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Abstract: The application of microarray data for cancer classification has recently gained in 

popularity. The main problem that needs to be addressed is the selection of a smaller subset of 

genes from the thousands of genes in the data that contributes to a disease. This selection 

process is difficult because of the availability of the small number of samples compared to the 

huge number of genes, many irrelevant genes, and noisy genes. Therefore, this paper proposes 

an improved binary particle swarm optimization to select a near-optimal (smaller) subset of 

informative genes that is relevant for cancer classification. Experimental results show that the 

performance of the proposed method is superior to the experimental method and other related 

previous works in terms of classification accuracy and the number of selected genes. 

Keywords: Gene Selection, Hybrid Approach, Microarray Data, Particle Swann 

Optimization. 

1. INTRODUCTION 

Microarray is a device that can be employed in measuring of expression levels of thousands 

of genes simultaneously. It finally produces microarray data that contain useful information of 

genomic, diagnostic, and prognostic for researchers [5]. Thus, there is a need to select 

informative genes that contribute to a cancerous state [7]. However, the gene selection 

process poses a major challenge because of the following characteristics of microarray data: 

the huge number of genes compared to the small number of samples (higher-dimensional 
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data), irrelevant genes, and noisy data. To overcome this challenge, a gene selection method ' 

is used to select a subset of genes that increases the classifier's ability to classify samples " 

more accurately [6]. 

Recently, several methods based on particle swarm optimization (PSO) are proposed 

to select informative genes from microarray data [1],[2],[8]. PSO is a new evolutionary 

technique proposed by Kennedy and Eberhart [3]. It is motivated from the simulation of 

social behaviour of organisms such as bird flocking and fish schooling. Shen et al. have 

proposed a hybrid of PSO and tabu search approaches for gene selection [8]. However, the 

results obtained by using the hybrid method are less significant because the application of 

tabu approaches in PSO is unable to search a near-optimal solution in search spaces. Next, an 

improved binary PSO have been proposed by Chuang et al. [1]. This approach produced 

100% classification accuracy in many data sets, but it used a higher number of selected genes 

to achieve the higher accuracy. It uses the higher number because of all global best particles 

are reset to the same position when their fitness values do not change after three consecutive 

iterations. Li et al. have introduced a hybrid of PSO and GA for the same purpose [2]. 

Unfortunately, the accuracy result is still not high and many genes are selected for cancer 

classification since there is no direct probability relation between genetic algorithms (GA) 

and PSO. Generally, the proposed methods that based on PSO [1],[2],[8] are intractable to 

efficiently produce a near-optimal (smaller) subset of informative genes for higher 

classification accuracy. This is mainly because the total number of genes in microarray data is 

too large (higher-dimensional data). 

2. METHODS 

"~I 

2.1 The Standard Version of Binary PSO (BPSO) 

Binary PSO (BPSO) is initialised with a population of particles. At each iteration, all particles 

move in a problem space to find the optimal solution. A particle represents a potential 

solution (gene subset) in an n-dimensional space [4]. Each particle has position and velocity 

vectors for directing its movement. The position vector and velocity vector of the ith particle 

in the n-dimension can be represented as Xi == (x~ ,x; ,...,x;) and V; == (v~ ,v; ,...,v;) , 

respectively, where x; is a binary bit, i=I,2, ..m (m is the total number of particles); d=I,2,..n 

(n is the dimension of data). 

In gene selection, the vector of particle positions is represented by a binary bit string 

of length n, where n is the total number of genes. Each vector denotes a gene subset. If the 

value of the bit is I, it means that the corresponding gene is selected. Otherwise, the value of 
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omeans that the corresponding gene is not selected. Each particle in a generation updates its 

own position and velocity according to the following equations: 
es 

(1) 

ed 

ry Sig(v1) = _1_" 
I +e- v; 

(2) 

of 

ve if Sig(v1) > r3 , then x1 = 1; else x1 = o. (3) 

he where w is the inertia weight. c, and C2 are the acceleration constants in the interval [0,2]. 

of 
rl,r2 , and r1 are random values in the range [0,1]. Pbest, = (pbest!,pbest/, ...,pbestn and 

an 

ed 
Cbest = lgbest' .gbest? , ....gbest") represent the best previous position ofthe ith particle and the 

es global best position of the swarm (all particles), respectively. Sig(vj) is a sigmoid function 

les where Sig(vj)E[O,lj. 

ve 

2]. 2.2 An Improved Binary PSO (IPSO) 

:er 

A.) In this paper, we propose IPSO for gene selection. It is introduced to solve the problems 

to derived from the microarray data, overcome the limitation of the related previous works 

r [1],[2],[8], and inline with the diagnostic goal. IPSO in our work differs from the methods in 

is the previous works in one major part. The major difference is that we modify the existing rule 

(Eq. 3) for the position update, whereas the previous works used a standard rule (Eq. 3). 

Firstly, we analyse the sigmoid function (Eq. 2). This function represents a probability for xj 

d 

to be 0 or 1 (P(xj 

d = 0) or P(xj 

d = I)). It has the properties as follows: 

(4) 

s lim Sig(v1) =0 
v~1 -+-:n 

(5) 

if vj 

d= 0 then p(x1 = I) = 0.5 or Sig(O) = 0.5 (6) 

if v; < 0 then P(x; =1)< 0.5 or Sig(v1 < 0) < 0.5 (7) 

if Vi 
d > 0 then P(x; =I) > 0.5 or Sig(v; > 0) > 0.5 (8) 

P(X; =O)=I-P(x; =1) (9) 
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Also note that the value of x; can change even if the value of v; does not change, 

due to the random number '3 in the Eq. 3. To propose IPSO, the following approaches are 

suggested: 

2.2.1 Modify the existing rule of position update (Eq. 3) 

In order to support the diagnostic goal that needs the least number of genes for accurate 

cancer classification, the rule of position update is simple modified as follows: 

(10) 

The value of particle velocity, It; in the modified formula (Eq. 10) represents the 

whole of elements of a particle velocity vector, whereas the standard formula represents a 

single element. Moreover, It; is also a positive real number. Based on this positive velocity 

value, Eq. 2, and Eq. 10, the possibility of x;J =1 is too small. This situation causes a smaller 

number of genes is selected in order to produce a near-optimal gene subset from higher­

dimensional data (microarray data). 

2.2.2 A Simple Modification of the Formula of Velocity Update (Eq, 1) 

In this formula, the calculation of the value of velocity is completely based or: the whole of 

bits of a particle position vector, whereas the original formula (Eq. 1) is based on a single bit. 

j 

A(X;}e[O: 

'ned at http://ww 

Firstly, we al 

are then used 

(11) 

2.2.3 Calculation for the distance of two positions 

The number of different bits between two particles relates to the difference between their 

positions. For example, Gbest =[0011101000] and Xi = [1100110100]. The difference 

between Gbest and Xi is [-1-11'10 -11-100]. A value of 1 indicates that compared with 

the best position, this bit (gene) should be selected, but it is not selected, which may decrease 

classification quality and lead to a lower fitness value. In contrast, a value of -1 indicates that, 

compared with the best position, this bit should not be selected, but it is selected. The 

selection of irrelevant genes makes the length of the subset longer and leads to a lower fitness 

value. Assume that the number of 1 is a, whereas the number of -1 is b. We use the absolute 

value of (a - b), I a - b 1 to express the distance between two positions. In this example, 

Ia - b 1=13 - 41= 1, so the distance between Gbest and Xi is Gbest - Xi =1. 

PSO (BPSO). 

Figure 1 sho 
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2.2.4 Fitness function 
ige, 

are 
A fitness value of a particle (a gene subset) is calculated as follows: 

fitness(X;)=w1 x A(X;) + (wz(M -R(X;))I M) (12) 

in which A(Xj ) E [0)] is leave-one-out-cross-validation (LOOCV) accuracy on the training 

set using the only genes in X;. This accuracy is provided by support vector machine 

ate classifiers (SVM). R(X;) is the number of selected genes in Xj' M is the total number of 

genes for each sample in the training set. WI and W zare two weights. 

3. EXPERIMENTS 

3.1 Data Sets and Experimental Setup 

A real microarray data sets is used to evaluate IPSO, namely the leukaemia cancer data set. 

The leukaemia data set contains 72 samples of the expression levels of7,129 genes. It can be 

obtained at http://www.broad.mit.edulcgi-binlcancer/datasets.cgi. 

Firstly, we applied the gain ratio technique to pre-select SOO-top-ranked genes. These 

genes are then used by IPSO in the next process. In this paper, LOOCV is used to measure 

classification accuracy of a gene subset that produced by IPSO. The implementation of 

LOOCV is in exactly the same way as did by Chuang et al. [I] Two criteria following their 

importance are considered to evaluate the performance of IPSO: LOOCV accuracy and the 

number of selected genes. A near-optimal subset that produces the highest classification 

accuracy with the smallest number of genes is selected as the best subset. Several experiments 

are independently conducted 10 times on each data set using IPSO and the standard version of 

binary PSO (BPSO). Next, an average result of the 10 independent runs is obtained. 

3.2 Experimental Results 

Based on the standard deviations of classification accuracy and the number of selected genes 

in Table I, results that produced by IPSO were nearly consistent on the leukaemia data set. 

Interestingly, all runs have achieved 100% LOOCV accuracy with less than five selected 

genes. This means that IPSO has efficiently selected and produced a near-optimal gene subset 

from higher-dimensional data (microarray data). 

Figure I shows that the average of fitness values of IPSO increases dramatically after 

a few generations. The higher average produces a smaller subset of selected genes with higher 
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classification rate. The condition of velocity that should always be positive real numbers 

provided in the initialisation method, and the new rule of position update provoke the early 

convergence ofIPSO. In contrast, the average of fitness values ofBPSO was no improvement 

until the last generation. 

Run# 

Table 1. Experimental results for each run using IPSO. 

Leukaemia Data Set 

Classification Accuracy (%) #Selected Genes 
Classfit 
Accura 

Evaluat 

I 100 4 
2 100 2 
3 100 4 
4 100 4 
5 100 3 
6 100 4 
7 100 4 
8 100 3 
9 100 4 
10 100 3 

#Select 
Genes 

ote: The best result of e 
Selected Genes represen 

Table 3. A compari 

tv 

Average±S.D 100±0 3.50±0.71 
Note: Results of the best subsets shown in shaded cells. S.D. denotes the standard 
deviation, whereas #Selected Genes and Run# represent a number of selected genes 
and a run number, respectively. 

Leukaemia Data Set 

0.98 
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~ 

0.96 

0.94 
I~PSOI
1- -BPSO 

if 0.92 

0.9· 

0.88 .jL..----~----~----~---_~---_----~ 

o 50 100 150 200 250 300 
Generation 

Figure 1. A relation between the average offitness values (10 runs on average) and the 

number of generations for IPSO and BPSO. 

According to the Table 2, overall, it is worthwhile to mention that the classification 

accuracy and the number of selected genes of IPSO are superior to BPSO in terms of the best, 

average, and standard deviation results. 

For an objective comparison, we compare our work with related previous works that 

used PSO in their methods [1],[2],[8]. It is shown in Table 3. The averages of LOOCV 

accuracy and the number of selected genes of our work were 100% and 3.5 selected genes, 

respectively. The latest previous work also came up with the similar LOOCV result to ours, 
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4. CONCLUSIONS 

o 
S.D 

5.23 

(21) 

(95.1 ) 

PSOGA 
(Li et al. [2]) 

98.61 

224.70 

100 

1034 

Jumal Teknologi Maklumat 

216 

98.61 

IBPSO 
(Chuang et al.[I]) 

S.D 

o 

0.71 

(7) 

(98.61) 

100 

3.50 

PSOTS 
(Shen et al. [8]) 

Avera e 

2 

100 

(3.5) 

(100) 

The Best 

IPSO 
[Our work] 

Method IPSO The standard version of 
binary PSO (BPSO) Data 
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Evaluation 
Classfication 

L 
k . Accuracy (%) 

eu aerma #Selected 

Genes 
Note: The best result of each data set shown in shaded cells. S.D. denotes the standard deviation, whereas 
#Selected Genes represents a number of selected genes. 

In this paper, IPSO has been proposed and tested for gene selection on the leukaemia 

micro array data set. Based on the experimental results, the performance of IPSO was superior 

to the standard version of binary PSO and related previous works. This is due to the fact that 

the modified rule of position update in IPSO causes a smaller number of genes is selected in 

each iterative, and finally produce a near-optimal subset of genes for better cancer 

classification. For future works, a combination between a constraint approach and PSO is 

proposed to increase the classification accuracy. 

According to Fig. I and Tables 1-3, IPSO is reliable for gene selection since it has 

produced the near-optimal solution from microarray data. This is due to the modification of 

position update that causes the selection of a smaller number of genes. Therefore, IPSO yields 

the optimal gene subset (a smaller subset of informative genes with higher classification 

accuracy) for leukaemia cancer classification. 

Table 3. A comparison between our method (IPSO) and other previous methods based 

on PSO. 

but they used more than 1,000 genes to obtain the same result [I]. Overall, this work has 

outperformed the related previous works in terms of LOOCV accuracy and the number of 

selected genes. 

Table 2. A comparison in terms of statistical results of the proposed IPSO and BPSO. 

Data 
Evaluation 
Classi fication 

L k 
. Accuracy (%) 

eu aerma #Selected 

Genes 
Note: The results of the best subsets shown in shaded cells. '.' means that a result is not reported in the related previous 
work. A result in '()' denotes an average result. #Selected Genes represents a number ofselected genes. 
PSOTS =A hybrid ofPSO and tabu search. IBPSO =An improved binary PSO. 
PSOGA = A hybrid of PSO and GA. 
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