Analysis ofthe Requirements Traceability Problem.

in Proceeding of1st International Conf on Requirement Engineering. 1994.

13. IEEE Std 830-1998: IEEE Recommended Practice for Software Requirement

Specification. 1998.

14. Antoniol, G., et at, Recovering traceability links between code and documentation.

IEEE Transactions on Software Engineering, 2002.28(10): p. 970-983.

15. Antoniol, G., et at Information Retrieval Models for Recovering Traceability Links

between Code and Documentation. in IEEE International Conference on Software

Maintenance. 2000.

16. Cleland-Huang, J., et at Utilizing Supporting Evidence to Improve Dynamic

Requirements Traceability. in Proceedings of the 13th IEEE International

Conference on Requirements Engineering (RE'05). 2005.

17. De Lucia, A., et at ADAMS Re-Trace: a Traceability Recovery Tool. in 9th European .

Conference on Software Maintenance and Reengineering (CSMR'05). 2005: IEEE

Computer Society.

18. Hayes, J.H., A. Dekhtyar, and JM. Carigan. Recommending a Framework for

Comparison of Requirements Tracing Experiments. in Workshop on Empirical

Studies ofSoftware Maintenance (WESS 2004).2004. Chicago, IL.

19. Hayes, I.H., A. Dekhtyar, and J. Osborne. Improving Requirements Tracing via

Information Retrieval. in Proceedings of the 11th IEEE International Requirements

Engineering Conference. 2003.

20. Hayes, J.H., A. Dekhtyar, and S.K. Sundaram, Improving After-the-fact Tracing and

Mapping: Supporting Software Quality Predictions, .in IEEE Software. 2005. p. 30­

37.

21. Hayes, J.H., A. Dekhtyar, and S.K. Sundaram, Advancing candidate link generation

for requirements tracing: The study of methods. IEEE Transactions on Software

Engineering, 2006. 32(1).

Jilid 19, Bit. 2 (Disember 2007) Jurnal Teknologi Maklumat

82

22. Hayes, J.H., et al. Helping analysts trace requirements: An objective look. in

Proceeding of 12th IEEE International Requirements Engineering Conference (RE

2004). 2004.

23. Lin, 1., et al. Poirot: A Distributed Tool Supporting Enterprise-Wide Automated

Traceability. in 14th IEEE International Requirement Engineering Conference

(RE'06). 2006: IEEE Computer Society.

24. Marcus, A. and 1.1. Maletic. Recovering Documentation-to-Source Code Traceability

Link using Latent Semantic Indexing. in Proceedings of the 25th IEEE International

Conference on Software Engineering. 2003.

25. Settimi, R., et al. Supporting software evolution through dynamically retrieving

traces to UML artifacts. in Proceedings - 7th International Workshop on Principles

ofSoftware Evolution, IWPSE2004 (In Conjunction with RE 2004).2004.

26. Zou, X., R. Settimi, and J. Cleland-Huang. Phrasing in Dynamic Requirements Trace

Retrieval. in Proceeding of 30th Annual International Computer Software and

Applications Conference (COMPSAC'06). 2006.

27. Spanoudakis, G. Plausible and Adaptive Requirement Traceability Structures. in

Proc. 14th Int'l Conf. Software Eng. and Knowledge Eng. 2002.

28. Spanoudakis, G., et al., Rule-Based Generation of· Requirements Traceability

Relations. Journal of Systems and Software, 2004: p. 105-127.

29. Nentwich, C., et al., xlinkit: A Consistency Checking and Smart Link Generation

Services. ACM Transactions on Internet Technology, 2002. 2(2): p. 151-185.

30. Cleland-Huang, J., et· al. Automating Speculative Queries through Event-based

Requirements Traceability. in Proceedings of the IEEE Joint International

Conference on Requirements Engineering. 2002.

31. Cleland-Huang, J., C.K. Chang, and G. Y. Supporting Event Based Traceability

through High-Level Recognition of Change Events. in IEEE Proc. Int'l Computer

Software and Applications Con! (COMPSAC). 2002.

32. Cleland-Huang, J., C.K. Chang, and M. Christensen, Event-based traceability for

managing evolutionary change. IEEE Trans. on Software Engineering, 2003. 29(9):

p.796-81O.

33. Maletic, J.I., et al. Using a Hypertext Model for Traceability Link Conformance

Analysis. in Proceedings of2nd International Workshop on Traceability in Emerging

Forms ofSoftware Engineering (TEFSE'03). 2003.

Jilid 19, Bil. 2 (Disember 2007) Jiutlal Teknologi Maklumat

82

22. Hayes, J.H., et al. Helping analysts trace requirements: An objective look. in

Proceeding of 12th IEEE International Requirements Engineering Conference (RE

2004). 2004.

23. Lin, 1., et al. Poirot: A Distributed Tool Supporting Enterprise-Wide Automated

Traceability. in 14th IEEE International Requirement Engineering Conference

(RE'06). 2006: IEEE Computer Society.

24. Marcus, A. and 1.1. Maletic. Recovering Documentation-to-Source Code Traceability

Link using Latent Semantic Indexing. in Proceedings of the 25th IEEE International

Conference on Software Engineering. 2003.

25. Settimi, R., et al. Supporting software evolution through dynamically retrieving

traces to UML artifacts. in Proceedings - 7th International Workshop on Principles

ofSoftware Evolution, IWPSE2004 (In Conjunction with RE 2004).2004.

26. Zou, X., R. Settimi, and J. Cleland-Huang. Phrasing in Dynamic Requirements Trace

Retrieval. in Proceeding of 30th Annual International Computer Software and

Applications Conference (COMPSAC'06). 2006.

27. Spanoudakis, G. Plausible and Adaptive Requirement Traceability Structures. in

Proc. 14th Int'l Conf. Software Eng. and Knowledge Eng. 2002.

28. Spanoudakis, G., et al., Rule-Based Generation of· Requirements Traceability

Relations. Journal of Systems and Software, 2004: p. 105-127.

29. Nentwich, C., et al., xlinkit: A Consistency Checking and Smart Link Generation

Services. ACM Transactions on Internet Technology, 2002. 2(2): p. 151-185.

30. Cleland-Huang, J., et· al. Automating Speculative Queries through Event-based

Requirements Traceability. in Proceedings of the IEEE Joint International

Conference on Requirements Engineering. 2002.

31. Cleland-Huang, J., C.K. Chang, and G. Y. Supporting Event Based Traceability

through High-Level Recognition of Change Events. in IEEE Proc. Int'l Computer

Software and Applications Con! (COMPSAC). 2002.

32. Cleland-Huang, J., C.K. Chang, and M. Christensen, Event-based traceability for

managing evolutionary change. IEEE Trans. on Software Engineering, 2003. 29(9):

p.796-81O.

33. Maletic, J.I., et al. Using a Hypertext Model for Traceability Link Conformance

Analysis. in Proceedings of2nd International Workshop on Traceability in Emerging

Forms ofSoftware Engineering (TEFSE'03). 2003.

Jilid 19, Bil. 2 (Disember 2007) Jiutlal Teknologi Maklumat

83

34. Maletic, J.I., M.L. Collard, and B. Simoes. An XML Based Approach to Support the

Evolution ofModel-to-Model Traceability Links. in Proceedings of4th International

Workshop on Traceability in Emerging Forms ofSoftware Engineering (TEFSE'05).

2005.

35. Sherba, S.A., Towards Automating Traceability: An Incremental and Scalable

Approach, in Department of Computer Science. 2005, University of Colorado:

Colorado.

. 36. Sherba, S.A., K.M. Anderson, and M. Faisal. A Frameworkfor Mapping Traceability

Relationships. in 2nd International Workshop on Traceability in Emerging Forms of

Software Engineering. (TEFSE '2003).2003. Montreal, Canada

37. Riebisch, M. Supporting evolutionary development byfeature models and traceability

links. in Proceedings - 11th IEEE International Conference and Workshop on the

Engineering ofComputer-Based Systems. 2004.

38. Pashov, I. and M. Riebisch. Usingfeature modeling for program comprehension and

software architecture recovery. in Proc. of 11th IEEE Int'l Conf. and Workshop on

the Engineering ofComputer-Based Systems. 2004.

39. Zemont, G., Towards Value-Based Requirements Traceability, in Department of

Computer Science. 2005, De Paul University: Chicago, Illinois. p. 80.

40. Egyed, A. A Scenario-Driven Approach to Traceability. in 23rd International

Conference on Software Engineering. 2001. Toronto, Ontario, Canada: IEEE

Computer Society.

41. Egyed, A. and P. Grunbacher. Automating Requirements Traceability: Beyond the

Record & Replay Paradigm. in J7th IEEE International Conference on Automated

Software Engineering (ASE'02). 2002: IEEE Computer Society.

42. Egyed, A. and P. Grunbacher, Supporting Software Understanding with Automated

Requirements Traceability. International Journal of Software Engineering and

Knowledge Engineering, 2005.15.

43. Ibrahim, S., M. Munro, and A. Deraman. Implementing a Document-based

Requirements Traceability: A Case Study. in lASTED International Conference on

Software Engineering. 2005.

44. Ibrahim, S., A Document-Based· Software Traceability to Support Change Impact

Analysis of Object-Oriented Software. 2006, Universiti Teknologi Malaysia: Kuala

Lumpur.

45. Von Knethen, A., et al. A Comparative Case Study with Industrial Requirements

Engineering Methods. 1998 [cited 2006 October]; Available· from:

se.informatik.uni-oldenburg.de/pubdb_files/pdf! vknethen98a.pdf.

Jilid 19, Bil. 2 (Disember 2007) Jurnal Teknologi Maklumat

83

34. Maletic, J.I., M.L. Collard, and B. Simoes. An XML Based Approach to Support the

Evolution ofModel-to-Model Traceability Links. in Proceedings of4th International

Workshop on Traceability in Emerging Forms ofSoftware Engineering (TEFSE'05).

2005.

35. Sherba, S.A., Towards Automating Traceability: An Incremental and Scalable

Approach, in Department of Computer Science. 2005, University of Colorado:

Colorado.

. 36. Sherba, S.A., K.M. Anderson, and M. Faisal. A Frameworkfor Mapping Traceability

Relationships. in 2nd International Workshop on Traceability in Emerging Forms of

Software Engineering. (TEFSE '2003).2003. Montreal, Canada

37. Riebisch, M. Supporting evolutionary development byfeature models and traceability

links. in Proceedings - 11th IEEE International Conference and Workshop on the

Engineering ofComputer-Based Systems. 2004.

38. Pashov, I. and M. Riebisch. Usingfeature modeling for program comprehension and

software architecture recovery. in Proc. of 11th IEEE Int'l Conf. and Workshop on

the Engineering ofComputer-Based Systems. 2004.

39. Zemont, G., Towards Value-Based Requirements Traceability, in Department of

Computer Science. 2005, De Paul University: Chicago, Illinois. p. 80.

40. Egyed, A. A Scenario-Driven Approach to Traceability. in 23rd International

Conference on Software Engineering. 2001. Toronto, Ontario, Canada: IEEE

Computer Society.

41. Egyed, A. and P. Grunbacher. Automating Requirements Traceability: Beyond the

Record & Replay Paradigm. in J7th IEEE International Conference on Automated

Software Engineering (ASE'02). 2002: IEEE Computer Society.

42. Egyed, A. and P. Grunbacher, Supporting Software Understanding with Automated

Requirements Traceability. International Journal of Software Engineering and

Knowledge Engineering, 2005.15.

43. Ibrahim, S., M. Munro, and A. Deraman. Implementing a Document-based

Requirements Traceability: A Case Study. in lASTED International Conference on

Software Engineering. 2005.

44. Ibrahim, S., A Document-Based· Software Traceability to Support Change Impact

Analysis of Object-Oriented Software. 2006, Universiti Teknologi Malaysia: Kuala

Lumpur.

45. Von Knethen, A., et al. A Comparative Case Study with Industrial Requirements

Engineering Methods. 1998 [cited 2006 October]; Available· from:

se.informatik.uni-oldenburg.de/pubdb_files/pdf! vknethen98a.pdf.

Jilid 19, Bil. 2 (Disember 2007) Jurnal Teknologi Maklumat

84

46. Ingenieria, T.S.e. Comparative Study between Requirements Management and

Engineering Tools. 2004 [cited 2006 October]; Available from:

www.qasystems.de/downloads/deutsch/downJoads/downloads irga/ComparativeStud

yRMEtools.pdf.

47. Rochimah, S., W.M.N. Wan Kadir, and A.H. Abdullah. An Evaluation ofTraceability

Approaches to Support Software Evolution. in 2nd International Conference on

Software Engineering Advances. 2007. France:-IEEE Computer Society.

Jilid 19, Bil. 2 (Disember 2007) Jurl1al Teknologi Maklumat

84

46. Ingenieria, T.S.e. Comparative Study between Requirements Management and

Engineering Tools. 2004 [cited 2006 October]; Available from:

www.qasystems.de/downloads/deutsch/downJoads/downloads irga/ComparativeStud

yRMEtools.pdf.

47. Rochimah, S., W.M.N. Wan Kadir, and A.H. Abdullah. An Evaluation ofTraceability

Approaches to Support Software Evolution. in 2nd International Conference on

Software Engineering Advances. 2007. France:-IEEE Computer Society.

Jilid 19, Bil. 2 (Disember 2007) Jurl1al Teknologi Maklumat

