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ABSTRACT 

This thesis proposes a high performance speed sensorless vector control of 

star-connected three-phase Induction Motor (TPIM) under open-phase fault. The 

proposed drive system consists of two parts: Indirect Rotor flux Field-Oriented 

Control (Indirect RFOC) and speed estimation based on Model Reference Adaptive 

System (MRAS). In RFOC of TPIM, rotor speed estimation is required in order to 

implement the control algorithm. The rotor speed can either be obtained using a 

mechanical speed sensor or it can be estimated from the terminal variables of the 

TPIM using an observer. In this work, rotor speed is estimated using an observer 

which is based on MRAS. However, unlike other MRAS based speed estimators, the 

proposed observer is designed to work for both healthy and faulty TPIM. When a 

fault occurred, minimum changes to the control parameters and special 

transformation to the variables of the RFOC and MRAS speed estimator are 

performed. The ability of the drive system to work in both healthy and faulty 

conditions is important in some critical applications that require continuous operation 

of the drive systems. To verify the effectiveness and reliability of the proposed 

method, simulations and experiments are conducted. In this research, 

MATLAB/Simulink software is used to evaluate the effectiveness of the proposed 

method. Verification and validation of the proposed drive system are through 

hardware implementation using dSPACE DS 1104 ACE KIT and 1.5 kW TPIM. The 

simulation and experiment results show that satisfactory performance of the indirect 

RFOC and MRAS for a TPIM under open-phase fault is achieved. It is shown that 

the torque and speed oscillations caused by the unbalanced structure of the faulty 

TPIM are effectively reduced by more than 50%. Speed sensorlesss RFOC of TPIM 

under open-phase fault condition is shown to be capable of operating in speed range 

from zero to 60 rad/s, however with reduced torque capability. 
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ABSTRAK 

Tesis ini mencadangkan kaedah kawalan vektor tanpa pengesan kelajuan 

yang berprestasi tinggi untuk motor aruhan tiga fasa (TPIM) sambungan bintang 

dengan kerosakan fasa terbuka. Sistem pacuan yang dicadangkan ini terdiri daripada 

dua bahagian:  kawalan berorentasikan medan fluk rotor secara tidak langsung 

(RFOC tidak langsung) dan penganggaran kelajuan berdasarkan sistem model 

rujukan mudah suai (MRAS). Untuk RFOC untuk TPIM, penganggaran kelajuan 

rotor adalah diperlukan untuk melaksanakan  algoritma kawalan. Kelajuan rotor 

boleh diperolehi sama ada dengan menggunakan pengesan kelajuan mekanikal atau 

ia dapat dianggarkan daripada pengamatan pembolehubah terminal untuk TPIM. 

Dalam kajian, kelajuan rotor dianggarkan menggunakan pengamatan berdasarkan 

kepada MRAS. Bagaimanapun, tidak seperti penganggar kelajuan MRAS yang lain, 

pengamatan yang dicadangkan telah direka bentuk untuk bekerja pada kedua-dua 

keadaan TPIM yang berkeadaan baik dan juga rosak. Apabila satu kerosakan 

berlaku, perubahan minimum terhadap parameter kawalan dan transformasi khas 

bagi pembolehubah RFOC dan penganggar MRAS telah dilakukan. Keupayaan 

untuk sistem pacuan bekerja dalam kedua-dua keadaan baik dan rosak adalah penting 

untuk beberapa aplikasi kritikal yang memerlukan operasi sistem pacuan yang 

berterusan. Untuk mengesahkan keberkesanan dan kebolehpercayaan kaedah yang 

dicadangkan, simulasi dan eksperimen telah dijalankan. Dalam penyelidikan ini, 

perisian MATLAB/Simulink digunakan untuk menilai keberkesanan kaedah 

cadangan. Penentusahan dan pengesahan sistem pacuan yang dicadangkan adalah 

melalui pelaksanaan perkakasan menggunakan dSPACE DS 1104 ACE KIT dan 

TPIM dengan kuasa 1.5 kW. Keputusan simulasi dan eksperimen menunjukkan 

bahawa prestasi yang memuaskan untuk RFOC tidak langsung and MRAS untuk 

TPIM dengan kerosakan fasa terbuka telah dicapai. Ini menunjukkan bahawa ayunan 

pada daya kilas dan kelajuan yang disebabkan oleh struktur yang tidak seimbang 

pada TPIM yang rosak dengan keberkesananya dapat dikurangkan lebih dari 50%. 

RFOC tanpa pengesan kelajuan untuk TPIM dengan fasa terbuka dibuktikan dapat 

beroperasi dengan julat kelajuan dan sifar ke 60 rad/s, walaupun dengan keupayaan 

daya kilas yang lebih rendah. 
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CHAPTER 1 

1 INTRODUCTION 

 A Look Back on Vector Control Techniques for Three-Phase IM Drives 1.1

Induction motors (IMs) are the most applicable motor in industries because of 

their simple and sustainable design, less expensive, lower maintenance cost, high 

reliability and ease of connection to the AC power supply. Also in comparison to DC 

motors, induction motors have several advantages such as simple structure, higher 

efficiency and higher power rating. More than 85% of electrical motors in industries 

are induction motors. Induction motors are found in many applications such as 

robotics, radar, fans, Heating, Ventilation and Air conditioning (HVAC) and etc. [1-

6]. Furthermore, the use of AC machine drives in industrial applications has 

tremendously increased since the introduction of Field Oriented Control (FOC) by F. 

Blachke in 1970’s.  

Many methods have been presented by researchers to control the induction 

motors, which in general, can be classified into two main categories: scalar based and 

vector based. The general classification of induction motor control methods are 

shown in Figure 1.1 [7]. 
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Figure 1.1 Classifications of IM control methods  

Scalar control drives have simpler structure and cheaper when compared to 

vector control drives. However, they have limited speed range control and 

applications. Inefficiency is the major drawback of this method. In scalar control, 

torque and flux are inter-related and both are functions of stator currents; hence 

independent control of torque and flux is infeasible. Vector control methods are more 

complex and more expensive, however, they provide accurate torque control with 

broader speed range operation, from zero to beyond rated speed. Therefore, vector 

control methods are normally used for sensitive applications, which need high 

performance control.  

 Speed Sensorless Control Techniques of Induction Motor 1.2

One of the control variables in TPIM drives, which plays an important role, is 

the motor speed. Accurate knowledge of motor speed in real-time is extremely 

important since it is normally needed to implement high performance control 

algorithms in TPIM drives. Normally, the speed sensors are used to provide the 

speed feedback in speed-controlled drive system and the mechanical sensors such as 
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optical encoders or tachometers can be used for this purpose. The control scheme 

with speed sensor has several disadvantages over speed sensorless control scheme 

such as hardware complexity, lower reliability, bigger size and more expensive [8]. 

Employing speed sensorless techniques in the control of IMs would undoubtedly 

result in a more reliable and economical drive systems. Many researches on speed 

sensorless control methods have been carried out, particularly on the speed 

sensorless techniques that can be operated over a wide speed range. The speed 

estimation methods can be classified into two main groups: model based methods 

and signal injection based methods. In model based methods, the terminal variables 

of the machine, i.e. stator voltages and currents are used to estimate the motor speed 

but in signal based method, high frequency carrier signals are employed to estimate 

the rotor position [9]. The model based and signal injection based methods can be 

further classified into several techniques, which will be discussed in Chapter 2. 

 Motivation and Significance of Study  1.3

The TPIM drives are subjected to several failures [10-13] and various 

corrective methods have been proposed, depending on the type of failures and on the 

level of severity that affect the operations of the drives systems [14-19]. One of the 

most common types of fault in TPIM is when one of the phases failed.  This can 

happen due to the failure in one leg of the three-phase voltage source inverter (VSI) 

or due to the failure in one of the three-phase windings (open-circuit) of the TPIM 

[16]. In either case, the drive systems will no longer operate as they are supposed to 

be. Specifically, in FOC drives for TPIM, failure in one of the phases due to an open-

phase fault results in an unbalanced structure of the TPIM. The field orientation is no 

longer accurate thus causing a severe oscillation in the torque and hence the speed of 

the motor. In some applications, the degradation in the drive performance after the 

fault is still acceptable, at least until the drive is stopped and corrective measures are 

taken to overcome the problems. On the other hand, in some critical applications, the 

drive systems must be continuously run even after the open-phase fault occur, to 

avoid expensive damage or for safety reasons. On top of this, for these applications, 

the severe oscillations in the torque due to the unbalanced structure is unacceptable 
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and hence must be minimized. A more challenging situation is when the open-phase 

fault occurs in a speed sensorless drive system. In such case, not only control 

algorithms need to adapt to the failure condition, but the speed observer too, need to 

be adaptable. For this reason, the analysis and study on the open-phase fault TPIM 

drives is very important, interesting, as well as very challenging.  

 Problem Statement 1.4

Field-Oriented Control (FOC) of TPIM is one of the most popular control 

methods for high performance applications. The modelling, control structure and 

control algorithms of FOC drives for a balanced TPIM are well-known and widely 

adopted for various industrial applications. On the contrary, the modeling and control 

of a faulty TPIM, specifically an open-phase fault, is less discussed and less-known. 

Control algorithms that can seamlessly operate in healthy and faulty modes, although 

very important, unfortunately are not as well-known as the conventional control 

algorithm of a healthy TPIM. Obviously, control of faulty TPIM is different from the 

conventional control approaches simply because of its unbalanced structure. Using 

conventional FOC (designed for balanced TPIM) to control a faulty TPIM results in 

significant oscillations in the torque and speed due to the field disorientation and an 

attempt of injecting balanced currents to the unbalanced structure of the faulty TPIM.  

A mathematical model of a TPIM with an open-phase fault is different from a 

healthy TPIM [20]. Due to the unbalanced structure of a faulty TPIM, a conventional 

three-phase (a-b-c) to 2-phase (d-q) transformation can no longer be used. In FOC 

drives, transformation matrix which is used to transform the variables to a rotating 

field reference frame in healthy TPIM cannot be used in a faulty TPIM, and hence 

must be modified. For speed sensorless FOC drives, speed estimation algorithm 

developed using the healthy TPIM model cannot be used to estimate the speed of a 

faulty TPIM. Unlike the speed estimators for a healthy TPIM, unfortunately, not 

many works on speed estimators of faulty TPIM are found in literatures. Until now, 

there is no publication that presents a speed sensorless RFOC for TPIM that works 

seamlessly between a healthy and faulty (open-phase) modes. In this research, a 
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novel algorithm for speed estimation of TPIM drive based on MRAS is proposed. 

Different from other speed estimation methods that is based on MRAS, the proposed 

method works seamlessly under healthy and fault conditions, without requiring two 

separate algorithms. By combining the proposed MRAS speed estimation and RFOC 

for faulty TPIM, a speed sensorless RFOC for faulty TPIM can be constructed. 

 Thesis Objectives 1.5

This thesis presents an indirect RFOC and MRAS based speed estimation of a 

TPIM under open-phase fault. The proposed speed sensorless RFOC drive for TPIM 

can work in both healthy and faulty (open-phase) conditions. The objectives of this 

research are: 

1) To develop an indirect RFOC for a TPIM with an open-phase fault. 

2) To design and propose a speed estimator technique based on MRAS for a 

faulty TPIM and subsequently integrate it to the RFOC of a faulty TPIM. 

3) To verify the effectiveness of the complete speed sensorless indirect RFOC 

that can work seamlessly between healthy and faulty modes, through 

simulation and hardware implementation.  

 Methodology of Research 1.6

This thesis presents a new technique of indirect RFOC and MRAS speed 

estimator for a TPIM with an open-phase fault. To minimize the changes in the 

control structure and algorithm in faulty mode, it is important to ensure that the 

model structures of the faulty and healthy TPIM is similar. For this reason, a 

modified a-b-c to d-q transformation matrix is used to transform the unbalanced 

structure of a TPIM into a balanced structure (d-q model) with unequal windings; 

this permits the use of conventional speed estimation algorithm for healthy IM on a 

faulty TPIM. To seamlessly operate between healthy and faulty modes, switches 

(implemented in software) are used to switch between these modes.  In other words, 
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the proposed method does not require major changes in the control algorithm but 

only require changes in the machine parameters due to unequal windings. The 

indirect RFOC and MRAS based speed estimators are developed and tested 

separately through comprehensive simulations and experiment tests under various 

operating conditions. The simulations are performed using MATLAB/Simulink 

software, and using the same Simulink models (with minor changes), C codes are 

automatically generated and uploaded to the DS1104 controller board for hardware 

implementation. Finally, the two developed systems are combined to form a speed 

sensorless indirect RFOC drive system that can work both in healthy and faulty 

modes. Figure 1.2 shows the summary of the methodology used for the estimation of 

the speed for the faulty TPIM.  

 

Figure 1.2 General flowchart of control and speed estimation of TPIM   
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 Scope of Study 1.7

In fulfilling the objectives of the thesis, due to the time constraint and 

limitation on the available resources, the scopes of this study have to be confined 

within certain conditions and limitations as follows:  

a. Only the star connected stator windings of the TPIM is considered in this 

study. Furthermore, for an independent current control of the remaining 

phases during the fault, the neutral point of the windings will be connected to 

the mid-point of the DC link voltage. 

b. In this work, a mechanism that will instantaneously detect the open-phase 

fault is assumed. In other words, it is not part of the scope of the thesis to 

design the fast fault detection mechanism. 

c. Although there are several types of electrical failures in the electrical drive 

systems, this thesis will only focus on an open-phase type. 

d. Development and modification of MRAS based speed estimator for a faulty 

TPIM will be based on the well-known MRAS based speed estimator that is 

used in a healthy TPIM.  

e. In simulation work, MATLAB/Simulink package is employed. Simulation 

models are developed using available Simulink blocks and where needed, S-

functions will be used.  

f. The improvement of the proposed algorithm will be verified through 

hardware implementation, which is be based on dSPACE 1104 ACE KIT and 

a 1.5kW TPIM. Rapid Control Prototyping (RCP) process will be used in 

programming the controller board. Therefore, the C codes that are generated 

automatically and hence the sampling frequency are not optimized.  

g. The rated speed of IM in simulation and experimental tests due to verify the 

only MRAS based speed estimation method for healthy and faulty TPIM is 

same as the actual rated speed of IM as 147.6 rad/s. 

h. The rated speed of the IM in RFOC and speed sensorless RFOC of faulty 

TPIM techniques is limited to maximum 60 rad/s of 147.6 rad/s. 
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 Research Contribution 1.8

In this thesis, a simple and accurate method that can be used to control a 

TPIM in healthy and an open-phase fault conditions is developed. The control 

technique is based on indirect RFOC.  In addition, a modified speed estimator based 

on MRAS that can work in healthy and faulty TPIM is also designed and presented. 

Finally, by combining the indirect RFOC and the modified MRAS based speed 

estimator, a complete speed sensorless RFOC that can seamlessly operate in healthy 

and faulty (open-phase fault) modes are developed and verified through hardware 

implementations.  

 Organization of the Thesis 1.9

The thesis is organized as follows:  

Chapter 2. In this chapter, the d-q modeling of a TPIM under open-phase 

fault is presented. This chapter also briefly discusses on the TPIM speed estimation 

methods, which have been proposed by other researchers; focus is given on the 

MRAS based speed estimation techniques. 

Chapter 3 In this chapter, three-phase (a-b-c) model and in 2-phase (d-q) 

model of a TPIM are presented. The TPIM control techniques are discussed but the 

main consideration is on the indirect RFOC technique.  Three main components of 

the thesis contributions are presented. First vector control of TPIM under fault 

condition based on indirect RFOC is presented and simulated under different 

operating conditions. Next, speed estimation based on MRAS for a faulty TPIM is 

proposed and simulated. Finally, the two proposed methods are combined to form a 

complete speed sensorless indirect RFOC for both healthy and faulty (open-phase) 

TPIM. Detail simulations and discussions are performed for each case. 
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Chapter 4 The laboratory experimental set-up which is used to verify the 

proposed methods are presented in this chapter. Descriptions of hardware 

components and set-up used in the experiments are described in details.  

Chapter 5 In this chapter, experimental results of the proposed indirect 

RFOC for a faulty TPIM, the proposed MRAS based speed estimator for a faulty 

TPIM and finally the proposed speed sensorless RFOC for a faulty TPIM are 

presented. For comparison, the conventional (healthy) RFOC and conventional 

MRAS speed estimator applied to a faulty TPIM are also presented. 

Chapter 6 Finally in this chapter, the conclusion of the thesis and some 

suggestions on future work are presented. 
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