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ABSTRACT

A flat surface reflectarray antenna is becoming an impending competitor
for fifth generation (5G) communications among the generally known conventional
antenna systems. Its narrow bandwidth and high loss performance lead to restrict
its gain and efficiency at millimeter wave frequencies. Additionally, high design
sensitivity is also an issue at millimeter waves that can trigger the problem of imperfect
fabrications. Therefore, a simple design of reflectarray patch element is required
with wide reflection phase range to achieve wideband and high gain performance.
Efficiency of reflectarray antenna is also needed to be formulated properly to acquire
polarization diversity. In this work, a new reflectarray patch element with a tilted side
is recommended for a wideband dual resonance operation within 24 GHz to 28 GHz
frequency range. Dual resonance of the tilted side patch element offers a reflection
phase range of more than 600◦ and a reflection loss of 1.6 dB with a novel design.
Simulated results of the patch element have been verified by the scattering parameter
measurements using a waveguide simulator. Additionally, a mathematical relationship
has been formulated to predict the efficiency of the reflectarray antenna based on its
aperture shape and feed distance. It has been found that, a circular aperture reflectarray
attains 21.46% higher efficiency than its equivalent square aperture reflectarray of
the same feed distance. Consequently, a circular aperture reflectarray consisting of
332 variable size tilted side patch elements has been designed and tested at 26 GHz
with various possible configurations. The high cross polarization issue due to the
asymmetric design of the tilted side patch element has been tackled by mirroring
the orientations of the elements on the surface of reflectarray. Moreover, circular
ring slots with variable radius have been embedded in reflectarray ground plane for
gain improvement. Experimental results show that, the slotted ground reflectarray
antenna offers a 3.5 dB higher gain with 22.9% higher efficiency and 3% wider
bandwidth than a full grounded reflectarray antenna. A maximum of 26.1 dB gain
with 41.3% efficiency and 11.5% (3 GHz) bandwidth has been acquired with the
slotted ground reflectarray antenna. The tilted side patch reflectarray has offered dual
linear polarization when its elements are mirrored to each other and dual circular
polarization when its elements are not mirrored to each other. Its main beam has been
numerically steered up to ±20◦ by a progressive phase shift of 80◦. The acquired
parameters of the tilted side patch reflectarray antenna fit within the requirements of
the 5G communication systems.
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ABSTRAK

Antena reflectarray yang mempunyai permukaan yang rata menjadi pesaing
untuk komunikasi generasi kelima (5G) di antara sistem antena konvensional yang
diketahui umum. Lebar jalurnya yang sempit dan prestasi kehilangannya yang
tinggi menjurus kepada kekangan gandaan dan kecekapan pada frekuensi gelombang
milimeter. Di samping itu, kepekaan reka bentuk yang tinggi merupakan masalah
pada gelombang millimeter yang akan mencetuskan masalah pada ketidak sempurnaan
fabrikasi. Oleh itu, reka bentuk yang ringkas pada elemen tampalan reflectarray
diperlukan dengan pelbagai julat fasa pantulan yang luas dan prestasi gandaan
yang tinggi. Kecekapan untuk antena reflectarray juga diperlukan untuk dirumus
dengan baik untuk memperolehi kepelbagaian polarisasi. Di dalam kerja ini, elemen
tampalan reflectarray baru dengan sisi condong disyorkan untuk dual operasi jalur
lebar dari julat frekuensi 24 GHz sehingga 28 GHz. Dual resonans bagi elemen
tampalan sisi condong memberikan pelbagai fasa pantulan lebih daripada 600◦ dan
1.6 dB kehilangan pantulan dengan reka bentuk yang novel. Hasil simulasi bagi
elemen tampalan telah disahkan oleh pengukuran parameter berselerak menggunakan
simulator pandu gelombang. Di samping itu, hubungan matematik telah dirumuskan
untuk menjangkakan kecekapan antena reflectarray berdasarkan bentuk bukaan dan
jarak masukan. Telah diperolehi bahawa bukaan bulatan reflectarray mencapai
kecekapan yang tinggi iaitu 21.46% berbanding dengan bukaan empat segi reflectarray
pada jarak masukan yang sama. Oleh itu, bukaan bulatan reflectarray terdiri daripada
332 kepelbagaian saiz tampalan elemen condong direka bentu dan diuji pada 26
GHz dengan pelbagai konfigurasi. Isu polarisasi menyilang yang tinggi disebabkan
oleh reka bentuk asimetri elemen tampalan sisi yang condong telah ditangani dengan
pencerminan orientasi elemen pada permukaan reflectarray. Selain itu, slot cincin
bulatan dengan pelbagai radius sudah dibenamkan pada satah bumi reflectarray
untuk meningkatkan gandaan. Keputusan eksperimen menunjukkan bahawa, antena
reflectarray yang mempunyai satah bumi memberikan gandaan 3.5 dB dengan 22.9%
kecekapan dan 3% lebar jalur yang lebih tingi berbanding antena reflectarray yang
tiada slot. Gandaan maksimum 26.1 dB dengan 41.3% kecekapan dan 11.5% (3
GHz) lebar jalur telah diperolehi dengan antena reflectarray yang mempunyai berslot.
Pada sisi reflectarray tampalan condong menawarkan polarisasi dua linear apabila
unsur-unsurnya dicerminkan antara satu sama lain, manakala dua bulatan diperolehi
apabila unsur-unsurnya tidak dicerminkan pada satu sama lain. Alur utamanya
telah dikemukakan secara berperingkat sehingga ±20◦ oleh pergerakan fasa progresif
sebanyak 80◦. Parameter-parameter yang diperolehi daripada antena reflectarray
sisi condong adalah sangat bersesuaian dengan apa yang diperlukan untuk sistem
komunikasi 5G.
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CHAPTER 1

INTRODUCTION

Fifth Generation (5G) communications are currently represented as a future

technology, which is supposed to meet the high data rate goals, roughly 1000 times

faster than the current systems. The peak data rate in the order of Gbps will require fast

switching mechanism which is possible at short wavelengths of millimeter waves (mm-

waves). The mm-waves are considered with the wavelengths ranging from 1 mm to

100 mm, occupying the frequency range from 3 GHz to 300 GHz [1]. However, due to

congested frequency spectrum at lower frequencies, the frequencies over 20 GHz have

a good potential to be considered for 5G communications [2]. Consequently, different

frequency bands were proposed for 5G starting from 24.25 GHz up to 86 GHz in World

Radiocommunication Conference (WRC-15) [3]. The data rate requirements of 5G can

be met by enhancing the bandwidth and efficiency of the antenna systems at mm-waves

[2, 4]. However, the mm-wave frequencies have some propagation limitations in terms

of high path loss and very short communication distances. Massive improvements in

the architecture of current communication systems are desperately required in order to

adopt 5G technology [1].

The propagation issues related with mm-waves can be avoided by selecting

a suitable type of antenna for 5G systems. Array antennas are considered as a good

candidate to compensate the issues regarding path loss for short range communications

[5]. Two dimensional planar arrays with large electrical apertures can provide narrow

beamwidth, which is essential for 5G base station operations [1]. Large electrical

aperture at mm-waves for 5G, does not affect the physical profile of the antenna due

to short wavelengths. Massive MIMO systems have also been suggested for 5G due to

their possible integrity with small cells [1, 6]. However, as compared to array antennas

massive MIMO are not the potential candidate for 5G systems due to their design

complexity and less adaptability with shorter wavelengths [1, 2]. There are many other

types of antennas, which can be found in the literature for proposed 5G operation
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[7, 8, 9]. Their main purpose is to achieve wide bandwidth to support high throughput

of 5G systems [10]. The operation of antenna systems for 5G compatibility largely

depends on the enhancement of its bandwidth performance. A massive bandwidth is

required in mm-wave range to support high data requirements [11]. Bandwidth of the

order of GHz is attainable at mm-wave frequency range, but some extra design efforts

are still required to fully utilize it with other requirements.

However, by just enhancing the bandwidth of proposed antenna does not

solve all issues regarding 5G compatibility. Significant improvements in some other

parameters like gain, efficiency, polarization diversity and adaptive beamsteering are

also considered as a need of time [11, 12, 1]. It is because, the antenna performance

for 5G can directly depend on the mode of antenna operation. Antenna used for

transmission or reception can significantly affect its required parameters for 5G

operation. It is widely believed that the requirement of improvement in antenna

parameters for transmission is higher than the same parameters for reception. An

improved gain performance can ensure the strong transmission capabilities for antenna

[11]. In the case of 5G, when antenna systems are required to work at mm-waves,

their communication distances significantly decrease due to the short wavelength. In

this case, a high gain antenna can radically improve the path loss performance, without

disturbing its original power consumption [7].

A high aperture efficiency of antenna systems ensures the best utilization of

maximum gain value for the reduction of path loss [12]. On the other hand, the data

rate can also be increased by enhancing the spectral efficiency of antenna systems

[2]. Polarization diversity can be achieved when a single antenna is used with two or

more different polarizations [13]. The concept of frequency reuse also emerges from

polarization diversity, where a single frequency can be dually utilized with different

polarizations of the signal. Frequency reuse is useful for 5G systems, where wide

bandwidth is essentially required. The mm-wave antennas support fixed narrow beam

operation for high gain performance, which enables the need of adaptive beamsteering

[1]. Moreover, the highly directional nature of mm-waves can produce blockage of

signals, which can be countered by performing adaptive beamsteering [2]. These

described parameters of a potential 5G antenna, are attainable with a reflectarray
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antenna.

The array of elements combined together on a flat dielectric surface to reflect

the incidence signals coming from a properly distant feed defines the main architecture

of a reflectarray antenna [14]. Figure 1.1 distinguishes between the basic operational

characteristics of a reflectarray antenna, parabolic reflector and phased array antenna.

As demonstrated in Figure 1.1, the reflection of the signals can be directed like a

parabolic reflector with an additional advantage of a plane and light weighted surface.

Moreover, reflectarray can also perform beam scanning like a phased array antenna,

but without the aid of any power divider or additional phase shifters [15]. The less

complex design of reflectarray makes it more cost effective and competitive, especially

for beam scanning applications. The bulky and curvy design of parabolic antenna is

not a good candidate for high frequency applications [14]. Alternatively a reflectarray

antenna can easily be designed from as low as Microwave [16] to as high as Terahertz

frequency range [17]. The adaptability of reflectarray to high frequencies makes it

suitable for high gain and high bandwidth operation.

(a) (b) (c)

Figure 1.1 Operational layout of (a) Reflectarray antenna (b) Parabolic reflector (c)
Phased array antenna

Phased array antenna is the nearest possible competitor of reflectarray antenna

for 5G operation, but it faces efficiency lacking problems at mm-waves due to its

additional loss performance at high frequencies [18]. Moreover, its design complexity
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and power consumption are also major issues at mm-wave frequencies. On the other

hand, the discussed antenna parameters for possible 5G application are inevitable

with reflectarray antenna. Its bandwidth can be enhanced by optimizing its unit cell

designs with different substrate thicknesses [19]. The high gain performance can be

obtained by increasing the size of the reflectarray, which can produce sharp beams [14].

Its reflection loss performance along with its feeding mechanism can be optimized

for efficiency enhancement. Different design configuration of patch elements can be

utilized for various polarization combinations. Furthermore, the incident signal from

feed or the reflection phase of the reflectarray can be dynamically tuned to get adaptive

beamsteering [20].

There are a lot of techniques mentioned in the literature for the enhancement

of each discussed parameters of reflectarray. In this work, the emphasis has been

given specially on the design configuration needed for reflectarray bandwidth and

gain enhancement as a 5G base station antenna. Improvement in the bandwidth

performance surely reduces the gain of the reflectarray antenna. Therefore, various

techniques have been implemented in the reflectarray comprised of the proposed

elements for high gain and high efficiency performance. The finalized design of the

reflectarray antenna has also been realized for the possibility of acquiring polarization

diversity and electronic beamsteering at mm-wave frequency range.

1.1 Problem Statement

High reflection loss and narrow bandwidth are the two main performance

degradation of reflectarray antenna, which also limit its gain and efficiency. The

losses in the reflectarray are associated with the design of its unit cell element

and the material used to construct it. A wide patch element, such as a square

patch, reflects back most of the incident signals and offers low loss performance.

However, it also provides narrow bandwidth performance due to its limited reflection

phase range. In order to coincide with the 5G high data rate requirements, a wide

bandwidth reflectarray antenna is required with high gain and high efficiency at mm-

wave frequency range. The main problem associated with mm-wave is its high design
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sensitivity due to shorter wavelengths. It means that, a slight change in the dimension

of reflectarray element would drastically affect its performance. This slight change in

the dimension is unavoidable in the case of an imperfect fabrication. Alternatively,

the high performance parameters of 5G reflectarray antenna come with increasing

design complexity. The high design complexity also increases the chances of imperfect

fabrication at mm-wave frequencies due to very short physical dimensions. The

bandwidth of the reflectarray antenna can be improved by introducing extra resonances

at its unit cell level. However, this may trigger extra losses with a possibility of mutual

coupling between the elements and degradation in gain performance. This effect of

mutual coupling can alter the resonant behavior, increase the cross polarization level

and limit the efficiency of reflectarray antenna. Gain and efficiency of the reflectarray

antenna are largely dependent on its aperture size and feeding mechanism. The

spillover and illumination efficiencies can be optimized by selecting a proper feed

distance in front of the reflectarray. A suitable feed distance also eliminates the chances

of high side lobe formation that limits the gain performance. The mm-wave array

antennas produce highly directional narrow beams, which shrink down their coverage

area and limit the full bandwidth utilization by introducing signal blockage problem.

The signal blockage can be avoided by introducing electronic beamsteering, whereas

the diversity in the polarization can be utilized as an efficient tool for frequency reuse.

Therefore in this work, a novel reflectarray unit cell with simple design and extended

reflection phase range has been proposed to avoid the design complexity issue at

mm-waves. The mutual coupling and hence the high cross polarization issue of the

proposed unit cells has been tackled by selecting the proper orientation of the elements

on the surface of constructed reflectarray. The gain and efficiency of the constructed

reflectarray have been optimized by a suitable aperture size with a proper feed distance.

The reflectarray antenna comprising the new unit cells has also been realized with the

available possibilities of polarization diversity and beamsteering.

1.2 Research Objectives

There are four main research objectives of this work, which are listed below;

5



1. To design and investigate the performance of a wideband tilted side reflectarray

patch element with wide reflection phase range.

2. To numerically analyze the relationship between the efficiency, aperture size

and feeding mechanism of the reflectarray antenna.

3. To develop a wideband reflectarray antenna with improved gain and reduced

cross polarization.

4. To implement a technique for the realization of polarization diversity and

beamsteering in the reflectarray antenna.

1.3 Research Scope

The main scope of this research work comprises of the designing of a

reflectarray antenna that could satisfy the requirements for the 5G communications

systems. Unit cell patch element of the reflectarray antenna has been characterized

in order to obtain dual resonance response operating at 26 GHz for bandwidth

enhancement. The unit cell simulations has been performed using CST MWS and

Ansys HFSS simulations tools, while measurements have been done by waveguide

simulator approach. Rogers 5880 material has been selected as the substrate for

the reflectarray antenna with 0.254 mm thickness. A full reflection phase span of

720
◦

and 360
◦

is selected for the realization of a proper full reflectarray antenna

design. Far-field measurements of the full reflectarray antenna have been performed

in anechoic chamber. Three different horn feeds with different gains are used to

analyze the effect of variable feed distance on the performance of the reflectarray

antenna. A mathematical relation has been derived to estimate the efficiency of

the reflectarray antenna by considering its aperture shape and feeding mechanism

characteristics within the frequency range of 24 GHz to 28 GHz. Gain enhancement

in the reflectarray antenna is characterized by embedding circular ring slots in its

ground plane. Reduction in the cross polarization of the reflectarray antenna has

been optimized by selecting different element orientations on its surface. Different

polarization operation of the reflectarray antenna has been tested by 90
◦

rotating its

aperture, while keeping the same feed orientation. Finally, Matlab software is used to

numerically obtain the maximum possible beamsteering by the finalized reflectarray
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antenna design.

1.4 Thesis Organization

The second chapter of the thesis discusses the main techniques available

in the literature for the performance enhancement of reflectarray antenna. The

performance parameters of reflectarray antenna in terms of its bandwidth, gain,

efficiency, polarization diversity and adaptive beamsteering are thoroughly analyzed in

this chapter. Importance of each of these parameters is also explored for their plausible

compatibility with 5G communication systems.

The conventional tactics and procedures involving the design and analysis of

a reflectarray antenna are provided in the third chapter. Detailed design analyses of a

unit cell element with its proper boundary conditions and excitation is included. The

step by step process involving the design of a full reflectarray antenna is mentioned in

this chapter. The methods of performing simulations, fabrication and measurements of

the reflectarray antenna are also thoroughly discussed.

Chapter four studied the efficiency characteristics of reflectarray antenna in

conjunction with its feeding mechanism. Mathematical equations for the aperture

efficiency of reflectarray antenna are formulated and analyzed by performing far-field

simulations and measurements of a square path reflectarray antenna. Total efficiency

of the reflectarray antenna is also estimated by the developed equations and the results

are validated by the conventional gain-directivity relation.

The tilted side patch element and its full reflectarray configuration are

thoroughly analyzed in chapter five. Process of the evaluation of the tilted side

patch element from a square patch element is defined in this chapter. The wide

reflection phase range of the tilted side patch element is then utilized to study different

configurations of the reflectarray antenna for its performance improvement. The main

techniques for the enhancement of bandwidth and gain, and reduction of the cross

polarization of developed reflectarray antenna are also provided in this chapter. The
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