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ABSTRACT 

 

 

 

 

Bathymetry information is essential in understanding the physics of the Earth 

and the ocean process. However, the bathymetry data are difficult to obtain at the 

restricted, complex and vast area. The conventional bathymetry surveys which used 

single beam echo sounder and multibeam echo sounder required high expenditure, 

consumed much time and the bathymetry data obtained were sparse. This study aims 

to map the bathymetry over the Malaysian seas by using the space-based approach. 

Six satellite missions namely Jason-1, Envisat1, ERS-2, Jason-2, Cryosat2 and Saral 

covering 11-year data period (2005-2015) have been used. Gravsoft software was 

utilised in the derivation of free air gravity anomaly (FAGA), using Fast Fourier 

Transform technique. Next, the derived FAGA was validated against the marine 

FAGA model developed by the Department of Survey and Mapping Malaysia. The 

Gravity-Geologic Method (G-G method) was then performed for the estimation of 

bathymetry and a density contrast of 1.67 g/cm
3
 was used. Area of the estimated 

bathymetry was along the latitude and longitude of 5ºN – 10ºN and 107ºE – 114.6ºE, 

respectively. National Geophysical Data Center shipborne data was used utilizing 

12362 bathymetry data points. 6584 points were used in the G-G method process 

while 5778 points as the validation points (check points). Minimum curvature 

interpolation was utilized in establishing the regional FAGA surfaces. The 

assessment on the accuracy of the results obtained was made using Root Mean 

Square Error (RMSE) and correlation coefficient analysis. The mean sea surface 

height (MSSH) obtained shows a strong correlation with Technical University of 

Denmark 2015 MSSH model with values of 0.9980. The RMSE for the computed 

FAGA achieved ±11.52606 mGal, with the use of EGM2008 (full degree and order) 

Global Geopotential Model and with this value, it gives a reliable derived FAGA 

information. The final estimated bathymetry produced the RMSE value of ±96.949 

m, which is estimated to be large, perhaps due to the dynamic of the ocean and the 

depth variations. However, this estimated bathymetry can improve the depth 

accuracy by approximately 69% and 38% based on the comparison made with Earth 

Topography 1-minute and Technical University of Denmark 2010 global bathymetry 

model respectively. The final estimated bathymetry is known as Universiti Teknologi 

Malaysia 2018 bathymetry model. The study confirms that the estimation of 

bathymetry using the space-based approach is reliable and the mapping of the 

bathymetry is more effective and time-saving as it can cover non-accessible and 

restricted area in a mesoscale. The information collected from satellite altimeter can 

be delivered to the Malaysian Bathymetry Database System as the product from this 

study. 
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ABSTRAK 

 

 

 

 

 Maklumat kedalaman adalah penting dalam memahami fizik bumi dan 

proses lautan. Walau bagaimanapun data kedalaman sukar diperoleh di kawasan 

yang terhad, kompleks dan luas. Kajian kedalaman secara konvensional 

menggunakan pemerum gema alur tunggal dan pemerum gema berbilang alur 

memerlukan perbelanjaan yang tinggi, memakan masa dan data kedalaman adalah 

bersifat jarang. Kajian ini bertujuan untuk memetakan kedalaman bagi lautan 

Malaysia dengan menggunakan pendekatan berasaskan angkasa. Enam misi satelit 

iaitu Jason-1, Envisat1, ERS-2, Jason-2, Cryosat2 dan Saral merangkumi tempoh 11 

tahun data (2005-2015) telah digunakan. Perisian Gravsoft digunakan dalam 

menghitung anomali graviti udara bebas (FAGA) menggunakan teknik Fast Fourier 

Transform. Seterusnya, pengesahan FAGA yang diperoleh dibuat terhadap model 

FAGA marin yang dibangunkan oleh Jabatan Ukur dan Pemetaan Malaysia. Kaedah 

Graviti-Geologik (kaedah G-G) kemudian dilakukan untuk menganggarkan 

kedalaman dan kepadatan kontras 1.67 g/cm
3
 telah digunakan. Kawasan kedalaman 

anggaran adalah masing masing di sepanjang latitud dan longitud 5ºN - 10ºN dan 

107ºE - 114.6ºE. Data kapal National Geophysical Data Center digunakan dengan 

menggunakan 12362 titik data kedalaman. 6584 titik digunakan dalam proses kaedah 

G-G manakala 5778 titik digunakan sebagai data validasi (titik semakan). Interpolasi 

lengkung minimum digunakan dalam penubuhan permukaan FAGA serantau. 

Penilaian keatas ketepatan keputusan yang diperoleh dibuat menggunakan analisis 

ralat punca min kuasa dua (RMSE) dan pekali kolerasi. Ketinggian permukaan laut 

purata (MSSH) yang diperoleh menunjukkan korelasi yang kuat dengan model 

MSSH Technical University of Denmark 2015 dengan nilai 0.9980. RMSE untuk 

FAGA yang dihitung mencapai ± 11.52606 mGal, dengan menggunakan Model 

Geopotential Global EGM2008 (berdarjah penuh) dan dengan nilai ini, ia 

memberikan maklumat FAGA yang boleh dipercayai. Kedalaman anggaran yang 

muktamat memberikan nilai RMSE sebanyak ± 96.949 m, yang mana nilai RMSE ini 

dianggarkan menjadi agak besar mungkin disebabkan oleh keadaan dinamik lautan 

dan variasi kedalaman. Walaupun begitu, kedalaman anggaran ini dapat 

meningkatkan ketepatan kedalaman dengan sekurang-kurangnya 69% dan 38% 

berdasarkan kepada perbandingan yang dibuat dengan model Bumi Topografi 1-

minit dan model kedalaman global Technical University of Denmark 2010. 

Kedalaman anggaran yang terakhir dikenali sebagai model kedalaman Universiti 

Teknologi Malaysia 2018. Kajian ini menunjukkan anggaran kedalaman 

menggunakan pendekatan berasaskan angkasa adalah boleh dipercayai dan pemetaan 

kedalaman adalah lebih berkesan dan menjimatkan masa kerana ia boleh meliputi 

kawasan yang tidak boleh diakses dan terhad secara meluas. Maklumat yang 

dikumpul dari satelit altimeter boleh dipersembahkan melalui Sistem Pangkalan Data 

Kedalaman Malaysia sebagai produk dari kajian ini. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Two thirds of the earth are covered by the ocean and the ocean floor is 

presumed to be a featureless and flat surface. This idea stated before the 19th 

century, however, in the 16th century, navigators discovered that the ocean is not as 

flat as was assumed. Moreover, most geologic processes that take place on land are 

eventually associated with ocean floor dynamics (Kious and Tilling, 2001). 

Additionally, the structures and profile of ocean basins, including seamounts and 

smaller ocean ridges, causes variabilities and fluctuations in tides and currents. 

Moreover, seafloor morphology such as the shape of the seafloor and its topographic 

features plays an important role in understanding the processes that form oceans and 

seas, such as glacial activity on high latitude continental shelves (Hell, 2011).  

 

 

Topography is fundamental to understanding earth processes. On the land, 

topography varies from the small mountain valleys to large continental landmasses 

and this causes weather and climate variations. Land changes due to tectonic activity, 

erosion, and sedimentation transfer have stimulated the need for detailed topography 

to investigate geological occasions. In the ocean, with detailed bathymetry 

information, marine administrations can be organised and marine geology, biology, 

and physical oceanography can be discovered (Sandwell et al., 2001; Rosmorduc et 

al., 2006; Hell et al., 2011). In other words, knowledge of ocean bathymetrics is 

important. 
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With the invention of satellite altimetry, bathymetry mapping from space can 

be achieved. This technology has benefited not only the geodesy community, but 

also the fields of oceanography and geophysics. Based on the measurements 

provided by satellite altimeters, this technique measures the height of the sea surface 

as reflected to its reference ellipsoid, which is the geometrical reference surface of 

the Earth. From sea surface heights measurements, ocean gravity can be obtained on 

a global scale and with this information, predictions of seafloor or ocean bathymetry 

can be executed. According to Guojun et al. (2003), another advantage of satellite 

altimeters is that they can determine marine geoids with a good accuracy and high 

resolution. 

 

 

According to Xu et al. (2009), knowledge of the global ocean before the 

employment of satellite altimeter missions was spatially and temporally separated 

with scattered observations. Subsequently, this reflected inadequate information in 

global ocean observation components. With the implementation of satellite altimeter 

measurements, the measurement of sea surface height from global ocean circulation 

can be reliably and consistently obtained. Satellite gravity missions have provided 

information about the Earth’s gravity, allowing marine gravity anomalies to be 

derived in order to explore the ocean basin (Yildiz, 2012; Sandwell et al., 2014). 

Gravity anomaly data can be used for many research purposes such as predicting 

bathymetry. Bathymetry predictions can be made with available gravity anomalies. 

Figure 1.1 depicts gravity anomaly maps derived from satellite altimeter 

measurements. Figure 1.2 shows the measurement of bathymetry from space by 

using satellite altimeter measurements. 

 

 

 

Figure 1.1: Satellite-derived gravity anomaly (Sandwell et al., 2014) 
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Figure 1.2: Bathymetry from space (Sandwell et al., 2003) 

 

 

Before the era of the space-based technology, early hydrographic surveyors 

used a hand-held rope to measure depth (Kious and Tilling, 2001; National Ocean 

Service, 2006). This technique used graduated depth markings that a leadsman 

lowered until it touched the bottom, after which he would manually read and record 

the depth in a process known as sounding. This technique was time-consuming and 

labour intensive, even though it can give accurate depths. According to the National 

Ocean Service (NOS) (2006), due to the limited number of depth measurements, 

information was missing between soundings, and therefore, mariners would often be 

unaware of bottom features and depth information necessary for safe navigation.  

 

 

However, the technology for depth measuring has been splendidly improved. 

According to Hell (2011), the first echo sounder on a research vessel was installed on 

the German Meteor in the beginning of the 1920s. This echo sounder only gave 

single measurements, and later, single beam echo sounders provided continues 

seafloor profiles underneath the ship track. With this information, knowledge about 

previously unexplored parts of the world’s oceans, especially during the 1960s and 

1970s, was revealed when echo sounders were equipped to merchant ships (Hell, 

2011). Echo sounders have improved ocean bathymetry. Nowadays, mapping 

bathymetry is carried out by using multi-beam echo sounders 
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These echo sounders measure bathymetry by fully covering a strip of the 

seafloor below the ship track using a fan of focused beams that are perpendicular to 

the ship track as well as measuring the time delay and direction of each beam. 

Together with improvements in depth measuring techniques, seafloor morphology 

and seafloor processes were improved (Mayer, 2006). Multi-beam technology has 

provided a better seafloor or bathymetry information and this technology has been 

possible with the support of the positioning satellite, namely the Global Positioning 

System (GPS) and Global Navigation Satellite System (GLONASS) (Mayer, 2006; 

Hell, 2011). Figure 1.3 illustrates the comparison of the seafloor coverage between 

leadline, single beam echosounder (SBES) and multi-beam echosounder (MBES).  

 

 

 

Figure 1.3: Comparison of bottom coverage by leadline, single-beam and multi-

beam surveys method (NOS, 2006). 

 

 

By using satellite altimeter, a large bathymetry coverage can be obtained. At 

present, nearly all high-resolution global bathymetry models are constructed from 

ship soundings and satellite altimetry gravity anomalies. The bathymetry model 

depends on gravity anomalies at the 20 – 200 km waveband and researchers must be 

careful when analysing the isostatic seafloor mechanisms with these models and 

gravity anomalies (Minzhang et al., 2014). The combination of the sparse ocean 

depth from ship sounding measurements and dense satellite altimeter measurements 

creates a uniform resolution map of seafloor topography or bathymetry. While these 

maps might not be used in assessing navigational hazards due to their insufficient 
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accuracy and resolution, however, they can be beneficial for diverse applications 

such as locating obstructions to major ocean currents and identifying shallow 

seamounts that have plentiful fish and lobster populations (Rosmorduc et al., 2006).  

 

 

Bathymetry information clarifies the cooling or subsidence of the oceanic 

lithosphere, mantle convection patterns, plate boundaries, oceanic plateaus, and the 

distribution of off-ridge volcanoes. This is due to the low erosion and sedimentation 

rates in the deep ocean (Sandwell and Smith, 2001; Hwang and Chang, 2014). 

Bathymetry also offers the necessary infrastructure for scientific, economic, political, 

educational, and managerial aspects such as the planning of pipeline routes and 

communication cables, habitat management, resource exploration, and legal claims 

related to territory expanses under the Laws of the Sea (Smith et al., 2005; 

Rosmorduc et al., 2006).  

 

 

With satellite altimeter technology, many global models such as DTU10 

bathymetry and gravity anomalies were produced. The global bathymetry model 

provides global ocean depths. In this study a local bathymetry map for Malaysian 

Seas was produced. The bathymetry map was generated using combination of gravity 

anomalies from satellite altimeters and satellite gravity missions to portray the depth 

of the Malaysian Seas including Malacca Straits, South China Sea, Celebes Sea, and 

Sulu Sea. This bathymetry map is intended to produce an estimation of bathymetry 

information with respect to any ocean exploration or other research activities. 

 

 

 

 

1.2 Problem Statement 

 

 

The technique used to obtain ocean floor models had varied over time with 

the development of new technologies. Echo sounders are commonly used for 

accurate ocean floor bathymetric mapping. Echo-sounding techniques have been 

classically used for accurate bathymetric ocean floor mapping and conventional 

single-beam echo sounder (SBES) was made obsolete by modern multi-beam echo 

sounder (MBES) techniques. According to Hell (2011), with the use of MBES, the 
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accuracy, efficiency, and spatial resolution of coastal and ocean mapping was 

enormously increased (Hell, 2011). However, this technique is difficult to use to map 

vast areas of the ocean floor as it is very time consuming (Carron et al., 2001; 

Sandwell and Smith, 2001; Smith et al., 2005; Jena et al., 2012; Minzhang et al., 

2014). According to Jena et al. (2012), MBES bathymetry data collection for 

unexplored offshore areas is a challenging task. This is because these surveys 

required high expenditure and the bathymetry data is sparse (Sandwell and Smith, 

2001; Smith et al., 2005, Kim et al., 2010). 

 

 

In shallow areas, bottom topography may be visible to airborne or space-

borne optical or hyperspectral sensors, however, these systems are useful only in 

water depths less than tens of meters, at best (Smith et al., 2005). According to Hsiao 

et al. (2016), in order to predict depths using optical images, images need to be 

analysed using the attenuation of sunlight in water, the reflectance of the bottom of 

the ocean, and water properties. The results from open publications show that a 

maximum depth of about 20 m can be obtained using optical images.  

 

 

Therefore, space-borne radar altimetry is one of the techniques required for 

obtaining ocean surface height anomalies for globally uniform reconnaissance of 

deep-sea floor topography and for bathymetry modelling (Smith et al., 2005; 

Minzhang et al., 2014). These anomalies combine time-invariant signals reflected 

from the equipotential of the Earth’s gravity field with other, mostly time-varying, 

signals associated with several physical oceanographic signals such as tides, currents, 

and climatic fluctuations (Smith et al., 2005). 

 

 

Recent progress in satellite altimetry has led to improvements in high-

resolution marine gravity fields (Andersen et al., 2010) and global bathymetric 

models that provide refined depth resolutions for the South China Sea (SCS) 

(Sandwell et al., 2014). In addition, the latest altimeter-derived marine gravity and 

bathymetric models show hidden undersea tectonic features in SCS (Sandwell et al., 

2014; Hwang and Chang, 2014). High-resolution bathymetry models are needed to 

study ocean geophysics, biology, and climate science as ship soundings still have 

sparse coverage even after decades of surveying. It will be very difficult to create a 
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1-minute bathymetry model using just ship soundings for the near future. The 

technological advance of satellite altimetry provides a new approach to high-

resolution bathymetry model construction (Minzhang et al, 2014). 

 

 

With a combination of satellite gravity missions, obtained data becomes 

denser compared to satellite altimeter data. Therefore, this research focuses on the 

generation of the ocean floor bathymetry for Malaysian Seas from space-borne 

techniques such as satellite altimeters and satellite gravity missions in order to derive 

gravity anomalies. From gravity anomalies, the estimation of the Malaysian seafloor 

was done using the Gravity-Geologic Method (G-G Method). An estimated 

bathymetry map was also produced. 

 

 

 

 

1.3 Aim and Objectives 

 

 

The aim of this study is to map the bathymetry over Malaysian Seas from 

Satellite Geodetic Missions by using Gravity Geologic Method (G-G method). From 

this goal, there were two specific objectives that were generated: 

 

 

i. To derive gravity anomalies using multi-mission satellite altimeter and 

satellite gravity missions. 

The data measured from satellite altimeters (SALT) were computed in order 

to obtain the Mean Sea Surface Height (MSSH). From MSSH, satellite-

derived gravity was computed using Gravsoft software using the Fast Fourier 

Transformation (FFT) technique. 

 

 

ii. To estimate the bathymetry model over Malaysian Seas from satellite-derived 

gravity anomalies. 

Satellite-derived gravity anomalies were used to estimate bathymetry for 

Malaysian Seas by adopting the Gravity Geologic Method (G-G Method). 

Predictive bathymetry is evaluated with ground-truth bathymetry data from 

shipborne measurements gathered by the National Geophysical Data Centre 

(NGDC) to assess its accuracy. The final estimated bathymetry was mapped. 
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1.4 Scopes and Limitations of Study 

 

 

The scope of this study includes the study area, used data, processing 

software, and processing analysis. The study area for this research featured the 

Malaysian Seas, which are the Malacca Straits, South China Sea, Sulu Sea, and 

Celebes Sea (refer to Figure 1.4). The study area limits were in between the latitude 

and longitude of 0º 0’ 0” N to 14º 0’ 0” N and 95º 0’ 0” E to 126º 0’ 0” E, 

respectively.  

 

 

 

Figure 1.4: Limitation for the study area 

 

 

Most data used in this study are from Satellite Altimeter and Satellite Gravity 

Missions. Satellite Altimeter data covered 2005 until 2015. This time period was 

chosen with consideration for the magnitude 9.3 earthquake that occurred in 

Sumatra, Indonesia on 26th December 2004 (Stein and Okal, 2005; Borrero, 2005). 

Therefore, the starting year of 2005 was chosen. The earthquake is also known as the 

Sumatra Andaman earthquake. According to Einarsson et al. (2010), Gravity 

Recovery and Climate Experiment (GRACE) satellite gravity missions was used to 

detect variations the gravity in the area during the earthquake. 

 

 

Their study shows that changes in GRACE data were detectable after the 

earthquake (Einarsson et al., 2010). Moreover, it was assumed that Malaysia, as a 

neighbouring country of Indonesia, was also affected during the earthquake in the 

northern states of the west coast of Peninsular Malaysia (Mey, 2005; Siwar et al., 

South China 

Sea Malacca 

Straits 
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2006). Therefore, it was decided that the data used in this study would cover 2005 to 

2015. With regards to the situation, it was assumed that gravity before and after the 

earthquake was changed. Tables 1.1 and 1.2 show the lists of the Satellite Altimeter 

Missions and Satellite Gravity Missions that have been used in this study, 

respectively. Table 1.3 depicts the study scope in term of complementary data and 

processing software. 

 

 

Table 1.1: Satellite Altimeter Missions used in this study (summarised from Radar 

Altimeter Database System, 2017) 

 

 

Table 1.2: Satellite Gravity Missions used (summarised from European Space 

Agency (ESA), National Aeronautics and Space Administration (NASA) and 

German Research Centre for Geosciences (GFZ) Potsdam, 2017) 

 

 

 

Satellite 

Altimeter 
Phase Mission Period Cycle 

ERS-2 A 29 Apr 1995 – 04 Jul 2011 000 – 169 

JASON-1 A 

B 

C 

15 Jan 2002 – 26 Jan 2009  

10 Feb 2009 – 03 Mar 2012  

07 May 2012 – 21 Jun 2013 

110 – 260 

262 – 374 

382 – 425 

ENVISAT1 B 

C 

14 May 2002 – 22 Oct 2010 

26 Oct 2010 – 08 Apr 2012 
033 – 113 

JASON-2 A 04 Jul 2008 – 31 Dec 2015 000 – 276 

CRYOSAT2 A 14 Jul 2010 – 31 Dec 2015 004 – 074 

SARAL A 14 Mar 2013 – 31 Dec 2015 001 – 030 

Satellite 

Altimeter 
Altitude Repeat Cycle Mission Period Provider 

GRACE 485 km 30 days 2002 ~ 2015 

NASA and 

German Aerospace 

Centre (DLR) 

GOCE 268 km 61 days 2009 – 2013 ESA 
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Table 1.3: Description of the scope of this study in term of research data and data 

processing 

Data 

Acquisition 
Satellite Altimeter (SALT) 

Geopotential Global Models 

(GGMs) from International Centre 

for Global Earth Model (ICGEM) 

Satellite 

Mission used 

 ERS-2 

 Jason-1 

 Envisat1 

 Jason-2 

 Cryosat2 

 Saral 

 Gravity Recovery and 

Climate Experiment 

(GRACE) 

 Gravity Field and Steady-

State Ocean Circulation 

Explorer (GOCE) 

Processing 

Software 

- Radar Altimeter Database 

System (RADS) 

- Putty Application 

- FileZilla 

- ICGEM Calculator 

-  Microsoft Excel  

-  ArcGIS  

-  Global Mapper 

-  Gravsoft 

-  Matlab 

-  Surfer 

Data 

Processing 

-  RADS Data Correction (To obtain MSSH) 

-  Gravity Anomaly derivation of satellite altimeter’s MSSH data 

-  Data Filtering using Crossover Adjustment 

-  Root Mean Square Error (RMSE) computation 

-  Bathymetry Estimation 

Data Used 

Free-Air 

Gravity 

Anomaly 

(FAGA) 

- Global Geopotential Model (GGM) from 

International Centre for Global Earth Model 

(ICGEM) 

- Department of Survey and Mapping Malaysia 

(Free-air gravity anomaly (FAGA) from airborne 

survey) 

Bathymetric 

Model 

- Generic Bathymetry Chart of the Ocean 

(GEBCO) 

- Earth Topography 1 – minute (ETOPO1) 

- Sandwell and Smith bathymetry model V18.1 

- Technical University of Denmark 2010 (DTU10) 

Ground Truth 

Data from 

Shipborne 

measurement 

- Shipborne Bathymetry data from National 

Geophysical Data Center (NGDC) 
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 There were 10 software programs used in this study, which is stated in Table 

1.3. Generally, Radar Altimeter Database System (RADS) was used for SALT data 

processing, while data extraction was executed using the FileZilla application. 

Moreover, Microsoft Excel was utilised to sort the data. The computation of gravity 

anomalies was implemented using the processing module in the Gravsoft software. 

Outputs were interpreted using the ArcGIS, Global Mapper, and Matrix Laboratory 

(MATLAB) software. Surfer 8.0 software was used for in the selection of suitable 

interpolation methods for this study.  

 

 

Based on the executed computation processes, there were two assessments 

conducted in this study to prove the reliability of each of the objectives. Below are 

the realisations of the validation process for each research objective. 

 

1) Satellite derived gravity anomalies were examined with airborne gravity 

anomalies produced by Department of Survey and Mapping Malaysia 

(DSSM). 

 

2) Estimated bathymetry was computed using the G-G method and validated 

with shipborne bathymetry data from the National Geophysical Data 

Centre (NGDC). Estimated bathymetry was mapped using MATLAB 

 

 

 

 

1.5 Significance of Study 

 

 

The significance of this study is as follows: 

 

1) This study highlights the use of the multi-mission SALT in obtaining 

MSSH to derive the gravity anomalies. The gravity anomaly derived in 

this study are expected to provide a better understanding of ocean gravity 

anomalies, aiding local authorities such as geologists in exploration and 

research activities. 
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2) The aim of this study is to produce a bathymetry map for Malaysian Seas 

using space-borne techniques. The Malaysian Seas bathymetry map will 

benefit related agencies such as the oil and gas industry in resource 

exploration. 

 

3) Moreover, ocean depth information from the generated bathymetry 

information will aid related government agencies in determining maritime 

boundaries.  

 

 

 

 

1.6 General Research Methodology  

 

 

 This study is divided into four (4) phases in order to achieve the specified 

objectives. The purposes of each phase are explained. Figure 1.5 illustrates a 

flowchart of the research methodology used in this study.  

 

PHASE 1 

 

Literature Review 

The literature review stage concentrates on the following topics: 

1) An overview of satellite altimeter principles, satellite altimeter corrections, 

and satellite altimeter diversity. 

2) Satellite gravity missions, satellite gravity concepts, and their applications. 

3) The necessity of gravity anomalies, gravity measurements, and the airborne 

and space-borne gravity measurement methods. 

4) Generation of the gravity anomalies from the sea surface height. 

5) The relationship between gravity anomalies and geology. 

6) Bathymetry interpretations as well as its relationship with gravity anomalies 

and bathymetry predictions using the G-G method. 

7) The structure of the research design outlined in Figure 1.5. 

 

Research Area Identification 

The research area for this study was the Malaysian Seas and this area is depicted in 

Figure 1.4. 
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Figure 1.5: The research framework for this study 
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PHASE 2  

 

Data Processing and Gravity Anomaly Derivation 

 

Phase 2 involves data processing and the derivation of the gravity anomalies based 

on satellite altimeter missions and satellite gravity missions: 

1) How all essential data (i.e.: MSSH, free air gravity anomaly (FAGA) data) in 

this research was gathered.  

2) The computation of MSSH from satellite altimeters using RADS. The data 

provided by RADS was automatically processed according to user 

parameters.  

3) Gravity anomalies from satellite gravity missions were extracted from 

Geopotential Global Models (GGM) based on the spherical coefficient of the 

models using the International Centre for Global Earth Model (ICGEM) 

calculator.  

4) MSSH was used to derive gravity anomalies using Gravsoft software. 

5) Derived FAGA was validated with airborne FAGA from DSMM and was 

used to estimate bathymetry. 

 

 

PHASE 3 

 

Estimation of the Bathymetry 

 

 In phase 3, derived FAGA from SALT was used with bathymetry information 

as a reference depth in order to estimate bathymetry for Malaysian Seas. There were 

two reference depth used in this study, which are bathymetry from global models and 

NGDC shipborne bathymetry data. There were four global bathymetry models used 

in this study. Bathymetry estimation was computed using the G-G method. Several 

interpolation methods bathymetry estimates were tested using Surfer software in 

order to obtain the best interpolation result. An evaluation of the estimated 

bathymetry was executed. The shipborne bathymetry data from NGDC was used to 

validate predicted bathymetry. 
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PHASE 4 

 

Bathymetry Mapping and Malaysian Bathymetry System 

 

 This phase covers the mapping of estimated bathymetry and the generation of 

a Malaysian Bathymetry system. Bathymetry mapping was plotted using MATLAB 

software. 

 

Conclusion and Recommendation 

 

The conclusion in this study reflects its results and analysis. All of the 

achieved objectives are interpreted and summarized in this section. Moreover, due to 

some study limitations, a few recommendations have been proposed for the 

improvement of this study and future research. 

 

 

 

 

1.7 Thesis Outline 

 

 

This study is divided into five chapters. 

 

 

The introduction of this study is thoroughly explained in Chapter 1. In this 

chapter, a brief explanation is given on the study background, problem statement, 

study goals, study objectives, study scope, and study significance.  

 

 

The outline of the thesis followed by the literature review in Chapter 2, 

which uses studies from other researchers to support this study. The nature of space-

borne bathymetry measurements, including SALT and gravity missions, and the 

relationship between bathymetry and gravity anomalies are described in this chapter. 

Moreover, the bathymetry prediction method is expressed in this section, which is 

the Gravity Geologic Method (G-G method). 

 

 

Chapter 3 describes the methodology used in this study. The data processing 

of the SALT and satellite gravity missions is discussed in this chapter. Additionally, 
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the deriving of SALT FAGA using the FFT technique as well as the experimental 

procedures used to predict bathymetry are explained. Moreover, each computation 

and the derived FAGA validation process are reported in this chapter.  

 

 

Based on the methodology clarified in Chapter 3, the results and the analysis 

of SALT-derived FAGA and predicted bathymetry are elaborated in Chapter 4. The 

diagrams and the statistical values of the derived FAGA and predicted bathymetry 

are depicted. This chapter provides the result analysis and supporting details. 

 

 

Chapter 5 is the last chapter in this thesis. This chapter summarize the results 

obtained from estimated bathymetry. It also includes suggestions for future work and 

study limitations. 
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