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ABSTRACT

Predicting the impact of land-use, climate change and Best Management Practices 
(BMPs) on a watershed is imperative for effective management of aquatic ecosystems, 
floods, pollutant control and maintenance of water quality standard in a tropical climate. 
Based on the prediction, unique information can be derived that is critical to the watershed 
management under dynamic environmental conditions. The study seeks to evaluate how 
land-use and climate change influences the hydrology, sediments, and water quality of an 
urbanized tropical watershed in which the land-use is controlled by urban development as 
observed from historical and projected land covers. Therefore, the response of a tropical 
watershed and its river system under climate and land-use changes were evaluated using 
Skudai River watershed as a case study. Seven land-use scenarios from the year 1989 to 
2039 were developed using remote sensing techniques, and nine projected climate change 
scenarios were derived using dynamically downscaled model from the based projection 
under representative concentration pathways (RCPs) scenarios. These scenarios were 
integrated into the Hydrological Simulation Program FORTRAN (HSPF) model to 
determine the impact o f land-use, climate change, and pollutants control via best 
management practices in a tropical watershed system. The model was calibrated and 
validated from 2002 to 2014, and the performance coefficients showed a good correlation 
between simulated and observed streamflow, water temperature, dissolved oxygen (DO), 
biochemical oxygen demand (BOD), ammonia nitrogen (NH3-N), nitrate nitrogen (NO3-N), 
and orthophosphate (PO4) concentrations. The output of the validated model under land-use 
changes showed that the hydrological water balance of the watershed changes with total 
runoff as the primary source of water loss. For streamflows and in-stream concentrations 
(NH3-N, NO3-N, and PO4), as the streamflow increases, NH3-N and PO4 concentrations 
increase while NO3-N concentration showed low response as compared to the other two 
concentrations. As urban development increased from 18.2% to 49.2%, nutrient influx such 
as total nitrogen (TN) and total phosphorus (TP) loads increased from 3080 to 4560 kg/yr 
and from 130 to 270 kg/yr, respectively. Furthermore, TN to TP ratio changed from 8.3:1 to 
7:1, an indication that the rivers are receiving excess nutrients flows which might result in 
eutrophication at the downstream of the watershed. The amount of sediment load produced 
in the watershed decreased by approximately 17.8% as a result of the changes in land-use 
derived from urban development. Further analysis of the results showed that climate change 
with high rainfall and increase in air temperature do not affect DO concentration and water 
temperature in comparison to climate change with low rainfall. Implementation of multiple 
detention pond BMPs in identified Critical Source Areas (CSAs) reduced pollutant loads by 
14% to 27% as compared to watershed without any BMPS, independent of climate and land- 
use changes. Analysis of BMPs using existing and future land-use is very important to ensure 
their effectiveness to control and maintain water quality. This study provides a basis to 
develop water resource management in an urban watershed and be resilient to land-use and 
climate changes.



ABSTRAK

Ramalan impak guna tanah, perubahan iklim dan Amalan Pengurusan Terbaik 
(BMPs) di kawasan tadahan air adalah penting untuk pengurusan ekosistem akuatik, kawalan 
pencemaran dan penyenggaraan kualiti air dalam iklim tropika. Berdasarkan ramalan 
tersebut, maklumat unik boleh diperoleh untuk pengurusan tadahan air di bawah keadaan 
persekitaran dinamik. Kajian ini bertujuan untuk menilai bagaimana penggunaan tanah dan 
perubahan iklim mempengaruhi hidrologi, sedimen, dan kualiti air di kawasan tadahan air 
tropika bandar di mana penggunaan tanah dikawal oleh pembangunan bandar seperti yang 
diperhatikan dari sejarah guna tanah dan guna tanah terunjur. Oleh itu, tindak balas dari 
kawasan tadahan tropika dan sistem sungai di bawah perubahan iklim serta penggunaan 
tanah dinilai menggunakan kawasan tadahan air Sungai Skudai sebagai kajian kes. Tujuh 
senario guna tanah dari tahun 1989 hingga 2039 telah dibangunkan dengan menggunakan 
teknik penginderaan jarak jauh, dan sembilan senario perubahan iklim terunjur diperolehi 
menggunakan model skala turun dinamik daripada unjuran asas senario di bawah 
representative concentration pathways (RCPs). Senario ini telah diintegrasikan ke dalam 
model Program Simulasi Hidrologi FORTRAN (HSPF) untuk menentukan kesan guna 
tanah, perubahan iklim, dan kawalan pencemaran melalui amalan pengurusan terbaik dalam 
sistem tadahan air tropika. Model ini telah ditentukan dan disahkan dari tahun 2002 hingga 
2014, dan pekali prestasi menunjukkan korelasi yang baik antara keputusan simulasi dengan 
data cerapan untuk kadaralir sungai, oksigen terlarut (DO), kehendak oksigen biokimia 
(BOD), ammonia nitrogen (NH3-N), nitrat nitrogen (NO3-N), dan kepekatan orthophosphate 
(PO4). Hasil analisis daripada model yang telah disahkan di bawah perubahan penggunaan 
tanah menunjukkan bahawa perubahan imbangan air hidrologi dengan sumber utama 
kehilangan air adalah daripada air larian. Untuk aliran sungai dan kepekatan kadaralir (NH3- 
N, NO3-N dan PO4), kepekatan NH3-N dan PO4 meningkat manakala kepekatan NO3-N 
menunjukkan tindak balas yang rendah berbanding dua kepekatan yang lain. Oleh kerana 
pembangunan bandar meningkat daripada 18.2% kepada 49.2%, jumlah nutrien seperti 
jumlah nitrogen (TN) dan jumlah fosforus (TP) meningkat daripada 3080 kepada 4560 kg 
setahun dan daripada 130 kepada 270 kg setahun. Tambahan pula, nisbah TN ke TP berubah 
dari 8.3:1 hingga 7:1, menunjukkan bahawa sungai-sungai menerima aliran nutrien yang 
berlebihan yang boleh mengakibatkan proses eutrofikasi di kawasan hilir tadahan air. Jumlah 
beban enapan yang dihasilkan di kawasan tadahan air menurun sebanyak 17.8% akibat 
perubahan penggunaan tanah yang diperoleh daripada pembangunan bandar. Analisis 
lanjutan menunjukkan perubahan iklim yang meningkatkan keamatan hujan dan suhu udara 
tidak memberi kesan kepada kepekatan DO dan suhu air apabila dibandingkan dengan 
perubahan iklim dengan hujan yang berkeamatan rendah. Implementasi kolam penahan air 
untuk tujuan BMPs di kawasan sumber kritikal (CSAs) telah mengurangkan beban bahan 
cemar daripada 14% kepada 27% berbanding kawasan tadahan air tanpa BMPs, tanpa 
perubahan iklim dan perubahan guna tanah. Analisis BMPs menggunakan guna tanah sedia 
ada dan guna tanah masa depan adalah sangat penting untuk memastikan keberkesanannya 
untuk mengawal dan memelihara kualiti air. Kajian ini menyediakan suatu dasar untuk 
membangunkan pengurusan sumber air di kawasan tadahan air bandar dan berdaya tahan 
terhadap perubahan guna tanah dan perubahan iklim.
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CHAPTER 1

INTRODUCTION

1,1 Overview

Watersheds are changing systems which are in a constant state of transformation 

due to human activities or natural occurrences [1].What we do in a watershed can improve 

the amount and quality of water that is available [2]. Advance in technology provides 

insightful information about watershed systems under various multiple stressors. 

Understanding the significance of each stressor in a watershed is essential for adequate 

water resources management. Prior researches in rivers have revealed that stressors 

frequently interrelate, resulting in complex, unclear result that cannot be projected based 

on the impact of the specific stressors involved [3]. The introduction of technologically 

based approach provides some improvement in this regard by integrating spatial and 

temporal properties of a watershed (i.e. topography, climates, land-use, etc.) to predict the 

likely responses at different watershed conversion stage using measured data.

Climate change and land-use/land-cover (LU/LC) are two significant stressors for 

small rivers or streams and have common effects on stream ecosystem, and these are best 

presented on a watershed scale. This two stressors have the potential to significantly alter
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the hydrologic cycles and consequently increases transport of diffuse pollutants to the 

receiving streams and rivers. They are directly related to the amount of diffuse pollutants 

discharge into the rivers and water quality conditions within a watershed [4]. Climate and 

LU/LC changes are predetermined conditions that must be incoorporated in the planning 

and management of water resources at watershed-scale. In the future, watershed 

management will depend on the ability of the existing best management practices (BMPs) 

to reduce nonpoint sources pollutants generated from land areas under different climatic 

and LU/LC variations.

This research focused on the application of a hydrological and water quality model 

(Hydrological Simulation Program -  FORTRAN, HSPF) for hydrological, water quality 

and best management practices in a watershed scale under the influences of climate and 

LU/LC changes. It is used to simulate watershed hydrology and water quality on the land 

surface and in the river. The model contains hydrological and water quality tools to 

simulate the impact of climate change and LU/LC variation on the watershed system. This 

study presents the application of HSPF model to Skudai River watershed (Johor, 

Malaysia), and it was used to evaluate present and projected LU/LC and climate change 

effects on hydrology, sediments, and water quality. It also evaluates the effectiveness of 

targeted best management practices under climate and LU/LC changes.

1.2 Background of the Study

Malaysia falls in a region characterized by high constant temperatures, abundant 

rainfall, and humidity [5]. This characteristics weather conditions usually result to 

environmental problems of which solid understanding of the natural conditions is critical. 

Like many other government initiatives, Malaysian government introduces policies and 

regulations to protect and improve surface water conditions that is shouldered under 

different departments and agencies at both local and federal level [6]. Since the inception
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of these policies, a little improvement was observed, particularly at the watershed level. It 

was due to the rapid development taking place in the watershed land areas coupled with 

the changing weather conditions.

The existing and future urban development are certain human activities, but it 

negative impacts on the stream ecosystem need to be evaluated for environmental and 

human safety. Examining the effects can inform decisions, planning, and policies affecting 

freshwater resources by studying the interactions between watersheds and stream 

conditions [7]. The amount of nutrients and pollutants produced from urban areas are 

among the leading causes of stream impairment in most urbanized watersheds [8-10]. For 

example, as urban development grows, vegetation and wetland areas are converted to 

impervious surfaces (buildings, roads, etc.), which changes hydrologic regimes, 

ecosystem distribution, and nutrient dynamics [11, 12]. These changes adversely affect 

water quantity and quality, aquatic habitat, functions of stream ecosystems [13] and 

socioeconomic concerns [14]. The estimation of watershed potential LU/LC has become 

an important driver in urban planning and watershed management and it is strongly related 

to future development stressors, because it can be identified and controlled [15-18]. 

Detecting the impact of LU/LC are important to stream regulation and management since 

top decisions and guidelines are relatively built on finding environmental consequences 

resulting from watershed disturbance [7]. A wide range of studies on water quality and 

quantity at watershed scale examine the effects of past variation in LU/LC on the 

hydrology and water quality conditions [19-23], but integrating them into future 

perspective is relatively low.

On the other hand, climate change due to increased variability in weather 

conditions, with extreme events such as floods, have been predicted to have significant 

impacts on water quantity and quality [24-30]. The impact of climate change on human 

health and aquatic ecosystems can be viewed through water quality impairment resulted 

by higher water temperatures, increased/decreased precipitation, moderate and extreme 

flow conditions [31]. The relationship of climate change affecting water resources have
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been identified [32, 33]. Water quality impairments due to extreme weather events have 

demonstrated how climate change is generating a significant threat to both the quantity 

and quality of freshwater resources [34, 35], and could result in societal and economic 

costs [36]. Some studies have shown the capability of climate change to alter the 

characteristics of the surface water, and influence land surface processes that controls the 

generation, discharge, and transport of toxic materials and anthropogenic contaminants to 

both ground and surface waters [37-41].

However, there is an apparent lack of understanding of accurate LU/LC change 

(both historical and future) in analyzing the potential water quality impacts in tropical 

watersheds. The reactions of water quality to climate changes in a tropical climate remain 

unclear. Furthermore, the prediction of future LU/LC from the historical LU/LC 

characterizations are either unutilized or often ignored, or are not directly connected to the 

present LU/LC category when doing the projection. Consequently, the effects of projected 

urban LU/LC forms and trends, under different climate emission scenarios, on surface 

water quantity and quality at the watershed scale and sub-watershed levels are currently 

uncertain in tropical regions like Malaysia.

Adequate water resources use and protection under dynamic physical settings 

require the application of watershed models that can simulate different flow systems. The 

implementation of watershed management actions required details understanding of the 

watershed hydrological and water quality behaviour under different anthropogonic 

conditions. Doing this is possible by application of watershed models, because watershed 

models are suitable technical tools used in the management of watersheds. They are 

computer-based models that relate the origins and transport of multiple pollutants from 

both point and non-point sources in the whole catchment drained by a river [42]. 

Identifying the complexity of the entire hydrologic system; pollutants transport using 

these models, input data such as soil types, topography, LU/LC category, type of 

watershed management practices, meteorology, atmospheric depositions and point
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sources are needed. Also, an additional task is usually brought in when these models are 

used to forecast the impacts of various stressors [43].

1.3 Problem Statements

Prior research have indicates that tropical river system were the most diverse 

freshwater ecosystems on earth [44] and the most expected to be impacted by climate 

change and other human activities [45]. Due to their geographical location, rivers in the 

tropics regions are exposed to solar radiation more frequently coupled with low inter­

annual and inter-seasonal climatic variation [46]. The anthropogenic impacts are more 

serious in tropical countries [45], increasing the likelihood of both water quality and 

ecosystem malfunction. Due to all these factors acting simultaneously and affecting the 

aquatic ecosystem, and watershed physical setting, it is likely that relationship between 

natural and chemical variables with biological communities in tropical streams will result 

in responses differently to that observed in temperate rivers. As the predicted high 

temperatures that is expected to manifest earlier than any other climatic groups [40], these 

will directly affect tropical watersheds in terms of water availability and climatic 

complexity such as frequent storms events, and water quality degradation (such as 

eutrophication). Consequently, these will result in changes in the aquatic system and its 

composition, distribution, and habitats [47]. A lot of studies on climate change and LU/LC 

have acknowledged its impact on many scales, but its influence under regular high 

temperatures area in a LU/LC and climate changes scenarios is limited [40]. There is need 

for awareness on the significances of these physical variables which might result to an 

unproductive aquatic ecosystem inducing the risks for freshwater aquacultural practices 

and economic crisis [48]. Hence, the adequate knowledge on the relatives interaction 

between LU/LC and climate changes in tropical watersheds is required.
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Furthermore, the location of a watershed and linked of its land boundary with the 

sea creates an extreme pressure gradient that caused a lot of rainfall. The combination of 

this effect and extremes temperature in equatorial regions in the course of maritime 

exposure produces extreme weather conditions and frequent occurrence of floods and this 

will increased water pollution [49]. Studies by Salarpour et al. [50] shows that 12% of the 

Skudai River watershed was likely to flood for 100 years recurrence interval and 8% for

2 years recurrence interval and this will be more critical given the planned development 

under Iskandar Malaysia development plan with a projection of about 80% urban 

dominated areas [51] whereby Iskandar Malaysia controls the whole of the Skudai River 

watershed. A detail hydrological and water quality study of the watershed is critical, as it 

will guide decision making and improvement of the existing management practices. 

Recent research shows that about 50% of the sub-watersheds in the Skudai River 

watershed have a negative watershed sustainability index based on measured potential 

flood damages (PFD) and potential water quality deterioration [52]. Muhammad [53], 

shows that rivers in Skudai watershed are prone to water quality degradation due to rapid 

development, industrialization and increase population.

Malaysia environmental quality report shows that some of the rivers in Johor 

watersheds have persistently maintained their poor water quality status compared with the 

previous reports of 2008 and 2013 [54]. Melana River (in Skudai River watershed) was 

among the rivers identify in the report, and studies have shown that in the future the 

conditions might be deteriorated [52]. The degradation of water quality is a product of 

multiple LU/LC activities and climate conditions, including both at point sources (with a 

single waste load allocation) and non-point sources areas from a diffused pollution loads. 

Harnessing these sources using modelling approach will provide an information that is 

critical for sustainable water resources managament in a tropical watershed system.
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1.4 Objectives

This study involves the development of water quantity and quality model of a 

tropical watershed based on its background conditions. The developed model is aim to 

assess the influences of land-use and climate change on a watershed system using Skudai 

River watershed as a case study. A proposed mitigation action via best management 

practices are presented alongside the impacts of land-use and climate changes. The 

objectives of this study were outlined as follows.

i To develop the hydrological and water quality model of a tropical watershed using

Skudai River watershed as a case study;

ii. To assess the impact of land-use changes on the hydrology, sediment, total

nitrogen and phosphorus pollutants in the watershed;

iii. To evaluate the impact of the projected temperature variations and its effects on

water temperature and dissolved oxygen concentrations in the watershed;

iii. To estimate the effectiveness of the targeted best management practices under

land-use and climate change scenarios on the identified critical sources areas in 

the tropical watershed system.

1.5 Scope of Study

In order to achieve the study objectives, several specific tasks were performed. 

The following are the specific tasks and assumption which were used in this study:

i. The case study was limited to Skudai River watershed;

ii. The historical and future land-use of the study area were produced using remote 

sensing techniques and were used as land-use scenarios;

iii. Application of hypothetical land-use scenarios that are different to the remote 

sensed developed land-use scenarios to evaluate the interaction between catchment
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land-use variation and climate change on small tropical rivers within the 

watershed;

iv. Application of geostatistical estimation method to capture the spatial rainfall 

distribution of the study area and integrates it into the model to mimic the spatial 

variability of rainfall in the watershed;

v. Determination of the sensitivity of the model calibration parameters to reduce

uncertainty on the modelling results;

vi. The impact of land-use considered in this study are based on water balance

variability, sediment loads and changes on the non-point sources pollutants;

vii. Two land-use scenarios were used in the identification of critical source areas for

targeted best management practices in the study area.

1.6 Significance of the Study and Contribution

Water resource managers need to utilize cutting edge tools to fulfill their 

management interests with high efficiency, as water resource management practices will 

be affected due to lack of this tools. Inputs for critical decision making requires data 

monitoring that is limited by human resources and short-term sampling studies and 

sporadic monitoring programs that are commonly observed. The flexibility in managing 

enormous quantities of dynamic data input, transferring data from similar gauged 

environment or by extrapolating the available data to ungauged environments reduce these 

problems for water resources expert and simplify alternatives for decision making, hence 

the application of modeling approach. Watershed modeling estimates the hydrology and 

pollutant dynamics derived from a point and non-point sources to water bodies utilizing 

different algorithms that depend on measured data [55]. Skudai River watershed required 

such approach due to its influence and significant for water quality control and 

management of the Johor Strait. This approach aimed at identifying the watershed 

hydrological and hydro-chemical components that controls the watershed hydro-
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environmental properties which will be utilized for effective management of the 

watershed or similar watershed.

In the other hand, the application of semi-distributed models is still relatively new 

in Malaysia, even though they have been used widely in other countries [56]. There is no 

detailed study that considered the impact of climate and temporal land-use/land cover 

(LU/LC) changes on the hydrology, soil erosion (sediment), water temperature, dissolved 

oxygen (DO), biochemical oxygen demand (BOD), nutrients. Furthermore, evaluating 

the effectiveness of best management practices under this conditions (climate and land- 

use) at watershed scale is also relatively low in tropical regions. The effects of multiple 

stressors on the tropical rivers are poorly understood, and this study present the impact of 

two important stressors; LU/LC and climate change. Effects of urbanization on the river 

system and the shift of the river trophic class were illustrated, as prior studies do not 

demonstrated the trends and changes in the trophic class of tropical river systems under 

an increased urban development. The efficiency of the targeted best management practices 

(BMPs) in the reduction of water pollutions under the influence of climate and LU/LC 

changes were predicted, as previous studies in Malaysia focused on specific BMPs type 

and its performance, which is centered on flood attenuation with few on water quality 

control in a localized condition. While there are a lot of studies addressing the 

effectiveness of BMPs at a local stage (either confine residential areas or isolated complex 

in Malaysia), no available information shows an attempt to determine the effectiveness of 

BMPs in the reduction of water pollution using identified critical sources areas (CSAs) at 

a sub-watersheds or watershed-scale. In fact, the concept of identified CSAs for targeted 

BMPs implementation using watershed modelling is relatively new, and its application in 

an urban dominated watershed and in a tropical climate are yet to be elucidated. The urban 

stormwater manual of Malaysia (MSMA) does not include it in the conditions required 

for stormwater management system implementation and siting [57]. Furthermore, it is 

imperative to evaluate the impact of BMPs to interrupt nonpoint source pollution at 

sources and treat the pollutant considering future LU/LC and climate scenarios. This 

approach will guide relevant policies to manage small tropical rivers and watersheds under 

climate and LU/LC change which are absent or poorly informed.
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1.7 Thesis Structure and Organization

This study is designed to model the impact of climate change, LU/LC and the 

effectiveness of targeted best management practices under climate and LU/LC scenarios 

in a watershed system. Skudai watershed was chosen as a case study due to its location, 

planned future development, and mixed LU/LC. A measured data with different 

resolution, measurement and scale were used for the development and application of the 

watershed model. This thesis was structured and designed in six chapters to present the 

study designed, analysis, results, discussion and recommendation. Chapter 1, represent 

the study objectives, statement of problems, scope, and contribution to knowledge. 

Chapter 2, provides the general backgrounds and reviews of literature relevant to the 

research methodology and materials used. In Chapter 3, the materials and methods used 

to achieve the study objectives were presented. The model parameter estimation, 

calibration, and validation of the model with the development of LU/LC scenarios are 

presented in Chapter 4. The result and analysis of the model output under climate changes, 

LU/LC and BMPs effectiveness are presented in Chapter 5. Also, the discussion of the 

results analysis and comparing the results with other findings of other researchers were 

included in the same chapter. Finally, in Chapter 6, the conclusion of the findings of the 

study and recommendation for future works were presented
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