
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Enhancement Approachof Object Constraint
Language Generation

To cite this article: Samin Salemi and Ali Selamat 2018 J. Phys.: Conf. Ser. 933 012008

View the article online for updates and enhancements.

Related content
Advanced Digital Imaging Laboratory
Using MATLAB® (Second edition) :
Methods of image enhancement
L P Yaroslavsky

-

Superresolution and enhancement in
metamaterials
Andrei N Lagarkov, Andrei K Sarychev, V
N Kissel et al.

-

Issues of Specifications for Seismic
Design of Highway Bridges and
Suggestions
Hongmei Cao

-

This content was downloaded from IP address 161.139.222.41 on 29/09/2019 at 09:44

https://doi.org/10.1088/1742-6596/933/1/012008
http://iopscience.iop.org/book/978-0-7503-1233-2/chapter/bk978-0-7503-1233-2ch9
http://iopscience.iop.org/book/978-0-7503-1233-2/chapter/bk978-0-7503-1233-2ch9
http://iopscience.iop.org/book/978-0-7503-1233-2/chapter/bk978-0-7503-1233-2ch9
http://iopscience.iop.org/article/10.3367/UFNe.0179.200909k.1018
http://iopscience.iop.org/article/10.3367/UFNe.0179.200909k.1018
http://iopscience.iop.org/article/10.1088/1757-899X/371/1/012045
http://iopscience.iop.org/article/10.1088/1757-899X/371/1/012045
http://iopscience.iop.org/article/10.1088/1757-899X/371/1/012045
http://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsuJQMsyXzCT6kFWztfG368sqx2RfMUxQ97VCjuOv3gEDo0LnRmEg8o7RmdII9ddOcPt0nZwGD7q2F4Elh_vGFExx5yWU48af3vl_gE77xv1wkADiEOFTLWXjloUmyUKO3FjHavIHVO9jt3ApvtehkHdiq5YL3fcZNu6NFSe_59aKhJpv3HBBCH0e0QXvx5fwLhZyD2af0laVw8hbKieQ4PKrxNuFgTzFpEJrNqNXlsHzP99o83I&sig=Cg0ArKJSzC0u48rmfoJE&adurl=http://iopscience.org/books

1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890 ‘’“”

10th International Conference on Computer and Electrical Engineering IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 933 (2018) 012008 doi :10.1088/1742-6596/933/1/012008

Enhancement Approachof Object Constraint Language

Generation

Samin Salemi and Ali Selamat

Faculty of Computing, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor,

Malaysia

saminsalemi127@gmail.com

Abstract.OCL is the most prevalent language to document system constraints that are

annotated in UML. Writing OCL specifications is not an easy task due to the complexity of

the OCL syntax. Therefore, an approach to help and assist developers to write OCL

specifications is needed. There are two approaches to do so: First, creating an OCL

specifications by a tool called COPACABANA. Second, an MDA-based approach to help

developers in writing OCL specification by another tool called NL2OCLviaSBVR that

generates OCL specification automatically. This study presents another MDA-based approach

called En2OCL, and its objective is twofold. 1- to improve the precison of the existing works.

2- to present a benchmark of these approaches. The benchmark shows that the accuracy of

COPACABANA, NL2OCLviaSBVR, and En2OCL are 69.23, 84.64, and 88.40respectively.

1. Introduction

An OCL specification, is a Boolean expression that sets a condition on an entity, such as a class,

attribute, data-type, and operation in UML models. It means that the condition must be true for all

instances of a given entity. An OCL specification includes two main parts: context and expression

body. The context of a OCL specification presents the entity restricted by the OCL specification, and

the expression body of an OCL specification displays a Boolean condition. The entity, which is

restricted by an OCL specification, is identified as a context variable of the OCL specification. Figure

1 presents the template of an OCL specification.

Context [contextVariable] [stereotype]:

[ExpressionBody]

Figure 1. OCL specification template

The complexity and difficulty of the OCL syntax causes some effects such as rising time and effort

needed to create OCL specifications, and occurring errors while writing OCL specifications. The

problems are motivations for embarking on this research. The main goal of the current research is to

simplify the design phase of software modeling by proposing an MDA-based approach, to generate

OCL specifications automatically. The existing tools for generating OCL specifications, use pattern-

based and MDA-based approaches. The pattern-based approach can analyze the consistency of the

constraint specifications automatically. This approach uses libraries to write OCL specifications. The

http://creativecommons.org/licenses/by/3.0

2

1234567890 ‘’“”

10th International Conference on Computer and Electrical Engineering IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 933 (2018) 012008 doi :10.1088/1742-6596/933/1/012008

existing tool implementing the pattern-based approach is COPACABANA, which semi-automatically

generates OCL specifications. The existing tool implementing the MDA-based approach is

NL2OCLviaSBVR, which automatically generates OCL specifications by using Sitra.

2. Metamodels

Metamodel is the abstract syntax of a modeling language expressed as a model. The metamodel

defines the structure of the model in terms of classes and relationships.

2.1. English Metamodel

In English metamodel, prefix element is a semantic element placed immediately before another

semantic element. For example, in “valid customer card” sub-phrase, “valid” is a prefix element,

because “valid” is an attribute and “customer card” is a class. Universal quantifiers are “all”, “each”,

and “every”. Existential quantifiers are “a”, “an”, “any”, “s (plural), and “the”. Negation element is

“not”. IsPropertyOfSign is a sub-phrase that links two semantic elements using “of”. For example,

“age of customer” is an IsPropertyOfSign. Valued range quantifier is a sub-phrase that determines a

quantity by this syntax: “between quantity1 and quantity2” such as “between 3 and 5” and “between

the number of customer cards and their owners”. Possessive determiner is a sub-phrase of determiners

that modify a noun by attributing possession to someone or something such as “customer’s card”.

SignIntegratedWithAnd is a sub-phrase presenting a multiplication, division, addition, or subtraction

of two quantitative things. For example, “the multiplication of the customer’s age and the service’s

point” is a SignIntegratedWithAnd phrase. SumOf is a SignIntegratedWithAnd that adds two

quantitative things. SubtractionOf is a SignIntegratedWithAnd that subtracts two quantitative

things.MultiplicationOf is a SignIntegratedWithAnd that multiplies two quantitative things.

DivisionOf is a SignIntegratedWithAnd that divides two quantitative things. Necessity verb is a modal

verb showing a necessary action that must be performed. Transitive verb is a verb that takes one or

more objects. Copular verb is a verb that links a subject to a complement that refers to the subject.

Preposition conjunction is a preposition, such as “in” and “with”, describing a relationship between

two sub-phrases in a sentence. Str is a string. IsEqualTo can be “is”, “are”, “equals to”, “equal to”, “is

equal to”, or “are equal to”.

2.2. SBVR Metamodel

SBVR is a standard to develop semantic models of business vocabularies and business rules [1].

SBVR concepts are object type and fact type. Object type is a general concept that is classified based

on its characteristics. Fact type identifies a relationship among one or more object type. The object

type in a fact type is called fact type role. Unary fact type (characteristic) has one fact type role, and

binary fact type has two fact type roles. SBVR logical formulations are modal formulations, atomic

formulation, logical operation, quantification, and objectification. Modal formulations used to

formulate modality are divided into necessity and possibility. Necessity formulation is represented

using the keywords “It is necessary” or “It is obligatory”. Possibility formulation is represented using

“It is possible” keyword. Atomic formulation specifies a fact type in a rule. Binary atomic formulation

specifies a binary fact type in a rule. Quantification is a set of quantifications supported in SBVR and

consists of universal quantification, at least n quantification, at most n quantification, etc.

Objectification is a logical formulation that involves a bindable target. Logical operations are divided

into logical negation and binary logical negation. Logical negation is a logical operation having one

logical operand. Binary logical negation, such as conjunction, disjunction, and implication, is a logical

operation having two logical operands.

2.3. OCL Metamodel

The context of an OCL specification is specified in the expression body using the self-keyword. An

OCL context has a stereotype that can be one of these items: invariant, definition, initial, derivation,

3

1234567890 ‘’“”

10th International Conference on Computer and Electrical Engineering IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 933 (2018) 012008 doi :10.1088/1742-6596/933/1/012008

pre and post-condition, and body. An OCL invariant expression specifies conditions on attributes and

operations of a class in a Class diagram in form of arithmetic and logical operations. An attribute or

association can be added to a Class diagram by OCL definitions. The initial value of attributes or

associations can be specified by OCL initials. A derived value of an attribute or association end can be

indicated by an OCL derivation. A pre-condition expression for an operation must be true before the

operation execution and a post-condition expression for an operation must be true after the operation

execution. OCL bodies are used to express query operation. The expression body of an OCL

specification includes one or more of expressions such as let, if, literal, call, and unary operation. A let

expression can define a new variable that has an initial value. An if expression defines a condition and

two alternative expressions that after evaluating the condition, one of the alternative expressions is

selected as the result of the if expression. A literal expression does not have any argument to produce a

value. This kind of expression results in an expression symbol, such as an integer (12) and a string

(“hello”). A call expression refers to an attribute, an operation, or an iterator for a collection, which is

a collection of some values. An attribute call expression is a reference to a class’s attribute in a UML

model. A navigation call expression is a reference to a relationship in a UML model. An operation call

expression is used, when we want to refer to an operation of a classifier. There are some unary

operations, such as not Empty, is Empty, oclIsTypeOf, to perform functions on a value. The not

Empty operation on a collection returns true when the collection has at least one element. The is

Empty on a collection returns true when the collection has no element. The oclIsTypeOf operation on

a value determines if a value is of the type given to the operation as a parameter. When we want to

construct a loop over a collection, a loop expression is used. The for All operation takes an expression

as a parameter and results to true if the expression is evaluated to true for all elements in the collection.

The exists operation on a collection specifies a Boolean expression that must be true for at least one

element of the collection. The select operation on a set, takes a parameter expression, and resulting a

sub-set of the set, when the parameter expression is true for all elements of the resulting sub-set. The

reject operation on a set takes a parameter expression and results to a sub-set of the set, when the

parameter expression is false for all elements of the resulting sub-set. The collect operation on a

collection gives the set of all values for a certain attribute of all objects in the collection.

3. Royal and Loyal Model

Warmer and Kleppe (1999) originally introduced the Royal & Loyal model [2]. Afterward, the model

was used in various publications [3, 4, 5]. “Royal and Loyal (R&L) models the computer system of a

fictional company. It handles loyalty programs for companies that offer their customers various kinds

of bonuses. Often, the extras take the form of bonus points or air miles, but other bonuses are possible

as well: reduced rates, a larger rental car for the same price as a standard rental car, extra or better

service on an airline, and so on. Anything a company is willing to offer can be a service rendered in a

loyalty program” [6]. Benchmark test cases which used in this research have been extracted from the

Royal and Loyal model illustrated in Figure 2.

4

1234567890 ‘’“”

10th International Conference on Computer and Electrical Engineering IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 933 (2018) 012008 doi :10.1088/1742-6596/933/1/012008

Figure 2. Royal and Loyal model [7]

4. En2OCL approach

The En2OCL approach proposed in this research, is based on the MDA approach to automatically

transform system constraints formed in English sentences into OCL specifications. The proposed

approach takes two inputs involving: an UML Class model, which presents a system and an English

sentence, which presents a constraint of the system. The output of the proposed approach is a

specification, which presents the system constraint in form of the OCL syntax. As Figure 3 illustrates,

the approach contains three major analyses involving: lexical, syntactical, and semantic analysis

involves.

Figure 3. EN2OCL approach

Phase 1: Lexical analysis

2
Tokenization

Stanford
Tokenizer

3
POS tagging

Stanford POS
tagger

6
Lemmatization

Phase 2: Syntactic analysis

7
Generate type
dependencies

Stanford parser

4
Specify main

entities

9
Voice

classification

1
Extract UML

elements

Phase 3: Semantic analysis

1
Role

identification

3
Generate SBVR

rules

English to SBVR
mapping rules

4
Generate OCL

sub-expressions

SBVR to OCL
mapping rules

1
Make changes

The target UML
model

 5
Splicer

identification

4
split single-
sentences

5
Integrate OCL

sub-expressions

8
Identify LHS and

RHS

7
Generate final OCL

specification

6
Specify constrained

element

5
Element identification

2
Map English elements

to UML elements

6
Generate SBVR

vocabulary

English to SBVR
mapping rules

2
Identify determiners,

negations, binary
logical operations

3
Identify English

sub-parts

5

1234567890 ‘’“”

10th International Conference on Computer and Electrical Engineering IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 933 (2018) 012008 doi :10.1088/1742-6596/933/1/012008

The proposed approach, uses SBVR to bridge English elements to OCL elements. The Input

English sentence is analyzed to extract business vocabulary and rules. The business vocabulary and

rules are transformed into OCL specifications. Thus, two sets of mapping rules are created. The

mapping rules that constitute the transformation are summarized in Table 1.

4.1. Lexical analysis

The lexical analysis includes six steps. In the first step, some parts of the input English sentence are

changed. For example, “not more than” is changed to “at most”. In the two next steps, the changed

sentence is tokenized and tagged by the Stanford Tokenizer and POS tagger. In the fourth step, the

English sentence is split into single-sentences using the POS tags. In addition, duplicate single-

sentences and single-sentences from which no business rules can be extracted are removed. In the

fifth steps, nouns, adjectives, strings, and numeral elements are extracted from each single-sentence. In

the sixth step, the extracted elements are lemmatized.

4.2. Syntactical analysis

The syntactical analysis of the input English sentence contains nine steps. In the first step, the

elements of the UML Class model, such as classes, attributes, ends, and data-type are extracted. In the

second step, the nouns and adjectives extracted from the English sentence are mapped to the elements

extracted from the UML Class model. Strings, and numeral elements extracted from the lexical

analysis, and then mapped elements are saved in an array. In the third step, English sub-parts, such as

possessive determiners and prefix element, are identified. In the fourth step, main entities are selected.

The main entities should not include data-type, possessive determiner, and prefix element. In the fifth

step, the splicer between the main elements is specified. In the sixth step, the mapping rules are used

to generate the SBVR vocabulary from the elements saved in the array and the splicers. In the seventh

step, the type dependencies between the extracted elements are identified using the Stanford typed

dependency parser. In the eighth step, the Left Hand Side (LHS), and Right Hand Side (RHS)

elements are identified using the type dependencies. Left/right hand side element is the element placed

in the left/right hand side of a verb or preposition conjunction. In the ninth step, it is determined that

the splicer is active or passive. If the splicer is an active verb, the splicer has an active voice. However,

if the splicer is a passive verb, the splicer has a passive voice.

4.3. Semantic analysis

The semantic analysis phase contains seven steps. In the first step, the role of characteristic fact type is

specified. In addition, this step specifies the state of each binary fact type. In the second step,

determiners, negation elements, and binary logical elements are extracted from each of the single-

sentences. In the third step, SBVR rules are generated using the mapping rules. In this step, business

rules are generated for the semantic formulations. In the fourth step, the business vocabulary and rules

are translated to OCL sub-expressions using the mapping rules. In the fifth step, the sub-expressions

are integrated. The sixth step determines which class of the UML Class model is being constrained.

This Class is specified as the constrained element. In the seventh step, the final OCL specification is

generated and revised.

6

1234567890 ‘’“”

10th International Conference on Computer and Electrical Engineering IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 933 (2018) 012008 doi :10.1088/1742-6596/933/1/012008

Table 1. Mapping rules

Rule English element SBVR element OCL element

Rule1 Necessity verb Necessity Constraint

Rule2 IsPropertyOfSign Atomic formulation

AttributeCallExp

NavigationCallExp

Collect

Rule3 Possessive determiner Atomic formulation

AttributeCallExp

NavigationCallExp

Collect

Rule4 Prefix element Atomic formulation
AttributeCallExp

Select

Rule5 Prefix element Equivalence
EqualBool

Select

Rule6 Transitive verb/ Copular verb Atomic formulation
AttributeCallExp

Collect

Rule7 Preposition conjunction Atomic formulation
AttributeCallExp

Collect

Rule8
Transitive verb/ Copular verb/ Preposition

conjunction

Binary atomic

formulation

Includes

NavigationCallExp

Collect

Rule9 Numeral Number NumericLiteralExp

Rule10 Noun (mapped to enumElement/enumName) Objectification Variable

Rule11 Noun (mapped to attribute/end) Atomic Formulation
AttributeCallExp

NavigationCallExp

Rule12 Noun (mapped to Class) Object type

UMLElement(Class)

OclIsTypeOf

Select

Size

Rule13 SignIntegratedWithAnd Quantity SignOpr

Rule14 SumOf Quantity Addition

Rule15 SubtractionOf Quantity Subtraction

Rule16 MultiplicationOf Quantity Multiply

Rule17 DivisionOf Quantity Division

Rule18 Sign Quantity RelationalOpr

Rule19 IsLessThan Quantity Less

Rule20 IsMoreThan Quantity More

Rule21 IsAtLeast Quantity AtLeast

Rule22 IsAtMost Quantity AtMost

Rule23 Str Text StringLiteralExp

Rule24 Existential quantifier (conditional) Existential notEmpty

Rule25 Universal quantifier Universal ForAll

Rule26 IsOrEqualOrEquals

Quantity EqualNum

Equivalence EqualBool

Equivalence Select

Quantity Select

Rule27 AtMostN AtMostN AtMost

Rule28 AtMostOne AtMostOne AtMost

Rule29 AtLeastN AtLeastN AtLeast

Rule30 AtLeastOne Existential notEmpty

Rule31 MoreThanN Quantity More

Rule32 LessThanN Quantity Less

Rule33 ExactlyN ExactlyN EqualNum

Rule34 ExactlyOne ExactlyOne EqualNum

7

1234567890 ‘’“”

10th International Conference on Computer and Electrical Engineering IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 933 (2018) 012008 doi :10.1088/1742-6596/933/1/012008

Rule35 Valued range quantifier Numeric range And

Rule36 Negation element Logical negation

Not

IsEmpty

Excludes

Rule37 Binary logical operation Binary logical Operation LogicalOpr

Rule38 And Conjunction And

Rule39 Or Disjunction Or

Rule40 Conditional Implication Implies

5. Accuracy Benchmark Results

There are twenty six general test cases, which are used for benchmark of OCL generator tools. These

twenty six benchmark test cases extracted from the Royal and Loyal case study have been applied on

the three existing tools. The test cases and outputs of the three tools are presented below:

Constraint 1

English: Every customer who enters a loyalty program must be of legal age.

COPACABANA:context Customer inv legalAge: AttributeValueRestriction (Customer,age,>=,18)

NL2OCLviaSBVR: context Customer inv self.age >=

En2OCL: context loyaltyprogram inv: self.participants

In Constraint 1, the output of COPACABANA is complete and the outputs of NL2OCLviaSBVR

and En2OCL are incomplete.

Constraint 2

English: Male customers must be approached using the title “Mr”.

COPACABANA:-

NL2OCLviaSBVR: context Customer inv self.isMale implies self.title= Mr.

En2OCL: context customer inv: self->select(s|s.gender::male).title->exists(e|e="mr")

In Constraint 2, the output of COPACABANA is missed and the outputs of NL2OCLviaSBVR and

En2OCL are complete.

Constraint 3

English: The number of valid cards for every customer must be equal to the number of programs in

which the customer participates.

COPACABANA:context Customer inv maleTitle: IfThenElse ({ AttributeValueRestriction

(Customer,isMale,=,true)}, AttributeValueRestriction (Customer,title ,=, ’Mr.’),)

NL2OCLviaSBVR: context Customer inv self.cards->select(valid=true)->size() =self.programs -

>size()

En2OCL: context customer inv:self->forAll(a|a.programs->size()=a.cards-> select(s|s.valid)->size())

In Constraint 3, the outputs of COPACABANA, NL2OCLviaSBVR, and En2OCL are complete.

Constraint 4

English: The validFrom date of customer cards should be earlier than goodThru.

COPACABANA:-

NL2OCLviaSBVR: context CustomerCard inv self.validFrom <self.goodThru

En2OCL: context customercard inv: self.validFrom <self.goodThru

In Constraint 4, the output of COPACABANA is missed and the outputs of NL2OCLviaSBVR and

En2OCL are complete.

Constraint 5

English: The birthdate of the owner of a customer card must not be in the future.

COPACABANA:-

8

1234567890 ‘’“”

10th International Conference on Computer and Electrical Engineering IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 933 (2018) 012008 doi :10.1088/1742-6596/933/1/012008

NL2OCLviaSBVR: context CustomerCard inv self.owner.dateOfBirth <> future

En2OCL: context customercard inv: self.owner.dateOfBirth.isBefore(Date::now)

In Constraint 5, the output of COPACABANA is missed and the outputs of NL2OCLviaSBVR and

En2OCL are incomplete.

Constraint 6

English: The owner of a customer card must participate in at least one loyalty program.

COPACABANA:context CustomerCard inv programParticipation: MultiplicityRestriction

(CustomerCard,owner.programs,>,0)

NL2OCLviaSBVR: context CustomerCard inv self.owner.programs -> Size()>= 1

En2OCL: context customercard inv: self.owner.programs->notEmpty()

In Constraint 6, the outputs of COPACABANA, NL2OCLviaSBVR, and En2OCL are complete.

Constraint 7

English: There must be at least one transaction for a customer card with at least 100 points.

COPACABANA:context CustomerCard inv transactionPoints: Exists (transactions,

{AttributeValueRestriction (CustomerCard,points,>,100)}

NL2OCLviaSBVR: context CustomerCard inv self.transaction->select(point >= 100)-> Size()>= 1

En2OCL: context customercard inv: self.transactions->exists(e|e.points>=100)

In Constraint 7, the outputs of COPACABANA, NL2OCLviaSBVR, and En2OCL are complete.

Constraint 8

English: The service level of each membership must be a service level known to the loyalty program.

COPACABANA:context Membership inv knownServiceLevel: ObjectInCollection (Membership,

programs.levels, currentLevel)

NL2OCLviaSBVR: context Membership inv self.currentLevel ->includes (self.program.levels)

En2OCL: context loyaltyprogram inv: self.memberships->forAll (a|a.currentLevel =self.currentLevel)

In Constraint 8, the outputs of COPACABANA, NL2OCLviaSBVR, and En2OCL are complete.

Constraint 9

English: The participants of a membership must have the correct card belonging to this membership.

COPACABANA:context Membership inv correctCard: bjectInCollection(Membership,

participants .cards, card)

NL2OCLviaSBVR: Context Membership inv self.participants.cards ->includes(self.card)

En2OCL: context membership inv: self.participants.cards ->includes(self.card)

In Constraint 9, the outputs of COPACABANA, NL2OCLviaSBVR, and En2OCL are complete.

Constraint 10

English: The color of a membership’s card must match the service level of the membership.

COPACABANA:context Membership inv levelAndColor1: IfThenElse({AttributeValueRestriction

(Membership, currentLevel.name,=,’Silver’)}, AttributeValueRestriction

(Membership,card.color,=,Color::silver),) inv levelAndColor2:

IfThenElse({AttributeValueRestriction (Membership,

currentLevel.name,=,’Gold’)}, AttributeValueRestriction

(Membership,card.color,=,Color::gold),)

NL2OCLviaSBVR: context Membership inv self.card.color = self.currentLevel.name

En2OCL: context membership inv: self.currentlevel.name = “silver” implies card.cardcolor =

color::silver and self.currentLevel.name = “gold” implies card.cardcolor = color::gold

In Constraint 10, the outputs of COPACABANA, NL2OCLviaSBVR, and En2OCL are complete.

9

1234567890 ‘’“”

10th International Conference on Computer and Electrical Engineering IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 933 (2018) 012008 doi :10.1088/1742-6596/933/1/012008

Constraint 11

English: Memberships must not have associated accounts.

COPACABANA:context Membership inv noAccount: MultiplicityRestriction

(Membership,account,=,0)

NL2OCLviaSBVR: context Membership inv self.account -> isEmpty()

En2OCL: context Membership inv self.account -> isEmpty()

In Constraint 11, the outputs of COPACABANA, NL2OCLviaSBVR, and En2OCL are complete.

Constraint 12

English: Loyalty programs must offer at least one service to their customers.

COPACABANA:context LoyaltyProgram inv minServices: MultiplicityRestriction

(LoyaltyProgram,partners.deliveredServices,>=,1)

NL2OCLviaSBVR: context LoyaltyProgram inv self.partners.deliveredServices->size() >= 1

En2OCL: context loyaltyprogram inv: self.partners.deliveredservices->notEmpty()

In Constraint 12, the outputs of COPACABANA, NL2OCLviaSBVR, and En2OCL are complete.

Constraint 13

English: If none of the services offered in a loyalty program credits or debits the loyalty accounts, then

these instances are useless and should not be present.

COPACABANA:-

NL2OCLviaSBVR: context LoyaltyProgram inv

En2OCL: -

In Constraint 13, the outputs of COPACABANA and En2OCL are missed and the output of

NL2OCLviaSBVR is incomplete

Constraint 14

English: The name of the first level must be "Silver".

COPACABANA:-

NL2OCLviaSBVR: context LoyaltyProgram invself.levels->first().name = Silver

En2OCL: context loyaltyprogram inv: self.levels->first ().name = “silver”

In Constraint 14, the output of COPACABANA is missed and the outputs of NL2OCLviaSBVR

and En2OCL are complete

Constraint 15

English: There must exist at least one service level with the “basic” name.

COPACABANA:context LoyaltyProgram inv basicLevel: Exists(levels ,{ AttributeValueRestriction

(LoyaltyProgram,name,=,’basic’)})

NL2OCLviaSBVR: context ServiceLevel inv self.name = basic->exists(()

En2OCL: context servicelevel inv: self->exists(e|e.name->exists(e|e="basic"))

In Constraint 15, the outputs of COPACABANA and En2OCL are complete and the output of

NL2OCLviaSBVR is incomplete

Constraint 16

English: The number of participants in a loyalty program must be less than 10,000.

COPACABANA:context LoyaltyProgram inv maxParticipants: MultiplicityRestriction

(LoyaltyProgram,participants,<,10000)

NL2OCLviaSBVR: context LoyaltyProgram inv: self.participants->size()<10000

En2OCL: context loyaltyprogram inv: self.participants->size()<10000

In Constraint 16, the outputs of COPACABANA, NL2OCLviaSBVR, and En2OCL are complete.

10

1234567890 ‘’“”

10th International Conference on Computer and Electrical Engineering IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 933 (2018) 012008 doi :10.1088/1742-6596/933/1/012008

Constraint 17

English: The number of the loyalty account must be unique within a loyalty program.

COPACABANA:-

NL2OCLviaSBVR: context LoyaltyProgram inv self.Membership.account->isUnique(acc|acc.numbers)

En2OCL: context loyaltyprogram inv: self.membership.account->size()=1

In Constraint 17, the output of COPACABANA is missed and the outputs of NL2OCLviaSBVR

and En2OCL are complete.

Constraint 18

English: The names of all customers of a loyalty program must be different.

COPACABANA:context LoyaltyProgram inv uniqueNames:

UniqueSetIdentifier(LoyaltyProgram,participants,name)

NL2OCLviaSBVR: context LoyaltyProgram inv self.participants.name-

>forAll(c1,c2|c1.name<>c2.name)

En2OCL: context loyaltyprogram inv: self.participants.name->forAll(c1,c2|c1.name<>c2.name)

In Constraint 18, the outputs of COPACABANA, NL2OCLviaSBVR, and En2OCL are complete.

Constraint 19

English: The maximum age of participants in loyalty programs is 70.

COPACABANA:context LoyaltyProgram inv maxAge: ForAll(participants,

{AttributeValueRestriction (LoyaltyProgram,age,<=,70)})

NL2OCLviaSBVR: context LoyaltyProgram inv: self.participants -> forAll(age<= 70)

En2OCL: context loyaltyprogram inv: self.participants.age<70

In Constraint 19, the outputs of COPACABANA, NL2OCLviaSBVR, and En2OCL are complete.

Constraint 20

English: There may be only one loyalty account that has a number lower than 10,000.

COPACABANA:-

NL2OCLviaSBVR: context LoyaltyProgram inv self.Membership.account->one(number < 10,000)

En2OCL: context loyaltyaccount inv: self->one(o|o.number < 10000)

In Constraint 20, the output of COPACABANA is missed and the outputs of NL2OCLviaSBVR

and En2OCL are complete.

Constraint 21

English: The attribute numberOfCustomers of class programPartner must be equal to the number of

customers who participate in one or more loyalty programs offered by this programPartner.

COPACABANA:context ProgramPartner inv nrOfParticipants: MultiplicityRestriction

(ProgramPartner,programs.participants,=,numberOfCustomers)

NL2OCLviaSBVR: context ProgramPartner inv self.numberOfCustomers= programs.participants-

>asSet()->size()

En2OCL: context programpartner inv: self.numberofcustomers= self.programs.participants->size()

In Constraint 21, the outputs of COPACABANA, NL2OCLviaSBVR, and En2OCL are complete.

Constraint 22

English: A maximum of 10,000 pointsEarned may be earned using services of one partner.

COPACABANA:-

NL2OCLviaSBVR: context ProgramPartner inv self.deliveredServices. pointsEarned<=10,000

En2OCL: context partner inv: self.deliveredservices.pointsEarned <=10000

11

1234567890 ‘’“”

10th International Conference on Computer and Electrical Engineering IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 933 (2018) 012008 doi :10.1088/1742-6596/933/1/012008

In Constraint 22, the output of COPACABANA is missed and the outputs of NL2OCLviaSBVR

and En2OCL are complete.

Constraint 23

English: All cards that generate transactions on the loyalty account must have the same owner.

COPACABANA:context LoyaltyAccount inv oneOwner: MultiplicityRestriction

(LoyaltyAccount,transactions.card.owner,=,1)

NL2OCLviaSBVR: context LoyaltyAccount inv self.transactions.cards.owner->asSet()->size() = 1

En2OCL: context loyaltyaccount inv: self.transactions.cards->forAll(a1,a2|a1.owner=a2.owner)

In Constraint 23, the outputs of COPACABANA, NL2OCLviaSBVR, and En2OCL are complete.

Constraint 24

English: If the points in a loyalty account is greater than zero, there exists a transaction with more

than zero points.

COPACABANA:context LoyaltyAccountinv positivePoints: IfThenElse({ AttributeValueRestriction

(points,>,0)}, Exists(transactions,{ AttributeValueRestriction

(LoyaltyAccount,points,>,0)}),)

NL2OCLviaSBVR: context LoyaltyAccount inv if (self.points > 0) then transaction -> exists(t|

t.points>0) endif

En2OCL: context loyaltyaccount inv: self.points>0 implies self.transaction->exists(e|e.points>0)

In Constraint 24, the outputs of COPACABANA, NL2OCLviaSBVR, and En2OCL are complete.

Constraint 25

English: There must be one transaction with exactly 500 points.

COPACABANA:context LoyaltyAccount inv 500points: Exists(LoyaltyAccount,

transaction.points,{ LiteralOcl (−,”self = 500”)})

NL2OCLviaSBVR: context Transaction inv self.transaction->select(point = 500)->Size()=1

En2OCL: context transaction inv: self->one(o|o.points=500)

In Constraint 25, the outputs of COPACABANA, NL2OCLviaSBVR, and En2OCL are complete.

Constraint 26

English: The available services for a service level must be offered by a partner of the loyalty program

to which the service level belongs.

COPACABANA:context ProgramPartner inv servicePartner: ObjectInCollection

(ProgramPartner,delivered Services.level .program.partners,Sequence{})

NL2OCLviaSBVR: context ServiceLevel inv self.program.partners->

includesAll(self.availableServices.partner)

En2OCL: context servicelevel inv: self.program.partners->includesAll (self.availableservices.partner)

In Constraint 26, the outputs of COPACABANA, NL2OCLviaSBVR, and En2OCL are complete.

COPACABANA, NL2OCLviaSBVR, and En2OCL have resulted in 18, 22, and 23 correct outputs,

respectively. Thus, En2OCL had 19.23% accuracy improvement in comparison with COPACABANA

and 3.84% accuracy improvement in comparison with NL2OCLviaSBVR. Figure 4 exhibits the

accuracy of the tools.

12

1234567890 ‘’“”

10th International Conference on Computer and Electrical Engineering IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 933 (2018) 012008 doi :10.1088/1742-6596/933/1/012008

Figure 4. Accuracy benchmark results

6. Conclusion

The En2OCL approach proposed in this study is a transformation model to transform system

constrains formed in English sentences into OCL specifications. The proposed approach overcomes

English ambiguities using SBVR as an intermediate representation between English sentences and

OCL specifications. En2OCL includes 21 major steps for generating an OCL specification from an

English sentence. the proposed approach called En2OCL has been compared with the existing works

(COPACABANA and NL2OCLviaSBVR). The accuracy comparison shows that the accuracy of

En2OCL is 19.23% more than COPACABANA and 3.84% more than NL2OCLviaSBVR.

7. Reference

[1] OMG. (2013). Semantics of Business Vocabulary and Business Rules (SBVR), v1.2.

[2] Warmer, J., & Kleppe, A. (1999). Object Constraint Language: Precise Modeling with UML.

Addison Wesley.

[3] Wahler, M. (2008). Using Patterns to Develop Consistent Design Constraints. ETH Zurich,

Switzerland.

[4] Wilke, C., Thiele, M., & Wende, C. (2010). Extending Variability for OCL Interpretation. 13th

International Conference on Model Driven Engineering Languages and Systems (MODELS 2010).

October 3-8. Oslo, Norway.

[5] Bajwa, I. S., M. Lee, et al. (2012). "Translating natural language constraints to OCL." King Saud

University–Computer and Information Sciences.

[6] Warmer, J. and A. Kleppe (2003). The Object Constraint Language: Getting Your Models Ready

for MDA, Addison Wesley.

[7] Sharma, M., & Vishwakarma, R. G. Formalization & data abstraction during use case modeling in

object oriented analysis & design. 3th International Conference on Computer Science, Engineering

& Applications (ICCSEA 2013). May 24-26. Delhi, India: 67–75.

69.23

84.62
88.46

0

10

20

30

40

50

60

70

80

90

100

Accuracy

COPACABANA NL2OCLviaSBVR En2OCL

OCL generation tools

