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Abstract: Support vector machines (SVM) have been widely used for classification

purposes. These learning machines are based on classification of data through a kernel

function. Classically these kernel functions are either based the Euclidean distance of two

data vectors or their dot products. This is a general formulation which is suitable for most data

sets. However, when dealing with remote sensing images, the addition of spectral information

can add to the divisibility of the data and hence produce higher classification accuracy. In this

paper, instead of the Euclidean distance we use the spectral angle function as a differentiation

measure of two data vectors. The results show that using this method, high quality separation

is achieved leading us to believe that integration of spectral information into the SVM method

is indeed an effective approach.
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1. INTRODUCTION

Increase in the quantity of remote sensing sources over the last 20 years has led to a great

amount of research being undertaken in this field. This has been boosted by strong computers

and workstations that are readily available to connnon researchers. Land cover segmentation

is a particular field of interest that has been covered extensively due to the great amount of

information that can be recovered while analyzing the high quality multispectral and

hyperspectral images available today. Numerous classical and innovative classification

techniques have been utilized to exploit this information in order to achieve high accuracy

and robustness (Jia and Richards, 2006).

Among these methods Support Vector Machines (SVMs) (Vapnik, 1998) have drawn a

great deal of attention because of their ability to map data into very high dimensions without
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much added computational complexity. In addition, their effectiveness in dealing with tlte

Hughes phenomenon (Hughes, 1968) (curse of dimensionality) and solution sparseness (only

some data points are used to achieve the fmal classification) have made them an excellent

candidate for use in remote sensing applications.

SYM separation measures are commonly based on the dot product or Euclidean distance

of the data points. These measures come in the· form of a function called the Kernel, which is

also the source of SYM's nonlinear classification. The draw back of the use of the above

mentioned methods for separation is that they do not take into account the spectral and

contextual information available in remotely acquired images. The inclusion of these features

in the Kernel function may have a positive result and lead to higher classification accuracies.

In this paper we focus on integrating the Spectral Angle function into SYM kernels. In

section 2 the basics of the SYM algorithm are outlined. Section 3 outlines Kernel functions
"and SYM's nonlinear approach while introducing the spectral angle function. In section 4 the

basics of land cover classification are outlined. Section 5 is dedicated to experiment design.

Section 6 presents experiment results while sections 7 and 8 provide a brief discussion and a

look at future paths available.

2. THE SYM ApPROACH

In this section we briefly outline the SYM algorithm and its classification process. For

further discussion and a deeper understanding, readers are referred to (Vapnik, 1998; Burges,

1998). Let us start with the basic linear classification of two classes (binary classification).

Assume that the training set consists ofN data points x I where X, em' (i = 1, 2, ... , N). To

each vector we assign a target Y, e {-1,+1}. Our task is to locate a hyperplane f(x)=w·x+b

which correctly classifies these data points into two classes. Among the infmite cl!issifiers

that might perform this task, SYMs select the classifier which maximizes the margin. The

margin is defmed as the distance between the classifier and the closest training points. This

task is accomplished by minimizing:
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(1)

The variables q/ are added to the formulization to allow for misclassifications when the

two classes are inseparable. The above formulation maximizes the margin, while minimizing

the errors made during classification by placing a penalty term, C, on the summation of the

errors made by the system. In practice this problem is solved in its dual form using Lagrange

multipliers. Converting to dual form, equation (1) changes into the following quadratic

optimization problem:

Maximize: ,

Subject to:

N

Ly/a; =0,
i-I

C~a/ ~O,i=l,...,N

(2)

whereby a; represent the lagrange multipliers and are bounded by the penalty parameter C,

hence resulting in the constraints occasionally being called the box constraints. This

formulization results in a decision function of the form:

(3)

Usually most of the a/ in the optimal solution are equal to 0, and this results in a huge

amount of data not being responsible for classification. Only a select group of vectors called

the support vectors contribute to the solution. This feature (sparseness) of SVMs is very

useful when dealing with large datasets like hyperspectral and multispectral images.

3. KERNELS AND NONLINEAR MACHINES

The problem dealt with up to now has been to linearly classify the data, but for nonlinear

classifications SVMs make use of kernel methods. These methods consist of mapping data

into a high dimensional feature space <1>(x) in which the data can be classified by a linear

machine (Figure 1).
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Figure 1. General idea of mapping data to a feature space

Taking note of equations (2) and (3) it is observed that wherever the data points appear

they are in fonn of dot products so it is convenient to define a function K as:

K(x ,x;)= «I>(x)· «I>(x;)

This function is called"the kernel function and results in the dot product of the training

vectors in feature space. In this manner, instead of taking on the computationally expensive

task ofmapping all the data points into feature space, the kernel matrix can be computed with

much more efficiency and speed. By replacing the data points with the kernel function in (2),

the following fonnulation is achieved:

while the decision function can be expressed as:

!(x)= sgn(La;·y,K(x, ,x)+b·).

For a function to be categorized as a kernel that function has to fulfill Mercer's conditions

(Vapnik, 1998). These conditions are equivalent to requiring that "for any finite subset of input

space X = {xl,...,x. }, the corresponding matrix is positive semi-defInite (Cristianini, 2000)."

There are many different kernel functions in use. A number of commonly utilized kernel

functions are shown in Table 1. These functions are either based on a quadratic distance (RBF

and inverse multiquadratic) or the dot product of two vectors. Though these functions have

proved effective in many cases, they are flawed because they do not take advantage of the

immense amount of contextual and spectral information available in remote sensing images.
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Table 1. Some commonly used kernels

Kernel FunctionK(x,x,) Type of Classifier

exp( - u \I x - X/ Ir) Radial Basis Function
(RBF)

1

~ 1+11 x-x, II! Inverse multiquadratic

(x· Xi +I)J Polynomial of degree d

tan( x . X, - e) Multi-Layer Perceptron

tanh( x . X, +1) Sigmoid

The spectral angle (SA) function a(x,x/) is defmed to measure the angle between spectral

vectors x and Xi. It has the ability to exploit the characteristics described above while being

robust to energy differences (Mercier and Lennon, 2003). An application of this kernel to

target detection can be found in (Kwon and Nasrabadi, 2007). Spectral angle is defmed as:

(
x·x Ja(x, x,) = arccos IIxllllx',11 •

Using this measure instead of the Euclidean distance, we expect to achieve a competent

classifier that takes into account the spectral signatures of each class of data. Since

la (x, X1)1 is bounded and positive, SA based kernels satisfy Mercer's conditions (Mercier and

Lennon, 2003).

4. LAND COVER CLASSIFICATION

Land cover is one of the crucial elements for scientific research and real-life earth science

applications. For many years, global, national,· and regional managers and planners have

recognized the importance of land cover information for a variety of activities in diverse fields

such as agriculture, environment, forestry, geology, and hydrology. Due to the large scale

proliferation of remote .sensing data, they have become attractive sources of land cover

information. Several classification algorithms have been developed and successfully

implemented to produce land cover classification from multispectral data. However, these

algorithms fail to deliver high accuracies for classifying hyperspectral images (Richards,

1999).

Scientists and practitioners have made great efforts in developing advanced classification

approaches and techniques for improving classification accuracy (Pal and Mather, 2003).

However, classifying remotely sensed data into a thematic map remains a challenge because

many factors, such as the complexity of the landscape in a study area, selected remotely
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sensed data, and image-processing and classification approaches, may affect the success of a

classification (Richards, 1999).

In the next section we depict our experiment design. This section focuses on enhancing

classification by integrating spectral infonnation into the SYM algorithm. Experiments are

conducted on a hyperspectral image.

5. EXPERIMENT DESIGN

Experiments are applied to a hyperspectral AVIRIS image taken over northwest Indiana's

Indian Pine in June 1992. The image consists of 145 x 145 pixels in 220 spectral bands with

sixteen classes available in the ground truth. Similar to previous studies done on this database

(Melgani, 2004; Camps-Valls, 2005), of the sixteen classes, seven were discarded due to

insufficient number of training data. 35 spectral bands were also discarded due to noisiness

and/or being known as water absorption bands. Table 2 displays a summary of the remaining

data after these steps were taken.

Table 2. Summary of data after cleaning

Class Pixels

Cl Corn-no till 1434
C2 Corn-min till 834
C3 GrassIPasture 497
C4 GrasslTrees 747
C5 HaylWindrowed 489
C6 Soybean-no till 968
C7 StJvbean-min till 2468
C8 Sovbean-clean till 614
C9 Woods 1294

Total 9345

Tests take place using the standard RBF and polynomial kernels and the spectral angle

RBF kernel (Sindhumol, 2007):

1) Standard RBF kernel:

2) Standard Polynomial kernel:

3) Spectral angle RBF (SA-RBF):

Jilid 19, Bil. 2 (Disember 2007)
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To examine the overall performance of these kernels in the presence of different numbers

of training data, 6 different training and testing sets were randomly created, each using a

different percentage of the data set for training. The different sets consisted of 5, 10, 20, 30,

50 and 70 percent of data for training.

For each kernel, a number of hyperparameters must be tuned so that optimal results may

be achieved during fmal experimentation. To achieve this purpose the training portion of the

data was used. This data was then divided into two parts of 70% and 30%, the latter part

being used for testing while the former was used for training purposes. Using these smaller

data sets an exhaustive grid search was subsequently performed on each of the

aforementioned kernels to pinpoint the optimal values of each kernel's hyperparameters. The

next section depicts experimentation results in detail.

6. EXPERIMENT RESULTS

Preliminary analysis demonstrated the efficacy of scaling the data for testing and training.

To this aim the data was scaled between 1 and -1 in each class. This act diminishes the effect

ofhigh numbers on classification.

Experiments on the different data sets (Table 3) show that while RBFs keep their

superiority over the other kernels, the modified SA~RBF achieves strong results and on

occasion even surpasses the polynomial kernel. This demonstrates that the spectral angle RBF

is in fact a useful measure for classification. As expected the accuracy rate of the classifiers

raises as the number of training data rise, but under conditions of few training examples the

RBF classifier proves to be the best with far more accuracy than the other kernels.

Table 3. Accuracy of the Kernels under different amounts of training and testing data.

Percent of data used in training (%)
Kernel 5 10 20 30 50 70
Polynomial 83.72 89.31 91.47 91.82 93.97 95.08
RBF 85.76 90.37 92.26 92.62 94.59 95.79
SA-RBF 82.69 88.72 91.15 91.69 93.88 95.44
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Another experiment undertaken was to compare class by class accuracies of the various

kernels (Table 4). While the RBF function kept its superior stance over other kernels, in

some classes the proposed function actually. surpasses the RBF and polynomial kernels in

terms of accuracy. This leads to the idea that a mixture model of spectral and Euclidean

distance based kernels could achieve results ofhigher accuracy.

Table 4. Accuracy results of the kernels for different classes of data.

Cl C2 C3 C4 C5 C6 C7 C8 C9
Polynomial 90.88 86.87 97.35 99.49 99.14 88.26 93.74 95.00 99.17
RBF 91.33 88.48 98.67 99.49 99.14 90.57 94.30 93.93 99.31
SA-RBF 91.18 83.64 97.79 99.74 98.71 89.31 94.06 93.93 99.31

7. DISCUSSION AND FUTURE WORK

The proximity of the results achieved from the SA based classifier to the results acquired

from the best RBF kernels suggests that this kernel can be efficiently utilized for

hyperspectral image classification. The SA based classifier achieved optimal results on some

select classes of data. Future work can tend towards extracting the characteristics of these

classes of data and exploiting this feature of the SA based kernels. For this purpose, mixed

kernels could be the answer. Different mixtures of Euclidean distance and SA based functions

could be experimented to achieve optimal results. The goal is to maintain the superior features

of these kernels while adding to this, spectral signature information which is readily available

in hyperspectral images.

8. CONCLUSION

In this paper the spectral angle function was used for ground cover classification of

remotely sensed images. This function was integrated into the support vector machine via the

kernel function. Using this function spectral information was successfully integrated into the

SVM algorithm and results showed that this approach is in fact appropriate and can aid in the

achievement of superior classifiers which use both spectral and geometrical information fOf

classification. To this end, our future work is based on combining these two separation

features to achieve compound kernels with exceeding segregation capabilities.
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