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ABSTRACT 

The process of drug discovery using virtual screening techniques relies on 

“molecular similarity principle” which states that structurally similar molecules tend 

to have similar  physicochemical and biological properties in comparison to other 

dissimilar molecules. Most of the existing virtual screening methods use similarity 

measures such as the standard Tanimoto coefficient. However, these conventional 

similarity measures are inadequate, and their results are not satisfactory to researchers. 

This research investigated new similarity measures. It developed a novel similarity 

measure and molecules ranking method to retrieve molecules more efficiently. Firstly, 

a new similarity measure was derived from existing similarity measures, besides 

focusing on preferred similarity concepts.  Secondly, new similarity measures were 

developed by reweighting some bit-strings, where features present in the compared 

molecules, and features not present in both compared molecules were given strong 

consideration. The final approach investigated ranking methods to develop a 

substitutional ranking method. The study compared the similarity measures and 

ranking methods with benchmark coefficients such as Tanimoto, Cosine, Dice, and 

Simple Matching (SM). The approaches were tested using standard data sets such as 

MDL Drug Data Report (MDDR), Directory of Useful Decoys (DUD) and Maximum 

Unbiased Validation (MUV). The overall results of this research showed that the new 

similarity measures and ranking methods outperformed the conventional industry-

standard Tanimoto-based similarity search approach. The similarity measures are thus 

likely to support lead optimization and lead identification process better than methods 

based on Tanimoto coefficients. 
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ABSTRAK 

Proses penemuan ubat-ubatan menggunakan teknik pemeriksaan maya 

bergantung kepada " prinsip keserupaan molekul" yang menyatakan bahawa struktur 

molekul yang sama cenderung untuk mempunyai ciri-ciri fisiokimia dan biologi 

yang serupa, berbanding molekul yang lain. Kebanyakan kaedah pemeriksaan maya 

yang sedia ada menggunakan ukuran keserupaan seperti tahap pekali Tanimoto, 

tetapi langkah-langkah keserupaan konvensional ini masih tidak mencukupi dan 

tidak memuaskan hati penyelidik-penyelidik. Kajian ini mengkaji ukuran 

keserupaan baru yang ditemui dan membangunkan ukuran keserupaan baru serta 

kaedah penilaian molekul untuk melihat dan mendapatkan semula molekul yang 

lebih cekap. Pertama, ukuran keserupaan baru telah dibangunkan berdasarkan 

daripada ukuran keserupaan sedia ada, selain memberi tumpuan kepada konsep 

keserupaan terpilih. Kedua, ukuran keserupaan baru dibangunkan berdasarkan 

semakan pemberat pada rentetan-bit, di mana pertimbangan yang tinggi diberikan 

kepada ciri-ciri yang terdapat dalam kedua-dua molekul yang dibandingkan, dan 

ciri-ciri yang tidak terdapat dalam kedua-dua molekul dibandingkan. Pendekatan 

akhir mengkaji kaedah penilaian bagi membangunkan kaedah penilaian pengganti. 

Kajian ini membandingkan ukuran keserupaan dan kaedah penilaian dengan pekali 

penanda aras seperti Tanimoto, Cosine, Dice, dan Pemadanan Mudah (SM). 

Pendekatan ini menggunakan data ujian piawai seperti Laporan Data Ubat MDL 

(MDDR), Direktori Umpan Berguna (DUD), dan Pengesahan Saksama Maksimum 

(MUV). Keputusan keseluruhan kajian menunjukkan bahawa langkah-langkah 

persamaan yang dicadangkan dan kaedah penilaian mengatasi persamaan 

konvensional piawai industri yang berasaskan pendekatan Tanimoto. Persamaan 

yang dicadangkan dijangka dapat menyokong proses pengenalpastian dan 

pengoptimuman pendahulu ubatan dengan lebih baik berbanding kaedah berasaskan 

persamaan Tanimoto. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

 In chemical and pharmaceutical research, computers have been used for 

many years to decrease the cost of drug discovery (Todeschini and Consonni, 2009). 

Many different computer techniques and methods have been applied, and the data 

mining methods and information retrieval methods have been widely used in 

chemical, biomedical, and other medical fields. The actual laboratory drug discovery 

process can take between 12 and 15 years and can cost approximately more than  one 

million dollars (Rollinger et al., 2008); for that, considerable effort has been made to 

cover research into this area. This has taken years and cost in excess of $1 billion. It 

is complex and costly and consumes a lot of time in laboratory experiments. These 

two above-mentioned reasons have attracted the attention of researchers in different 

aspects to solve and reduce the long drug discovery time and its high cost. One of the 

rich science areas within the last decades is chemoinformatics, which is a multi-

disciplinary area that combines many older different disciplines such as 

computational chemistry, chemometrics and Quantitative Structure–Activity 

Relationship (QSAR). The term chemoinformatics has some synonyms in literature, 

as it is also known as Chemical Informatics and Chemical Information.  Its general 

definition is “the use of computer and informational techniques applied to a range of 

problems in the field of chemistry” (Brown, 1998). Another definition is “The  

mixing of different information resources for the purpose of  transforming data into 

information and information into knowledge for the intended purpose of making 

better decisions faster in the area of drug lead identification and optimization” 

(Brown, 1998). Another general definition was given newly by Gasteiger 
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(2016)“chemoinformatics is the use of informatics methods to solve chemical 

problems”. 

The process of discovering new drugs using computational screening 

methods is being continuously developed, and improved as it is one of the most 

important tools for drug discovery. Virtual screening now becomes an alternative to 

High-throughput Screening (HTS). HTS was considered the basic and main method 

for drug candidate development, but virtual screening (VS) with its various 

techniques and search methods is becoming a reliable method for drug discovery.  

Virtual screening methods can be used in many aspects of chemistry, such as 

molecule ranking, clustering, docking and virtual screening; as a result, this is now 

used as a complementary tool to HTS in drug discovery, because the rational drug 

discovery requires fast and computationally straightforward methods that 

distinguish active ligands from inactive molecules in huge molecular databases. 

Huge databases can be screened easily and successfully in a short time. VS, or 

screening as described here, is the process of selecting molecules to help in 

bioactivity testing. This screening is applied automatically by computer methods 

that select molecules; this is generally referred to as VS, and the Ligand-based 

virtual screening extrapolates from known active compounds used as input 

information and aims at identify structurally diverse compounds having similar 

bioactivity, regardless of the methods that are applied. 

 The screening methods conducted by computers are employed to rank the 

molecules according to their structures and put the most promising structures at the 

top of the list(Brown, 1998; Chen and Reynolds, 2002); this gives a high ranking to 

those molecules with structures that may be similar to structures that have already 

been tested. The screening methods and concept of molecular similarity are closely 

related to those used in information retrieval. Researchers have found most of the 

existing ligand–based similarity methods and similarity measures to be 

unsatisfactory, and consider the Tanimoto as the better similarity measure (Dávid 

Bajusz, 2015). However, some new similarity measures for information retrival 
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have recently been proposed (Lin et al., 2014; Todeschini et al., 2012) as well as 

some proposed for virtual screening that outperformed the Tanimoto, refuting the 

claim that only Tanimoto could achieve better results (Al-Dabbagh et al., 2015). 

Our general hypothesis for this work is that although considerable 

enhancements could be achieved in ligand-based virtual screening, more effort 

needs to be provided to help accelerate the drug discovery process and some of  its 

major pitfalls and challenges that still need to be solved in order to handle the 

exponentially increased volume of molecule data(Cereto-Massagué et al., 2014; 

Muegge and Mukherjee, 2016). As mentioned above, the general belief is that the 

Tanimoto similarity measure is the best similarity measure for virtual screening in 

spite of many similarity measures that have been proposed and applied in other 

aspects of science. This belief has led researchers to ignore the recently proposed 

similarity measures, and at the same time reduce the determination of researchers in 

cheminformatics to use and modify the similarity measures that could outperform 

the existing similarity measures for virtual screening. 

This thesis, primarily focus on ligand-based virtual screening. Different 

algorithms are proposed based on bit-strings and fragment-based that enhanced 

ligand-based virtual screenings. The rest of this chapter discusses the background of 

the problem, the importance of the study, the objectives and scope of this research. 

The last section will describe the organization and outline of the thesis. 

1.2  Problem Background 

Great efforts have been made to provide new drugs to the market, and there 

are  considerable investments in the research regarding this issue. The development 

of a new drug  consumes very long timeframes and high cost as mentioned earlier in 

this chapter . In chemoinformatics, researchers try to help the industry and chemists 

to make the drug  discovery process less risky and less costly and accelerate the 

processing time, which takes  years(DiMasi et al., 2016; Wang et al., 2016). Virtual 
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screening provides many tools and methods to provide considerable influence  in 

drug discovery and in the process of obtaining a drug candidate. Recently, many 

new  techniques have been proposed in chemoinformatics to be used as a substitute 

for old,  traditional, synthesized laboratories testing a New Chemical Entity (NCE) 

approaches, high-throughput screening   (HTS), combinatorial chemistry (CC)(Li et 

al., 2016). With HTS screening, millions of chemical,  pharmacological, or genetic 

tests could be conducted in a short time by using computer aids  that could execute a 

million processes in a few seconds. Although there is no doubt that  considerable 

progress has been made in the field of computational drug discovery and 

ligand  prediction(Chen et al., 2016; De Vivo et al., 2016), the commonly used 

methodology is still far from perfect, and it needs more work  to satisfy 

chemists.  According to some studies, the estimated time to  produce a new drug to 

the market is twelve years, at an  estimated cost  ranging from US$92 million to US$ 

883 million (DiMasi et al., 2016; Morgan et al., 2011). Differences in  methods, data 

sources, and timeframes explain some of the variation in estimates. As a result, the 

focus of most researchers in cheminformatics is twofold: reducing the cost and time 

of drug  discovery process, and avoiding the failure rates in later stages of drug 

development. Hence,  the time and cost of finding and testing new chemical entities 

can be considered the main  objective in drug discovery. For virtual screening, 

researchers strive for ways to find new  active compounds and to bring these 

compounds to the market as quickly as  possible.  

The huge chemical compound libraries provide a good source of 

new  potential drugs that can be randomly or methodically tested or screened to find 

good drug  compounds. It is now possible to test hundreds of thousands of 

compounds in a short  time using high-throughput screening techniques. Therefore, 

virtual chemical libraries that are  done by computer systems become useful 

supporters that aid this process of drug discovery   (Xu and Hagler, 2002).   

Chemists have always struggled with the difficult problem of deciding 

which  chemical structures to synthesize among large numbers of compounds. 

However, this is still a  small percentage of the total number that could be 

synthesized. Therefore, in recent years the  techniques of chemical search have been 
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called virtual screening, which encompasses a variety  of computational techniques 

that are used to test a large number of compounds by computer  instead of 

experience(Bajorath, 2013; Muegge and Mukherjee, 2015; Stumpfe and Bajorath, 

2011; Walters et al., 1998). These computational methods can be used for searching 

chemical  libraries to filter out the unwanted chemical compounds, and these methods 

allow chemists to  reduce a huge virtual library, and make it more manageable size to 

assess the probability that each  molecule will exhibit the same activities against a 

specific biological target. The approaches of  virtual screening can be categorized 

into structure-based virtual screening (SBVS) approaches(Ono et al., 2014; Vuorinen 

et al., 2014),  and ligand-based virtual screening (LBVS) approaches. The SBVS 

approaches can be used  when the 3D structure of the biological target is available, 

such as ligand-protein docking and  de novo design. The LBVS approaches are 

applicable in the case of absence of such structural  information, such as machine 

learning methods and similarity methods.   

The similarity methods may be the simplest and most widely-used tools for 

LBVS of  chemical databases(Cereto-Massagué et al., 2015a; Willett, 2009; Willett 

et al., 1998).The increased importance of similarity searching applications is  mainly 

due to its role in lead optimization in drug discovery programs, where the 

nearest  neighbors for an initial lead compound are sought in order to find better 

compounds. There  are many studies in the literature associated with the 

measurement of molecular similarity (Bender and Glen, 2004; Maldonado et al., 

2006; Nikolova and Jaworska, 2003).Similarity searching aims to search and scan 

chemical databases to identify those  molecules that are most similar to a user-defined 

reference structure using some quantitative  measures of intermolecular structural 

similarity. However, the most common approaches are  based on 2D fingerprints, 

with the similarity between a reference structure and a  database structure computed 

using association coefficients such as the Tanimoto coefficient (Dávid Bajusz, 2015; 

Deng et al., 2015; Johnson and Maggiora, 1990; Todeschini et al., 2012).  The 

similarity measures methods play a significant role in detecting the rate for  pairwise 

molecular similarity(Lynch and Ritland, 1999). These methods can be employed to 

find the most similar  molecules among thousands of compounds, and then organize 

these similar molecules in  decreasing order depending on the probability ranking 
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principle that only relies on the values  of probability between the molecules and 

molecular target.   

In general, the processes of a similarity measure for molecules have two 

stages, which  are similarity stage and ranking stage. At similarity level, the 

performance of conventional  similarity methods has been enhanced in various ways. 

Some studies have used the weighting  scheme (Abdo and Salim, 2010; Ahmed et al., 

2012; Jaghoori et al., 2015; Kar and Roy, 2013; Klinger and Austin, 2006), while 

others have employed the techniques of data fusion (Ahmed et al., 2014; Salim et 

al., 2003; Willett, 2013b). The relevant feedback has also been applied and used in 

LBVS to improve the performance  of similarity methods (Abdo et al., 2012; Abdo et 

al., 2011). However, the effectiveness of any similarity method has been  found to 

vary greatly from one biological activity to another in a way that is difficult 

to  predict (Gasteiger, 2016; Sheridan and Kearsley, 2002).  In addition, the use of 

any two methods has been found to retrieve different  subsets of actives from the 

chemical library, so it is advisable to utilize several search methods  where possible.  

Considerable effort has been expended in finding the appropriate similarity 

measures in  virtual screening among such available of choices of similarity 

measures, and this has attracted the attention of researchers from the early time of 

High Throughput Screening, and  cheminformatics.  

Many similarity measures have been applied in cheminformatics for virtual 

screening. These similarity measures have contributed in screening performance. 

Some other  similarity measures have been adapted and derived from existing 

similarity measures and  achieved good results in other areas, but haven’t been 

applied in virtual screening. In addition, many similarity measures have been 

proposed for text (Lin et al., 2014), and could be adapted  for virtual screening due to 

many similar aspects between the text and chemical information  retrieval. Thus, the 

algorithms that have been applied in text information retrieval can also be  applied in 

chemical information retrieval (Obaid et al., 2017; Willett, 2000a).   
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The fragment bases and bit-strings similarity method has gained attention 

from  researchers in chemoinformatics and especially in virtual screening (Abdo and 

Salim, 2010; Ahmed et al., 2012; Chen and Reynolds, 2002; Holliday et al., 2002; 

Zoete et al., 2009) , and many  types of research are focused on it. The molecules 

databases (fingerprint) contain a large  number of bit-strings that represent the 

molecules features (Bajorath, 2017; from Structure, 1997; Todeschini and Consonni, 

2009; Todeschini et al., 1994), and considering all  these features as the same and 

giving them same weight features in similarity calculations is not  fair. This is 

because most proposed methods usually assume that all molecular features are equal 

in  importance. On the other hand, all weighting schemes calculate the weight for 

each feature  independently with no relation to all other features, in general, The 

summarization of the all mentioned problem background are    demonstrated in 

Table 1.1. For all these mentioned cases, in  order to enhance the virtual screening 

effectiveness, feature reweighting using important bit- strings calculations can 

enhance the recall of similarity measure.  

In order to enhance the effectiveness of the similarity measure, the primary 

aim of this  research is to propose ligand-based similarity methods, and propose a 

ranking method based  on bit-strings and fragment-based reweighting. Additional 

aims include adapting an existing similarity measure,  adapting text similarity 

measure and proposing alternative ranking method to be  used for ligand-based 

virtual screening.  



8 
 

Table 1.1: Summarization of problem background  

  

Issue What have been done in LR Why not enough Proposed method 

Similarity Method 
Computational methods 

can be used for searching 

chemical libraries to filter 

out the unwanted 

chemical compounds, to 

reduce the cost and the 

time in drug discovery 

programs.   

Enhancement of similarity measures 

using: 

 Similarity coefficients (Consonni and 

Todeschini, 2012; Dávid Bajusz, 

2015; Lin et al., 2014; Rognan and 

Bonnet, 2014; Todeschini et al., 

2012).  

 Data Fusion 

 (Chen et al., 2010; Sastry et al., 

2013; Willett, 2013a). 

  Relevance feedback 

(Abdo et al., 2012; Agarwal et al., 

2010; Chen et al., 2009b). 

 Weighting functions 

(Ahmed et al., 2012; Arif et al., 

2010; Holliday et al., 2013). 

  Machine Learning (Cereto-

Massagué et al., 2015b; Durrant and 

Amaro, 2015; H Haga and Ichikawa, 

2016; Lavecchia, 2015). 

Although several 

similarity 

coefficients and 

techniques have 

been applied to 

enhance VS,but the 

area of VS still 

requires more 

investigation to 

determine whether 

other coefficients 

might yield a higher 

level of screening 

effectiveness than 

those which been 

used for virtual 

screening . 

 Enhance the 

effectiveness of 

the Ligand-based 

similarity 

searching method 

by adapting 

several similarity 

measures from 

information 

retrieval field.  

Adapted 

Similarity 

Measure of Text 

Processing 

(ASMTP)  

Fragment Reweighting 
The retrieval performance 

of the LBVS methods 

was observed to be 

improved significantly 

when chemical fragment 

weightings were used.  

Finding new weighting schemes or 

functions 

  

(Abdo and Salim, 2010; Arif et al., 

2010; Holliday et al., 2013). 

  

There are other 

weighting features 

methods need to be 

investigating to 

assign more weights 

to the bit-strings for 

improving the 

effectiveness of 

LBVS. 

 

Enhance the 

effectiveness of 

similarity measure 

by reweighting 

molecular bit 

strings. 

Adapted Simple 

Matching 

Similarity 

Coefficient 

(ASMSC),  

Molecular Ranking 

Principle 
  

Rank the active chemical 

compounds at higher 

ranking position than 

inactive ones. 
The most popular 

technique is probability 

ranking principle (PRP) 

has been used for 

molecular ranking can 

prioritize the molecules 

in decreasing order of 

value to the user’s 

reference relying on the 

probability value of 

molecules.  

 Enhancement of PRP (Text IR & 

Chemical IR) 

 Classification methods (Dörr 2015, 

Chen 2014, Rathke 2010)  

 Regression methods ( Li 2011, 

Hasegawa 2010) 

 Data Fusion (Willet, 2013)  

 Alternative ranking approaches 

(Text IR) 

 QPRP Quantum probability ranking 

principle (Zuccon, 2012) 

 IPRP Interactive Probability 

Ranking Principle (Sheridan ,2008) 

One of the key 

controversial  issues 

of PRP is the 

independence 

among ranking 

compounds, which 

prevents molecule’s 

ranking position 

from the effect of 

other molecules.   

Enhance the 

effectiveness of 

similarity measure 

by using Maximal 

Marginal 

Relevance 

(MMR) ranking 

principle of 

molecules that is 

inspired from text 

and document 

retrieval domain. 

Maximal 

Marginal 

Relevance 

(MMR)  for 

LBVS 
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1.3  Problem Statement  

In general, the aim of virtual screening is developing new drugs, in addition, 

its significance is to decrease the  consumption of times and cost which is considered 

a big challenge in drug discovery process, where the estimated cost of drug discovery 

exceeding millions and years to discover new drugs, and virtual screening reduce this 

cost to be very low compared to conducting experiments in real laboratory screening. 

By understanding the problem background that has been discussed in the 

previous section, it can be concluded that the needs of many chemical similarity 

search methods is considered one of the  continuing challenges in cheminformatics 

(Sheridan and Kearsley, 2002) ,the ligand-based virtual similarity methods have been 

under development for decades, and the ligand-based virtual screening field still 

needs more investigation.  In addition, in coming up with a new proposed similarity 

measure and a similar information retrieval field for improvement, there are 

limitations of the currently used similarity measures. 

The aim of this study research is to develop a ligand-based similarity method 

based on developing algorithms that emphasize the common structural features (bit-

strings) and give high priority in similarity calculations, and reweighting some bit-

strings when conducting the search on chemical databases to retrieve the active 

compounds with the most similar biological activity to the specific reference 

structure.  

Recently, many studies in text information retrieval have proved that retrieval 

models are  based on some new similarity measures and have provided significant 

improvements in retrieval  performance compared to conventional models, and this 

could be adapted for ligand-based  virtual screening.   
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The all developed similarity methods as well as benchmark similarity 

coefficients have used the classical ranking approach when ranking the chemical 

structures, and this  study will also investigate the most popular common ranking  

methods used in information retrieval and propose an alternative method to 

conventional probability ranking principle  (PRP) (Robertson, 1977).  

The proposed algorithms apply different approaches to fingerprint data 

fragment reweighting; this approach is based on fragment reweighting factors. 

Fragment reweighting here is the process of adding some constant weight to the 

original weight in order to improve retrieval performance in information retrieval 

systems. This approach has been derived from document retrieval filed. 

 The core of  virtual screening is to develop anew drugs that  decrease the 

consumption of times and cost .will help in development of   representation of time 

spent on the virtual screening experiments is not taken as a big issue when it  has 

been compared to the high cost and long duration of screening of molecules in a 

real  laboratory. For that this research does not concern the time of virtual screening 

as an important  factor.  

1.4   Research Questions  

Referring to the problem background, the main questions of this research are:  

 Can some similarity measures from document retrieval be adapted to 

improve ligand-based virtual screening? 

 

 How can new similarity matrices be developed for virtual screening 

using some preferred similarity measure properties used in document 

retrieval areas? 
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 Can the ligand-based virtual screening performance be improved by 

reweighting some bit-strings of the features? 

 

 How can other ranking method be proposed to improve the effectiveness 

of virtual screening? 

1.5  Research Objectives   

The main goal of this research is to develop a similarity-based virtual 

screening approach using reweighted fragments or the bit-strings, with the ability to 

improve the retrieval effectiveness and provide an alternative to existing tools for 

ligand-based virtual screening. Therefore, our general hypothesis for this study is 

How could constructing and adapting similarity measures and ranking methods 

from document retrieval can help improve the retrieval performance of molecular 

similarity? To achieve this goal, the following objectives have been set: 

 To investigate some molecule features (bit-strings) to be  reweighting for 

enhance retrieval effectiveness of VS.  

 To formulate and adapt new similarity metric for ligand-based virtual 

screening. Virtual screening. 

 To formulate a similarity-based virtual screening method for molecular 

similarity searching based on text and document retrieval similarity 

measure concepts. 

 To formulate and develop alternative ranking method for ligand-based 

virtual screening instead of conventional probability ranking principle 

(PRP).   
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1.6  Importance of the Study 

This study introduced some ligand-based virtual screening algorithms that 

incorporate adaptation and modification of some similarity measures in order to 

enhance the efficiency of ligand-based virtual screening. It is  also suggested an 

alternative ranking method that could outperform probability-ranking principle 

(PRP), which is considered the most popular ranking theory for current similarity 

searching methods in LBVS. The study rely on the believe that some modification of 

the existing methods could provide valuable enhancement.  

1.7  Scope of the Study  

This study will focus on ligand-based virtual screening, especially on 

similarity-based virtual screening using 2D fingerprint representations of molecular 

structure. The 2D fingerprint is a vector that encodes the presence and absence of the 

topological structure that represents the typical atoms, bond, or ring-canter fragment. 

The proposed screening methods mentioned before will be used to quantify the 

degree of structural resemblance between a pair of molecules characterized by 2D 

fingerprints. Most methods are applied with both binary and non-binary 2D 

fingerprints descriptors. The study focuses on the fragment, bit-string and 

reweighting methods and similarity coefficients and ranking methods to present an 

enhancement of molecular retrieval. The bit-strings emphasize the common 

structural features (bit-strings) and give high priority in similarity calculations. The 

reweighting factor here will take some similarity concepts to reweight some bit-

string values.  

The proposed virtual screening enhancement solutions in this study have been 

evaluated by simulated virtual screening experiments that were conducted on large 

benchmark datasets which have been derived from MDL Drug Data Report (MDDR) 

database ("Symyx Technologies. MDL drug data report: Sci Tegic Accelrys Inc., the 
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MDL Drug Data Report (MDDR). Database is available at 

http://www.accelrys.com/,"), Maximum Unbiased Validation (MUV) (Rohrer and 

Baumann, 2009;), the MDL Drug Data Report (MDDR) and the Directory of Useful 

Decoys (DUD) (Rohrer and Baumann, 2009) where single and multiple reference 

structures are available. The performance of this method is evaluated against the 

performance of conventional 2D similarity measure Tanimoto. 

1.8 Thesis Outline 

This section describes the organization of the thesis. There are seven 

chapters in this thesis, which are: 

Chapter 1, Introduction: this chapter gives a general introduction to 

chemoinformatics, drug discovery, and virtual screening topic of the proposed 

research work. There are brief overviews of some of the issues concerning the virtual 

screening research area, and it briefly discusses the following topics: problem 

background, the problem statement, objectives of the study, research scope, and 

significance of the study. 

Chapter 2, Molecular representations and Similarity concepts: this chapter 

begins with an overview of computer representations of chemical structures and 

various types of searching mechanisms offered by chemical information systems. In 

the third section, we present molecular representations that can be employed for 

molecular similarity searching as well as for molecular analysis and clustering. The 

chapter describes in detail the 2D fingerprint-based similarity methods and different 

types of similarity coefficients. The chapter also briefly discusses the implementation 

of machine learning techniques to molecular similarity and similarity measures of 

text and document areas. At the end of the chapter there is a conclusion that 

summarizes the applicability of the discussed methods to molecular similarity 

searching and the best ways to improve the performance of these methods. 
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Chapter 3, Research Methodology: this chapter describes the overall 

methodology adopted in this research to achieve the objectives of this thesis; it 

presents the methodology used in this research. A methodology is generally a 

guideline for solving a research problem. It contains the generic framework of the 

research and the steps required to carry out the research systematically, and it 

discusses in detail the datasets that will be used to conduct the experiments of the 

proposed methods. This includes discussion on the research components such as the 

phases, techniques, and tools involved. At the end of the chapter, we will conclude 

with a summary. 

Chapter 4, Enhancing Ligand-based Virtual Screening Using Bit-strings 

Reweighting: this chapter introduces the new ligand-based virtual screening ranking 

algorithm, called Adapted Simple Matching Similarity Coefficient (ASMSC) that 

emphasizes the common molecular structural features (bit-strings) to be given a 

high priority in similarity calculations. The chapter describes the construction of the 

algorithm and experiments done to evaluate the proposed coefficient. In the results 

and discussion section, the results are presented and discussed. 

Chapter 5, constructing new similarity metric and Adapting Document 

Similarity Measures for Ligand-based Virtual Screening: the study investigates the 

newly documented similarity measure and adapts it for ligand-based virtual 

screening. The adapted SMTP algorithm focuses on the preferred selected similarity 

properties. In the results and discussion section, all experiments conducted on 

different datasets are discussed, and the chapter also discusses comparison of the 

achieved results with the standard coefficient of VS, and discusses the investigation 

of the effectiveness of proposed adapted similarity measure. At the end of the 

chapter we will conclude with a summary.  

Chapter 6, Using Maximal Marginal Relevance in Ligand-based Virtual 

Screening: the chapter investigates the susceptibility of using the concepts of MMR 

in order to enhance the efficiency of ligand-based virtual screening. We will 

examine the use of MMR with different datasets to investigate its capability to 
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improve virtual screening. The chapter discusses some ranking methods that have 

been applied in information retrieval, and it covers a comparison of the achieved 

results with the standard coefficient of VS. It also discusses the investigation of the 

effectiveness of proposed adapted similarity ranking. At the end of the chapter, we 

will conclude with a summary. 

Chapter 7, Conclusion and Future Work: this is the last chapter, and it 

provides a conclusion of the overall work of this thesis. It highlights the findings 

and contribution made by this study and provides suggestions and recommendations 

for future research. 

1.9 Summary 

In this chapter, we give a broad overview of the problems involved in the 

molecular similarity. This chapter serves as an introduction to the research problem 

set out earlier in this thesis. The goal, objectives, the scope and the outline of this 

thesis are also presented. 
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