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A vehicle convoy is a string of inter-connected vehicles moving together for 
mutual support, minimizing traffic congestion, facilitating people safety, ensuring 
string stability and maximizing ride comfort. There exists a trade-off among the 
convoy's performance indices, which is inherent in any existing vehicle convoy. The 
use of unrealistic information flow topology (IFT) in vehicle convoy control, generally 
affects the overall performance of the convoy, due to the undesired changes in dynamic 
parameters (relative position, speed, acceleration and jerk) experienced by the 
following vehicle. This thesis proposes an improved information flow topology for 
vehicle convoy control. The improved topology is of the two-vehicle look-ahead and 
rear-vehicle control that aimed to cut-off the trade-off with a more robust control 
structure, which can handle constraints, wider range of control regions and provide 
acceptable performance simultaneously. The proposed improved topology has been 
designed in three sections. The first section explores the single vehicle's dynamic 
equations describing the derived internal and external disturbances modeled together 
as a unit. In the second section, the vehicle model is then integrated into the control 
strategy of the improved topology in order to improve the performance of the convoy 
to two look-ahead and rear. The changes in parameters of the improved convoy 
topology are compared through simulation with the most widely used conventional 
convoy topologies of one-vehicle look-ahead and that of the most human-driver like 
(the two-vehicle look-ahead) convoy topology. The results showed that the proposed 
convoy control topology has an improved performance with an increase in the inter- 
vehicular spacing by 19.45% and 18.20% reduction in acceleration by 20.28% and 
15.17% reduction in jerk by 25.09% and 6.25% as against the one-look-ahead and two- 
look-ahead respectively. Finally, a model predictive control (MPC) system was 
designed and combined with the improved convoy topology to strictly control the 
following vehicle. The MPC serves the purpose of handling constraints, providing 
smoother and satisfactory responses and providing ride comfort with no trade-off in 
terms of performance or stability. The performance of the proposed MPC based 
improved convoy topology was then investigated via simulation and the results were 
compared with the previously improved convoy topology without MPC. The improved 
convoy topology with MPC provides safer inter-vehicular spacing by 13.86% refined 
the steady speed to maneuvering speed, provided reduction in acceleration by 32.11% 
and a huge achievement was recorded in reduction in jerk by 55.12% as against that 
without MPC. This shows that the MPC based improved convoy control topology gave 
enough spacing for any uncertain application of brake by the two look-ahead or further 
acceleration from the rear-vehicle. Similarly, manoeuvering speed was seen to ensure 
safety ahead and rear, ride comfort was achieved due to the low acceleration and jerk 
of the following vehicle. The controlling vehicle responded to changes, hence good 
handling was achieved.



Konvoi kenderaan adalah rantaian kenderaan yang bergerak bersama melalui 
sokongan mutual antara kendereaan bagi mengurangkan kesesakan lalu lintas, menjaga 
keselamatan orang awam, memastikan kestabilan rantaian dan memaksimumkan 
keselesaan perjalanan. Dalam rantaian konvoi terdapat ‘trade-off pada indeks prestasinya, 
yang diwarisi dari konvoi kenderaan semasa. Penggunaan topologi aliran maklumat (IFT) 
yang tidak realistik dalam kawalan konvoi kenderaan, secara amnya mempengaruhi 
keseluruhan prestasi konvoi dan menyebabkan pergerakan tersebut mengalami perubahan 
yang tidak diingini dalam parameter dinamik (kedudukan relatif, halaju, cepatan dan 
sentakan). Tesis ini mencadangkan penambahbaikan aliran informasi terhadap topologi 
aliran untuk kawalan konvoi kenderaan. Topologi yang ditambahbaik adalah topologi 
melihat dua-kenderaan di hadapan dan satu kenderaan di belakang, yang bertujuan untuk 
menafikan ‘trade-off dengan struktur kawalan yang lebih teguh dan dengan serentak 
mengendali kekangan, memperuntukkan kawasan kawalan yang lebih besar serta 
memberikan prestasi yang boleh diterima. Topologi yang diperbaiki ini telah direka dalam 
tiga bahagian. Bahagian pertama meneroka persamaan dinamik bagi sebuah kenderaan 
yang menunjukkan gangguan dalaman dan luaran yang diterbitkan sebagai satu unit. Pada 
bahagian kedua, model kenderaan ini kemudiannya diintegrasikan ke dalam cadangan 
strategi kawalan topologi yang diperbaiki untuk meningkatkan prestasi konvoi itu supaya 
dapat melihat dua buah kenderaan di hadapan dan sebuah kenderaan di belakang. 
Perubahan dalam parameter topologi konvoi yang diperbaiki ini telah dibandingkan 
melalui simulasi dengan konvoi topologi konvensional melihat sebuah kenderaan di 
hadapan dan konvoi topologi yang paling mirip dengan pemanduan manusia (dua buah 
kenderaan di hadapan). Keputusan menunjukkan bahawa topologi kawalan konvoi yang 
dicadangkan mempunyai prestasi yang lebih baik dengan jarak antara kenderaan dengan 
nilai peratusan sebanyak 19.45% dan 18.20%, pengurangan dalam cepatan sebanyak 
20.28% dan 15.17%, pengurangan terhadap sentakan sebanyak 25.09% dan 6.25% untuk 
topologi melihat masing-masing sebuah kenderaan di hadapan dan dua buah kenderaan di 
hadapan. Akhirnya, satu model sistem kawalan ramalan (MPC) telah direka dan 
digabungkan dengan topologi konvoi yang dicadangkan untuk mengawal kenderaan 
tersebut secara rapi. MPC berfungsi untuk mengendalikan kekangan, memberikan respon 
yang lebih lancar dan memuaskan, serta memberikan keselesaan perjalanaan tanpa 
melakukan pertukaran dari segi prestasi dan kestabilan. Prestasi topologi konvoi yang 
berasaskan MPC yang dicadangkan ini kemudiannya disiasat melalui simulasi dan 
keputusan tersebut dibandingkan dengan topologi konvoi yang diperbaiki tanpa MPC. 
Topologi konvoi yang diperbaiki dengan MPC telah memperbaiki jarak antara kenderaan 
dengan nilai peratusan sebanyak 13.86%, pengurangan kadar cepatan yang stabil kepada 
cepatan bergerak, menghasilkan pengurangan dalam cepatan sebanyak 32.11% dan 
pencapaian terbesar telah dicatat dalam pengurangan sentakan sebanyak 55.12% setelah 
dibandingkan dengan tanpa MPC. Ini menunjukkan bahawa konvoi topologi yang 
dicadangkan yang berasaskan MPC ini telah menberi ruang yang cukup untuk mana-mana 
aplikasi brek yang tidak pasti daripada melihat dua kenderaan di hadapan atau 
mempercepatkan daripada kenderaan-ke belakang. Begitu juga, halaju bergerak yang telah 
dilihat untuk memastikan keselamatan arah hadapan dan belakang, pemanduan yang 
selesa telah dicapai berikutan oleh kadar cepatan yang rendah dan sentakan oleh kenderaan 
berikutan. Pengawalan kenderaan telah bertindak balas kepada perubahan dan ini 
membolehkan pengendalian yang baik dicapai.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Research

Demand for highway travel keeps on growing as population rises, more 

importantly in urban areas. Construction of new highway capacity to accommodate 

this growth in traffic density has not kept pace. The capacity for goods transportation 

alone is projected to almost double by 2020 as compared to 2012. The traffic problem 

is mainly expected to be a problem of the metropolis, but this problem is also common 

in small urban areas and rural areas [1].

The deployment of autonomous vehicles on the highway has the potential 

of playing important role in intelligent traffic system by minimizing the problems of 

traffic congestion, facilitating people safety; cutting down energy wastage, 

maximizing ride comfort and reducing fuel consumption [2]. Several vehicle convoy 

models and controllers were proposed in the literature. In essence, vehicle control 

strategies need vehicles in the same convoy to move at a stable agreement in speed 

while maintaining the desired inter-vehicular spacing with respect to the neighboring 

vehicles within the convoy. Furthermore, it is to ensure stable string which is the ability 

of the controlled vehicle to move along the convoy without amplifying the oscillation 

of the leading vehicle upstream and to also provide minimum jerk in the control 

vehicle.

To achieve string stability, desired inter-vehicular spacing and ride comfort, 

the vehicle convoy has to comply with either of the control policies variable spacing 

or constant spacing. It is of importance to know that ride comfort is the third order 

differential of the displacement of the vehicle, which is called as jerk of the vehicle. In 

the variable spacing policy, the inter-vehicle spacing is large (a function of velocity),



which is applicable for low traffic density conditions. This technique facilitates string 

stability through the use of onboard information. This implies that vehicles do not rely 

largely on the information from other vehicles. While constant spacing policy depends 

mostly on inter-vehicle communication and this policy facilitates string stability with 

little spacing and it is generally applicable in high traffic density conditions [2]. To 

achieve desired spacing, the time headway would play a significant role [3] in inter- 

vehicular spacing and to avoid collision with the vehicles of the convoy. The constant 

time headway (CTH) describes the desired inter-vehicular spacing as proportional to 

the control vehicle's speed, the constant of proportionality from the CTH policy is

referred to as the time headway ( h ) [4, 5]. To achieve passenger’s comfort, the control

vehicle’s jerk has to be minimized to not more than one-third of the vehicle’s 

acceleration (not more than 5 m s -3 ) [6, 7]. The smaller the vehicle’s jerk the more 

comfortable the passenger’s in the vehicle [8].

String stability is mostly achieved in situations where errors (spacing and 

information flow) are not amplified within the convoy as vehicles move. For perfect 

cancellation of such errors, the errors must have the same sign as to avoid collision 

within the convoy [9, 10, 11]. The concept of vehicle convoy refers to a string of 

vehicles that aim to keep a specified, but not necessarily constant inter-vehicle distance 

with respect to either of the two policies discussed above.

This work introduces an improved information flow topology (IFT) for vehicle 

convoy control, where the controlling vehicle is expected to be controlled at 

consensual speed and to maintain desired space with the independent vehicles and to 

greatly reduce jerk. The proposed convoy control topology ensures information flow 

from the leader, predecessor and the rear vehicle to the controlled vehicle, where the 

control vehicle utilizes the information received to adjust in speed and position in the 

convoy. A dynamic model for the proposed IFT convoy control is implemented to 

facilitate realistic, slinky-effect free, high passenger’s comfort and safe spacing. The 

proposed IFT convoy control of the two-vehicle look-ahead and rear-vehicle is then 

compared with the conventional two-vehicle look-ahead convoy to ascertain its 

dynamic parameters (relative position, speed, acceleration and jerk) performance. The



high-performance convoy among the two is then compared with the proposed 

improved IFT controlled by model predictive control (MPC) to ascertain the 

robustness of the improved topology and performance over the same IFT with no MPC 

controller.

1.2 Problem Statement

To control a vehicle in a mix of independent vehicles in a convoy is quite 

challenging, due to the inherent string unstable behavior associated with such convoy 

and a huge amount of jerk. Moreover, it is tasking for the controlling vehicle to 

simultaneously track the path taken by the preceding vehicle with safe speeding and 

without compromising the inter-vehicular spacing among the vehicles. Therefore, 

most of the vehicle convoy systems implemented in literature suffer from the problem 

of string instability and ride comfort due to the common adoption of the conventional 

IFT. It has been established that the existing IFT used does not fully define a safe 

convoy scenario and hence the string stability cannot be guaranteed. This is due to the 

error propagation within the dynamic parameters of the convoy (slinky-effect), the 

presence of disturbances (friction and wind) and the fact that vehicle’s comfort reduces 

with increase in jerk above the said 5 ms-3. All these coupled together makes vehicle 

convoy systems a challenging control problem.

There is a need for an enhancement and more realistic IFT for convoy 

operation. This is achieved through design and implementation of an improved 

topology of an improved two-vehicle look-ahead and rear-vehicle convoy equipped 

with a robust controller.



1.3 Research Objectives

The present research work proposed to find possible solutions to the stated 

problems through the following objectives:

(a) To develop an improved IFT of two-vehicle look-ahead and rear-vehicle 

convoy, which will give wider operating range than the conventional IFT for 

an effective communication and more realistic vehicle convoy.

(b) To design and implement a PD-like control strategy of the improved topology 

for the vehicle convoy in (a) and to investigate its performance (string stability 

and ride comfort) against the conventional one and two-vehicle look-ahead 

convoy control system via simulations.

(c) To design and implement a model predictive control (MPC) for the improved 

IFT of (a) for an effective and robust control of the two-vehicle look-ahead and 

rear-vehicle convoy to investigate its performance (string stability and ride 

comfort) against that of (b) via simulation.

1.4 Scope of the Research

The scope of this research work is outlined as follows:

(a) The research covers the motion of two-vehicle look-ahead and rear-vehicle.

(b) 1-DOF vehicle motion is considered. That is the longitudinal vehicle convoy, 

without a lane change.

(c) Simulation is conducted using MATLAB Simulink environment.

(d) Homogeneous vehicle convoy is considered. That is the vehicle convoy, in 

which all the vehicles have the same dynamics.

(e) Effects of friction and aerodynamic drag are used as external disturbances to 

the convoy.

(f) Comparison is on simulation results of the developed and the conventional 

convoy topologies in respect to string stability and rides comfort.



1.5 Thesis Contribution

The expected contributions of the research work are as listed:

(a) The improved information flow topology

An implementation and investigation of the improved information flow 

topology of the two-vehicle look-ahead and rear-vehicle convoy control will provide 

new results and knowledge in the area of vehicle convoy system.

(b) Overall convoy of the improved topology

Design and implementation of the overall improved PD-like convoy control is 

expected to provide a higher performance (string stability and ride comfort) convoy 

operation.

(c) Overall MPC based convoy control of the improved topology

A robust MPC based control is designed for the improved topology. This will 

efficiently predict and enable positioning, track reference input speeds, reject external 

disturbances, ensure string stability with a possible minimum jerk, handle constraints 

and maximize the operational range of the convoy system.

1.6 Hypothesis of the Research

In this research work, some hypothesis was made to guide towards the findings 

as follows:
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