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ABSTRACT

In locations where a buried gas pipeline (PL) shares the same right-of-way with a 
high voltage overhead transmission line (TL), a relatively higher voltage than normally 
allowed may be induced in the pipeline due to the alternating current (AC) total 
interference between the TL and PL. The increase may damage the pipeline coating, 
connected pipeline equipment, as well as may pose a safety threat to pipeline service 
personnel. Key questions to be answered are how to evaluate, and minimise the AC total 
interference made up of inductive and conductive components and their related effects in 
the event of a power system fault occurring in the TL. This research investigated the 
pipeline induced voltage behaviour while simultaneously considering the inductive and 
conductive interferences. Different observation point profiles were considered to obtain 
various types of induced voltages such as metal ground potential rise (GPR), touch 
voltage, coating GPR, coating stress and earth surface GPR. A performance comparison 
between two computational methods, namely electromagnetic field (solutions to 
Maxwell’s equations) and circuit-based (solutions to circuit equivalents of network 
configuration) approaches were carried out. The TL-PL AC total interference behaviour 
under various conditions were studied. These included the influence of complex soil 
structure, soil resistivity, defective pipeline coating, and several other critical parameters. 
A 30-km long, 115 kV TL and a 10 km long, 24-in PL were used. Results showed that the 
circuit-based approach performed as good as the field approach (within 5% error). The 
close agreement between the two approaches shows that the simulation and modelling 
works carried out in this work are valid. The TL-PL inductive interference increased with 
the fault current, but decreased with the TL-PL separation distance, the surrounding soil 
resistivity, and the tower footing resistance. Nevertheless, the conductive interference had 
to be considered when computing the pipeline induced voltages especially when the soil 
resistivity was low (< 10  Q-m), the fault current was high (>10  kA), the tower footing 
resistance was low (< 5 £2), and the separation distance between the TL and PL was small 
(< 20 m). In addition, the effect of pipeline coating condition on the induced voltages was 
dependent on pipeline coating resistivity as well as the soil resistivity. High touch voltage 
poses threat to human and equipment safety, while high coating stress may accelerate 
pipeline coating deterioration and corrosion. The results also showed that the variation of 
the induced voltages in the pipeline buried in complex soil structure depended mainly on 
the thickness of the first horizontal layer, or the width of the middle vertical layer, or both. 
The complex soil structure can be replaced with a three-vertical-layer equivalent structure 
when the width of the middle layer is above 16 km and the thickness of the first horizontal 
layer is above 100 m. Adequate soil resistivity measurements must therefore be performed 
to provide the complete soil resistivity data for the complex as well as non-uniform soil 
models.



ABSTRAK

Lokasi di mana saluran paip (PL) gas berkongsi laluan yang sama dengan talian 
penghantaran atas voltan tinggi (TL), voltan melebihi tahap dibenarkan boleh diaruh 
dalam PL disebabkan jumlah gangguan arus ulang-alik (AC) antara TL dan PL. Kenaikan 
voltan boleh menyebabkan kerosakan salutan paip, peralatan paip, serta boleh 
menimbulkan ancaman keselamatan kepada kakitangan perkhidmatan saluran paip. 
Persoalan utama yang perlu dijawab adalah bagaimana untuk menilai dan mengurangkan 
jumlah gangguan AC (terdiri daripada komponen induktif dan konduktif) dan kesan yang 
berkaitan sekiranya berlaku kerosakan sistem kuasa pada TL. Kajian ini bertujuan untuk 
mengkaji tingkah laku voltan paip yang teraruh yang menyebkan kedua-dua gangguan 
induktif dan konduktif secara serentak. Profil titik pemerhatian yang berbeza digunakan 
bagi mendapatkan pelbagai jenis voltan teraruh seperti kenaikan potensi bumi (GPR) 
logam, voltan sentuh, GPR salutan, tekanan salutan dan GPR permukaan bumi. 
Perbandingan prestasi antara dua kaedah pengiraan, iaitu kaedah medan elektromagnet 
(penyelesaian kepada persamaan Maxwell) dan kaedah berasaskan litar (penyelesaian 
kepada litar setara konfigurasi rangkaian) telah dijalankan. Tingkah laku jumlah gangguan 
AC TL-PL dalam pelbagai keadaan telah dikaji. Ini termasuk pengaruh struktur kompleks 
tanah, kerintangan tanah, salutan paip yang rosak, dan beberapa parameter kritikal lain. 
Satu TL 115 kV sepanjang 30 km dan satu PL 24 inci sepanjang 10 km digunakan. 
Keputusan menunjukkan bahawa pendekatan berasaskan litar memberi prestasi yang sama 
dengan pendekatan medan (dalam ralat 5%). Persamaan antara kedua-dua pendekatan 
menunjukkan simulasi dan model yang dijalankan dalam kerja ini adalah sahih. Gangguan 
induktif TL-PL meningkat dengan arus kerosakan, tetapi berkurangan dengan jarak 
pemisahan TL-PL, kerintangan tanah, dan dengan rintangan tapak menara. Walau 
bagaimanapun, gangguan konduktif juga penting terutama apabila kerintangan tanah 
adalah rendah (<10 fi-m), arus kerosakan yang tinggi (> 10 kA), rintangan tapak menara 
yang rendah (< 5 fi-m), dan jarak pemisahan TL-PL yang kecil (< 20 m). Di samping itu, 
kesan keadaan salutan paip pada voltan teraruh adalah bergantung kepada kerintangan 
salutan paip dan juga kerintangan tanah.. Voltan sentuh yang tinggi menimbulkan 
ancaman kepada keselamatan manusia dan peralatan, manakala tekanan salutan yang 
tinggi boleh mempercepatkan kemerosotan dan hakisan salutan paip. Keputusan juga 
menunjukkan bahawa perubahan voltan teraruh pada paip yang ditanam dalam struktur 
tanah kompleks bergantung terutamanya kepada ketebalan lapisan mendatar yang pertama, 
atau lebar lapisan menegak tengah, atau kedua-duanya. Struktur tanah yang kompleks 
boleh digantikan dengan struktur setara tiga-lapisan-menegak apabila lebar lapisan tengah 
melebihi 16 km dan ketebalan lapisan mendatar yang pertama melebihi 100 m. Ukuran 
kerintangan tanah yang mencukupi mesti dilakukan untuk memberikan data kerintangan 
tanah yang lengkap untuk model tanah kompleks dan tanah tak seragam.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Overhead transmission lines and gas pipelines are now commonly being 

installed together and sharing the same corridor, also known as "right-of-way" 

(ROW). Installing gas pipelines (PLs) in parallel with overhead transmission lines 

(TLs) may cause undesirable electromagnetic interference between the TL and PL. 

The electromagnetic interference may lead to the consequence of unsafe level of 

induced voltages within and around the pipeline. An induced voltage higher than the 

safe level may be dangerous to human or can be harmful to equipment attached to the 

pipeline such as those used for cathodic protection, various sensors, and control 

valves [1, 2]. The consequence of interference between the TL and the PL is now 

increasing in significance due to the environmental concerns which have been 

enforced on various companies. These are mainly aimed to reduce the influence 

posed by the interference on wildlife, nature and mankind [2, 3].

When a high current flows in the TL system as well as in the TL towers due 

to a power system fault, switching operations, or lightning, high voltages may be 

induced along the PL system. These induced voltages are as a result of some form of 

energy transfer from the TL system to the PL system through several paths between 

the two systems. The paths which exist as a result of various respective couplings in 

the commonly shared ROW are known as conductive, inductive, and capacitive paths 

[4]. The instantaneous or simultaneous resultant effect of the conductive, inductive,
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and capacitive couplings is commonly referred to as "the AC total interference" [5

7]. This work concerns the study of the AC total interference between an overhead 

high voltage transmission line (TL) and a buried gas pipeline (PL).

1.2 Research Background

As mentioned above, the overall electromagnetic interference between the 

transmission line and the gas pipeline consists of three mechanisms or components, 

namely, the conductive, inductive and capacitive interferences, which are in turn due 

to their respective couplings between the TL and PL. The resultant interference is 

also normally known as the AC total interference [8]. The conductive interference 

occurs when a fault current flows from the TL to the ground, during which some of 

the fault current may flow along the PL, and hence causes a potential rise in the 

pipeline. The inductive coupling occurs when the same fault current causes a 

magnetic coupling (instead of conductive coupling) between the TL system and the 

PL system and hence giving a potential rise in the pipe line [9, 10]. On the other 

hand, the capacitive coupling occurs due to any electric field interaction between the 

transmission line system and the gas pipeline system. However, this capacitive 

coupling can be neglected when dealing with a buried pipeline [11]. Apart from the 

fault current and its related parameters, the resultant potential rise or induced voltage 

in the pipeline due to the AC total interference is also dependent on several other 

influencing factors or other key parameters, such the surrounding soil condition 

within which the pipeline is buried. Typical magnitudes of the induced voltage in the 

pipeline due the TL-PL AC total interference are between several volts and several 

thousands of volts [12]. It is important to maintain the value of the induced voltage to 

be less than the values suggested by many standards and documents [13].



3

Two independent approaches are available to carry out an AC total 

interference study such that in the TL-PL interaction, which are the circuit-based 

approach and the electromagnetic field approach, or just field approach. In 2001, 

Dawalibi [14] studied the limitation of the circuit-based approach compared to the 

field approach when computing the inductive component of the TL-PL AC total 

interference. Similar to Dawalibi, many other studies had also considered only the 

inductive component and neglected the conductive component of the AC total 

interference [11, 15, 16]. It is to be noted that the conductive component of the AC 

total interference can only be neglected when the power system fault occurs in 

locations outside the commonly shared ROW, or remotely away from the pipeline 

system.

Within last several decades, the AC total interference related studies were 

extended to include several effects and major concerns. Many studies were carried 

out to determine the effects of several key parameters, such as soil resistivity, soil 

structure, fault current, and TL tower footing resistance, on the TL-PL inductive 

interference [11, 17-20]. Several methods to correctly compute the effects of those 

parameters on the TL-PL inductive interference were also proposed. The finite- 

element method (FEM) (field approach) was presented by several authors [15, 21

23]. A hybrid method consisting of both the FEM (field approach) and the circuit 

theory computation (circuit-based approach) todetermine the TL-PL inductive 

interference was also proposed [11, 17, 24]. However, these methods neglect the 

effects caused by the discontinuities at the TL-PL ends, or known as the end effects, 

and merely assumes the TL-PL arrangement as infinite in length. Clearly, this 

assumption is acceptable and applicable when computing the TL-PL inductive 

interference, but not the AC total interference. In short, most of the mentioned 

methods used when studying the effects of the key parameters on the TL-PL 

interference consider only the inductive component and neglect the conductive 

component, instead of the desired AC total interference.

An important aspect of the TL-PL interference study is on the effects of 

surrounding soil within which the pipeline is buried. The effect of soil structure on 

the conductive and inductive interferences is described by many previously
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published work. Despite of the existence of many published works, such as those 

described in [10], the effects of soil structure are still being studied. The importance 

of considering an accurate soil structure, when computing the TL-PL interference 

level, and when designing a mitigation system against high induced voltage for the 

pipeline, is described in [25]. Simulation work and relevant mathematical methods to 

determine the induced voltage on a pipeline were proposed with an assumption that 

the soil is uniform or homogeneous [8, 26]. Research has also shown that the soil 

structure and resistivity apparently have more significant impact on the conductive 

interference rather than on the inductive interference. Unlike the inductive 

interference (which can be correctly determined using just a uniform soil model), the 

TL-PL conductive interference can only be correctly computed if the soil structure is 

accurately modelled. Because of this, an accurate soil model (such as that with multi

layer structure) together with adequate soil resistivity data, is required when 

determining the TL-PL AC total interference along the ROW [11, 27].

When discussing about soil structure, soil resistivity plays the key 

characterizing factor. In a uniform soil structure, the soil resistivity is assumed to be 

constant [28]. Previous research agree on one fact, that is, the soil resistivity has a 

direct influence on the induced voltage in the pipeline. In particular, the induced 

voltage increases with the resistivity of the soil. It is known that in reality the soil is 

not uniform. In fact, the soil resistivity varies depending on the types of soil and 

additives present, as well as on the season of the year. Hence, the soil should 

actually be modelled as a non-uniform soil, for example, as a multi-layer soil, instead 

of a uniform soil. Each layer of the non-uniform soil model has its own resistivity. 

The influence of non-uniform soil on the inductive interference in a specific two 

conductor system was reported by Labridis [29]. The study observed the steady state 

interference between an AC electric traction line and nearby buried 

telecommunication cables. A similar study involving TL fault current and PL was 

carried out by Christoforidis [23], in which he reported the TL-PL inductive 

interference when the PL is buried in a two-layer soil. A comparison was also made 

between the induced voltages obtained with those obtained from a uniform soil 

equivalent [23]. In other researches, it was found that a non-homogeneous or non

file:///E:/Dropbox/PG%20Data/Ali%20Elgayar/Chapter%201,2,3,4,%20and%205/Chapter%202.docx%23_ENREF_10


uniform soil showed a significant effect on the behaviour of the inductive coupling or 

interference [30].

As previously mentioned, apart from the soil resistivity and soil structure, 

several other parameters may affect the overall behaviour of the AC total 

interference. One other key parameter is the pipeline coating and its condition. The 

pipeline lines are usually covered with an insulating coating layer to protect it from 

corrosion. Extreme stress or the presence of high voltages across the pipeline coating 

layer can result in its damage. The effects of coating defects and corrosion process in 

the pipeline are illustrated in [31, 32]. A pipeline buried in a homogenous soil having 

low resistivity is generally less vulnerable to corrosion and its subsequent damage 

compared to that buried in a homogenous soil having high resistivity [33]. The 

pipeline coating and its condition can potentially be a very significant factor in 

affecting the AC total interference. Nevertheless, majority of previous work assumed 

the pipeline coating resistance as either having a constant value or having a value 

similar to the perfect, or as new, coating [15, 34, 35]. If real conditions are to be 

taken into account, especially for old pipelines, the pipeline coating resistance should 

not be assumed as constant when carrying out the modelling work [15, 34, 35].

5

1.3 Research Problem Statement

In areas where the overhead high voltage transmission lines share the same 

corridor or right-of-way with gas pipelines, there exists several key issues. One of the 

key issues is how to minimise the interference and its related effects of a power system 

fault occurring in the TL on the nearby gas pipelines and their relevant infrastructures. 

The potential rise due to the interference has the capability to damage the pipeline 

coating and other related equipment. The induced voltage may also pose a threat to 

relevant pipeline service personnel. Therefore, it is important to determine the 

magnitude of the induced voltage and maintain the value to be less than the limit, above 

which it may jeopardize human safety, as suggested by many standards. The induced 

voltage is very much related to the study, analyses, and understanding of the



behaviour of the TL-PL AC total interference. Many such studies were previously 

carried out to determine the induced voltage. However, most of those studies are 

limited to understanding only the inductive behaviour of the AC total interference 

[17, 35, 36]. Even though the effects of the conductive component can be neglected 

when the fault current occurred out of the parallel exposure lines or when the 

separation distance between the PL and TL is large, this is not true in the case of 

short PL-TL separation distance. It is therefore desired to determine the induced 

voltage in a buried pipeline due to simultaneous inductive and conductive 

interferences. Furthermore, the effects of key parameters, such as the tower 

footing resistance and the TL-PL separation distance, on the AC total interference 

behaviour have also not been widely reported.

When carrying out a study on the pipeline induced voltage, it is necessary to 

conduct a thorough study on the types of induced voltage that may arise, and to 

determine which types cause the most severe effect to the pipeline system and pipeline 

operators. In a simulation study, several observation profiles along the pipeline 

conducting path and its nearby regions, are usually selected for further analyses. Most 

previous studies concentrate on only one type of induced voltage, namely the pipeline 

metal ground potential rise, or metal GPR, which is measured using an observation 

profile within the conducting layer of the pipe [9, 10, 17, 20]. The behaviour of 

other types of induced voltages is barely studied. In particular, minimal data exists on 

the behaviour of the ground GPR (defined as the potential rise on the ground surface), 

the pipeline coating ground potential rise, or coating GPR (defined as the GPR on the 

outer surface of the coating layer), the coating stress (defined as the vector 

difference between the metal GPR and the coating GPR), and the touch voltage 

(defined as the vector difference between the metal GPR and the ground GPR).

The integrity of a gas pipeline is a critical issue in gas industries. Pipeline 

coating plays a key role in maintaining the pipeline integrity. The pipeline coating and 

hence its resistivity go through degradation process during its lifetime. Many previous 

works have reported the effects of pipeline coating resistivity on the TL-PL inductive 

interference [15, 34]. However, the effects of the variation in the pipeline coating, 

instead of the assumed ideal and constant coating in most studies, on the AC total

6



interference behaviour, especially under varying soil resistivities are yet to be studied. 

Apart from the pipeline coating, the surrounding soil structure and soil resistivity are 

also significant in affecting the TL-PL AC total interference behaviour. 

Many studies examine the effects of soil resistivity on the induced voltage by 

assuming a homogenous soil structure. Studies on the TL-PL AC total interference 

behaviour using a complex soil structure, described as many interwoven horizontal 

and vertical layers, each with their respective resistivities, have yet to be carried out.

This work, aims to address the gaps in the above mentioned issues. 

Specifically, it attempts to determine the influence of complex soil structure on the 

TL-PL AC total interference. In addition, the effects of defective pipeline coating 

under varying soil resistivities, and the effects of several critical parameters on the 

simultaneous behaviour of inductive and conductive interferences would also be 

carried out.
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1.4 Research Objectives

This research aims to study the pipeline induced voltage behaviour in 

different observation profiles while considering both the inductive and conductive 

interferences between an overhead high voltage transmission line and a buried gas 

pipeline. This study also aims to present a performance comparison between two 

different approaches used to compute the induced voltages, namely, the field and 

circuit-based approaches. The performance comparison helps in understanding the 

advantages and limitations of each approach when modelling and investigating the 

PL-TL AC total interference behaviour, especially in relation to the validity and 

accuracy of the results obtained.

The objectives of this study are listed below.
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(i) To carry out a performance comparison between the field approach and the 

circuit-based approach for a TL-PL AC total interference behavioral study.

(ii) To determine the effects of critical parameters, namely, the TL fault current, 

the TL-PL separation distance, the surrounding soil resistivity, and the TL 

tower footing resistance, on the AC total interference behaviour.

(iii) To determine the effects of buried gas pipeline coating layer condition on the 

TL-PL AC total interference behaviour with varying surrounding soil 

resistivities.

(iv) To determine the effects of complex soil structures on the TL-PL AC total 

interference behaviour.

1.5 Research Scopes

The scopes of the work are summarized as follows.

(i) Based on the collected data for TL-PL right-of-way configuration, the study 

are limited to the following parameters. Three phases and single circuit 

overhead transmission lines with 115-kV, single-shield, single electrode 

tower footing grounding, sub-station feeding the TL from each end; gas 

pipelines: 24” diameter, 1-m burial depth, 1-mm thick insulating coating layer 

with 40-MQ resistivity; maximum TL ROW: 30-km length, 50-m width.

(ii) In carrying out the performance comparison between the field approach and 

the circuit-based approach for a TL-PL AC total interference behavioral 

study, the following simulation software are used: SES-CDEGS for the field 

approach, and SES-ROW for the circuit-based approach.



(iii) In carrying out the study on the effects of critical parameters, namely, the TL 

fault current, the TL-PL separation distance, the surrounding soil resistivity, 

and the TL tower footing resistance, on the AC total interference behaviour, 

the following key limiting criteria were used. Maximum fault current: 20 kA; 

soil resistivity: 10 to 1000 Q.m; maximum TL tower footing electrode length: 

20 m.

(iv)The following induced voltages are considered based on different observation 

profiles, which are mostly located within and near the buried pipeline. The 

metal GPR, touch voltage, coating GPR, coating stress, and earth surface 

GPR. Two key induced voltages are the touch voltage and the coating stress.

(v) In carrying out the study on the effects of buried gas pipeline coating layer 

condition on the TL-PL AC total interference behaviour with varying 

surrounding soil resistivities, the following assumptions are made. Good 

pipeline coating resistivity range: 1 MQ to 40 MQ; defected coating: 0 to

1 MQ.

(vi)In carrying out the study on the effects of complex soil structures on the TL- 

PL AC total interference behaviour, the following scopes are defined. 

Maximum number of horizontal and vertical layer: 3; maximum thickness of 

horizontal layers: 10 km; maximum width of vertical layers: 16 km.

9

1.6 Research Contributions

i. Comparison study between field and circuit-based approaches

The relative performance of the circuit-based and the field approaches is yet 

to be determined for the case of AC total interference. The comparison study 

between the field approach and circuit-based approach when computing TL-PL AC
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total interference was successfully carried out using several performance criteria, 

namely, right-of-way (ROW) configurations, TL-PL parallel length (along the 

ROW), TL-PL separation distance (across the ROW), TL fault (single phase to 

ground) current, and fault location. The circuit-based approach was found to be as 

good as the field approach in most cases, except for several specific conditions. 

Subsequent studies of the TL-PL AC total interference could be carried out based on 

this finding and guideline. The close agreement between the two approaches shows 

the simulation and modelling work carried out in this work are valid.

ii. Induced voltages on pipeline due to AC total interference

It is well known that induced voltages on pipeline occur due to the 

electromagnetic interference between the transmission lines and gas pipelines sharing 

the same right-of-way. The study of conductive and inductive coupling, or AC total 

interference, is important for evaluating the induced voltages. However, little data 

are available on induced voltage types and their behaviour with the variation of 

parameters affecting AC total interference. In this work, the influence conductive and 

inductive interference on various types of induced voltages was successfully studied. 

The effects of the fault current, the TL-PL separation distance, the surrounding soil 

resistivity, and the tower footing resistance, were analysed. Different observation 

point profiles were considered to obtain various types of induced voltages such as 

metal GPR, touch voltage, coating GPR, coating stress and earth surface GPR. Two 

key induced voltages are the touch voltage and the coating stress. This study 

accurately modelled, simulated and computed the effects of several parameters on 

the simultaneous conductive and inductive couplings between the TL and the PL in 

the form of AC total interference. The study shows the touch voltage and coating 

stress are mainly influenced by the inductive interference. The TL-PL inductive 

interference increases with the fault current, but decreases with the TL-PL separation 

distance, the surrounding soil resistivity, and the tower footing resistance. 

Nevertheless, the conductive interference is also significant especially when the soil 

resistivity is low, the fault current is high, the tower footing resistance is low, and the 

separation distance between the TL and PL is small. It is noted that an excessively
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high touch voltage poses threat to human and equipment safety. Similarly, high 

coating stress may accelerate pipeline coating deterioration and corrosion.

iii. Effects of defective coating on the AC total interference

The pipeline coating and hence its resistivity go through degradation process 

during its lifetime. Many previous works have reported the effects of pipeline coating 

resistivity on the TL-PL inductive interference. However, the effects of pipeline 

coating condition on the AC total interference under varying soil resistivities are yet 

to be studied. This study found that the effect of pipeline coating condition on the 

touch voltage and coating stress is dependent on its coating resistivity as well as on 

the soil resistivity. For a well coated pipeline (with coating resistivity above 1 MQ), 

the touch voltage and coating stress are high (> 1000 V). The touch voltage and 

coating stress are also high (> 1200V) when the pipeline is buried in a low-resistivity 

(< 100 Q.m) soil. The high touch voltage is a risk to human and equipment safety, 

and the high coating stress may lead to coating deterioration and pipeline corrosion. 

It is worth to mention that the induced voltages computed using the circuit-based and 

field approaches give similar results for all types of induced voltages. This shows 

that, for the pipeline coating effect study, any one of the two approaches may be 

used.

iv. The influence of complex soil structures on the induced voltage

When modelling a soil, the complexity of its structure need to be taken into 

consideration because it significantly affects the induced voltages in pipelines due to 

AC total interference. However, the influence of complex soil structure composed of 

interwoven vertical and horizontal layers have not been studied yet. Accurate 

simulation or model to represent the real soil structure is highly desired. This study 

has successfully examined the conditions when a complex soil structure can be 

represented by a vertical equivalent, or even further simplified to a uniform soil 

equivalent. Several key findings can be listed. Firstly, for a complex soil structure 

(anticline and syncline) consisting of three vertical and three horizontal layers
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interwoven between them, the variation of the induced voltages in the pipeline 

depends mainly on the thickness of the first horizontal layer, or the width of the 

middle vertical layer, or both. The complex soil structure can be replaced with an 

equivalent structure known as the three-vertical-layer equivalent when the width of 

the middle layer and the thickness of the first horizontal layer are above certain 

specified values. It is noted that a uniform soil equivalent, instead of the three- 

vertical-layer equivalent, is not possible due to the complexity of this case of soil 

structure. Also, the approximation of three vertical layers is not applicable for 

anticline and syncline structure with small thickness of the first horizontal layer and 

small width of the middle vertical layer. Secondly, a non-uniform (vertically and 

horizontally) soil structure can be replaced with an equivalent uniform soil when the 

thickness of the first layer (for horizontally layered structure) or the width of the 

middle layer (for vertically layered structure) are above certain specified values. For 

thicknesses or widths smaller than the specified values, a non-uniform soil structure 

must be used. Thirdly, to completely model a soil and hence ensure accuracy of the 

measured induced voltages, adequate soil resistivity measurements must be 

performed to provide the complete soil resistivity data for the complex as well as 

non-uniform soil models.

1.7 Thesis Outline

For a complete explanation of the work, this thesis is divided into five 

chapters consisting of thorough details of the study. Chapter 1 provides the research 

background, reasons to carry out this thesis, goals to meet to accomplish this work, 

research objectives, research scopes and research contributions.

Chapter 2 covers a comprehensive review on induced voltages on a metallic 

structure in vicinity of an overhead transmission line. It includes the background of 

the inductive and conductive interferences, thus the requirement to investigate more 

about AC total interference phenomenon and the effects of soil structures and 

defective pipeline coating. Many studies reported on the induced voltages on metallic



structures, such as a gas pipeline, due to the electromagnetic interference with nearby 

overhead transmission lines. However, few researchers have tried to simulate and 

compute the AC total interference, which consists of inductive and conductive 

couplings computed simultaneously at different soil resistivities. Moreover, there is 

a lack of study on the effect of complex soil structure and the effect of pipeline 

coating resistivity. Some published works deliberated on the measurement of the 

induced voltages. However, due to limitation in experimental work, there are more 

reported work on the modelling of transmission line and pipeline right-of-way. The 

different approaches, such as FEM, ATP, and hybrid method, used to model the 

right-of-way, are described in this chapter. In recent research, the circuit-based 

approach and the field approach were introduced to have better observation of results 

and to provide a higher accuracy of simulation results.

Chapter 3 describes the methodology of the research. In this chapter several 

right-of-way models are developed to compare between the field approach and the 

circuit-based approach with respect to the AC total interference. In addition, a 

baseline model was developed and used for the evaluation and analysis of the 

induced voltages. The model considered the coating resistivity, parallel corridor, 

pipeline length, pipeline location, fault current, fault location, and other physical 

parameters such as the conductivity and permittivity of the pipeline. Critical 

parameters such as the soil structure and resistivity, which is important in the 

induced voltage phenomenon, are detailed for modelling. In this chapter, the 

flowchart of the simulation using the field approach and the circuit-based approach is 

detailed.

Chapter 4 discusses on the results, which are obtained from the simulation. At 

the beginning of this chapter, the comparison between the field approach and the 

circuit-based approach under steady-state and fault conditions, is explained. The 

results from the two approaches were obtained for several right-of-way 

configurations. The features and the limitation of each approach was studied to select 

the most suitable approach for each subsequent part of the study. The induced 

voltages along the pipeline are computed for different observation profiles. In 

addition, the effects of important parameters such as the magnitude of fault current,

13



14

tower footing resistance, separation distance between the gas pipeline and TL, soil 

resistivity, and coating resistivity, are discussed. The anticline and syncline soil 

structure are used in this chapter to explain and understand the effects of complex 

soil structure on the induced voltage behaviour.

Chapter 5 presents the major findings of the study. Future work and 

recommendations are also highlighted in this chapter.
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