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ABSTRACT 

Shape memory alloy (SMA) actuators in microelectromechanical system 

(MEMS) have a broad range of applications. The alloy material has unique properties 

underlying its high working density, simple structures, large displacement and 

excellent biocompatibility. These features have led to its commercialization in several 

applications such as micro-robotics and biomedical areas. However, full utilization of 

SMA is yet to be exploited as it faces various practical issues. In the area of 

microactuators in particular, fabricated devices suffer from low degrees of freedom 

(DoF), complex fabrication processes, larger sizes and limited displacement range. 

This thesis presents novel techniques of developing bulk-micromachined SMA 

microdevices by applying integration of multiple SMA microactuators, and monolithic 

methods using standard and unconventional MEMS fabrication processes. The 

thermomechanical behavior of the developed bimorph SMA microactuator is  

analyzed by studying the parameters such as thickness of SMA sheet, type and 

thickness of stress layer and the deposition temperature that affect the displacement. 

The microactuators are then integrated to form a novel SMA micromanipulator that 

consists of two links and a gripper at its end to provide three-DoF manipulation of 

small objects with overall actuation x- and y- axes displacement of 7.1 mm and 5.2 

mm, respectively. To simplify the fabrication and improve the structure robustness, a 

monolithic approach was utilized in the development of a micro-positioning stage 

using bulk-micromachined SMA sheet that was fabricated in a single machining step. 

The design consisted of six spring actuators that provided large stage displacement 

range of 1.2 mm and 1.6 mm in x- and y-axes, respectively, and a rotation of 20° around 

the z-axis. To embed a self-sensing functionality in SMA microactuators, a novel 

wireless displacement sensing method based on integration of an SMA spiral-coil 

actuator in a resonant circuit is developed. These devices have the potential to promote 

the application of bulk-micromachined SMA actuator in MEMS area.
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ABSTRAK 

Penggerak aloi yang memiliki memori bentuk (SMA) telah digunakan secara 

meluas untuk pelbagai aplikasi di dalam sistem elektromekanikal-mikro (MEMS). 

Bahan ini telah terbukti mempunyai ciri-ciri asas yang unik seperti kepadatan kerja 

yang tinggi, struktur yang ringkas, sesaran yang besar dan kesesuaian-bio yang baik. 

Ciri-ciri ini telah membawa kepada pengkomersialan aloi ini dalam beberapa aplikasi 

seperti mikro-robotik dan bidang bioperubatan.  Walau bagaimanapun, penggunaan 

bahan ini masih belum dieksploitasi sepenuhnya disebabkan pelbagai isu praktikal. 

Dalam bidang penggerak-mikro khususnya, peranti yang difabrikasi mempunyai 

pelbagai masalah seperti darjah kebebasan (DoF) yang rendah, proses fabrikasi yang 

kompleks, saiz yang besar dan jarak sesaran yang terhad. Tesis ini membentangkan 

teknik baharu untuk membentuk peranti-mikro daripada SMA dengan menggunakan 

integrasi beberapa penggerak-mikro SMA dan kaedah monolitik dengan 

menggunakan proses piawaian MEMS dan fabrikasi MEMS yang tidak konvensional. 

Ciri-ciri termomekanikal penggerak-mikro dwi-lapisan SMA yang dibangunkan 

dianalisis dengan mengkaji parameter yang mempengaruhi sesaran seperti ketebalan 

kepingan SMA, jenis dan ketebalan lapisan ketegangan dan juga suhu pendepositan. 

Penggerak-mikro kemudiannya diintegrasi untuk membina satu penggerak-mikro 

SMA baharu yang terdiri daripada dua pautan dan satu penggenggam pada 

penghujungnya untuk memberikan manipulasi tiga DoF untuk suatu objek kecil 

dengan jumlah sesaran di paksi x dan y masing-masing sebanyak 7.1 mm dan 5.2 mm. 

Satu pendekatan monolitik telah digunakan dalam pembangunan penentu kedudukan-

mikro menggunakan helaian SMA pukal yang difabrikasi melalui satu langkah 

pemesinan bagi mempermudahkan proses fabrikasi dan memperbaiki keteguhan 

struktur. Reka bentuk ini terdiri daripada enam penggerak berbentuk spring yang 

mengawal pergerakan dalam paksi x dan y sebanyak 1.2 mm dan 1.6 mm, dan juga 

putaran sebanyak 20° di paksi z. Kaedah pengesanan tanpa-wayar yang baharu 

berdasarkan integrasi SMA lingkaran gegelung dalam litar salunan telah dibangunkan 

bagi fungsi pengesanan sesaran dalam mikroakuator SMA. Teknik-teknik yang 

dibangunkan dijangka menggalakkan penggunaan penggerak SMA pukal yang 

dimesin  dalam bidang MEMS.
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Microelectromechanical systems (MEMS) is a technology that has paved the 

way for achieving a variety of microactuators, which are mainly utilized to manipulate 

small objects in micro-scale. Their rapid advancements offer many benefits to various 

applications, especially in biomedical [1, 2] and microrobotics [3] fields. 

Microactuators can be classified based on their actuation principles to electrostatic, 

electromagnetic, piezoelectric, thermal and shape memory alloy (SMA) actuators [4]. 

These actuators have their own properties and advantages that allow them to be used 

in various applications depending on their requirements. 

Electrostatic microactuators have been applied in many applications such as 

hard disc drives and aeronautical fields [5, 6]. These actuators provide fast response, 

small energy loss and reversible motion. However, they often suffer from a limited 

displacement range, short lifetime and high voltage requirements for their operation 

[1, 3]. Electromagnetic microactuators have been utilized in several devices, such as 

micropumps and optical switches [7, 8]. Yet, this type of actuator requires complicated 

control systems, due to its magnetic nature [9]. Piezoelectric microactuators are 

applied extensively in printers and digital cameras [10], due to their fast response, high 

accuracy and large stress tolerance [11]. Despite their advantages, piezoelectric 

actuators require high actuation voltages and involve a complicated fabrication 

process, which make them uncomplimentary [12]. Thermal microactuators have 

limited applications compared to other types of actuators, due to their slow response, 
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high power consumption and the high temperature requirement for actuation [13]. One 

of the most popular types of thermal microactuators is the bimorph type, which 

actuates using the difference in the coefficient of thermal expansion (CTE) of two 

different materials. SMA microactuators is a type of thermal actuators that overcome 

the major drawbacks of conventional thermal microactuators.  

SMA microactuators offer various advantages over other actuation techniques, 

such as high work density, large actuation force, simple mechanical structures, 

resistance to corrosion, low cost, biocompatibility and large actuation range [14]. 

Although this material was discovered in the mid-twentieth century, it has received a 

great deal of attention from researchers and, thus, it has been deployed in many 

application in various fields, such as microrobotics [3], micropumps [15], medical 

tools and biomedical applications [16]. Nonetheless, there is still room for 

improvement in terms of the design and fabrication of SMA microactuators in order 

to grasp better performance, simpler fabrication and a more rigid structure.  

1.2 Problem Statement 

Despite the significant work by many researchers on the bulk-micromachined 

SMA microactuators, the exploitation of this material has not been pushed to its 

boundaries in the area of microrobotics. There has not been a satisfactory advancement 

in SMA actuation mechanisms and integration techniques in order to improve the 

performance of SMA microactuators. These issues stand in the way of the 

implementation of SMA in many microactuators. Nonetheless, many SMA-based 

devices have been presented in recent years. However, there are several limiting issues 

that need to be highlighted and resolved to enhance the performance and allow further 

miniaturization of the overall size of these devices. One of these concerns is device 

fabrication process itself, which usually comprises several long steps that result in 

complex design and fabrication, high cost and low-resulted integrity [17-20]. 

Moreover, in order to assemble SMA-based devices, it often involves the assembly of 

multiple parts along with the SMA actuator such as heating circuit, couplings, bias 

spring, feedback sensor and joints [21-23]. This practice brought about bulky design, 
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limited actuation, low degree of freedom, less actuation force and prosaic robustness. 

These issues can be addressed by adopting the integration of multiple SMA 

microactuators and a monolithic approach to form the device structure. 

Another issue associated with microactuators is in cases where their movement 

tracking is required. The conventional approaches that have tackled this matter adopted 

the integration of sensors with actuators, which resulted in bulkier and costlier devices 

whose fabrication is rather complex. Therefore, this has limited the utilization of such 

actuators in implantable devices, where compactness is necessary to minimize their 

medical invasiveness. Consequently, more advanced actuators have incorporated a 

self-sensing mechanism that provides real-time movement feedback without the need 

for additional sensors or readout circuitry. However, these attempts were limited to 

piezoelectric actuators [24, 25] that involve complex implementation of the sensing 

process. A potential solution that allows both compactness and a passive device can 

be implemented by integration of an SMA actuator with a self-sensing element.  

1.3 Research Objectives 

The main objectives of this research are to develop bulk-micromachined SMA 

micromanipulators and an integrated wireless displacement sensing element. The 

specific objectives are: 

1. To investigate the bulk-micromachined SMA bimorph actuation methods and the 

associated parameters that govern the actuation performance such as types and 

thickness of the stress layer as well as the depositing temperature. 

2. To develop a multi-link integrated bulk-micromachined SMA micromanipulator 

with three degrees of freedom (DoF) and a gripper mechanism. 

3. To design and fabricate a novel monolithic SMA micro-positioning stage that offers 

a three DoF. 
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4. To develop an SMA wireless displacement sensing method based on integration of 

an SMA spiral-coil actuator in a resonant circuit. 

5. To characterize the performance of the developed actuators, including their 

temporal and thermal responses. 

1.4 Scope of Research  

The scope of this research focuses on the development of SMA devices using 

the integration of multiple SMA microactuators and monolithic approaches. 

Furthermore, this research studies SMA bimorph actuation methods, which uses 

internal Joule heating to actuate the SMA microactuators. In addition, using finite 

element analysis (FEA), the thermomechanical behavior and the thermal responses of 

SMA micromanipulators were simulated. The current flow distribution of the 

monolithic micro-positioning stage is also simulated. In term of the fabrication 

process, this study follows the standard and unconventional of MEMS fabrication 

techniques including conventional lithography, electroplating, etching processes, as 

well as the use of micro electrical discharged machining (µEDM) and plasma 

enhanced chemical vapor deposition (PECVD). In addition, the research examines the 

integration of a sensing element in an SMA actuator by utilizing a resonant circuit to 

develop a wireless displacement sensing device. The software that were used in the 

design and simulation are SolidWorks and COMSOL Multiphysics, respectively. For 

characterization purposes, different apparatus such as laser displacement sensor, force 

sensor, impedance analyzer, thermal camera, and microscope were used for 

displacement sensing, force measurement, resonant frequency tracking, thermal 

analysis, and microscopic imaging, respectively. 

1.5 Research Contributions 

The research proposes four significant contributions by developing SMA 

microactuators. These contributions can be highlighted as follows: 
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1. Simulation and characterization of SMA bimorph actuators in order to determine 

the optimal thickness of SMA and the stress layer as well as the depositing 

temperature. Based on these simulation results, an optimized design was 

fabricated using bulk-micromachined SMA bimorph actuators. 

2. Development of a novel SMA micromanipulator structure by the integration of a 

sequence of SMA bimorph microactuators. The SMA micromanipulator has three 

DoF with a large actuation range and simple fabrication steps with a gripping 

mechanism. 

3. A novel monolithic micro-positioning stage driven by six SMA microactuators. 

The device was fabricated in a single fabrication step and provided large 

displacement ranges.  

4. A novel wireless displacement sensing method using resonant-based SMA 

actuators has been studied and experimentally demonstrated with a spiral-coil 

SMA actuator.  

1.6 Potential Impact of the Research 

The applications of MEMS-based actuators in robotics and biomedical areas 

are currently limited due to the factors of low actuation force, limited displacement 

range, bulky size, actuation mechanism and biocompatibility. The use of SMA bulk-

micromachined actuators overcomes these weaknesses exceptionally well. It also 

paves the way for a variety of potential applications such as micro surgical tools and 

active catheters; for these applications, the SMA biomedical devices require 

compactness and biocompatibility that is essential for minimally invasive surgery. 

Therefore, the precise control as well as the high DoF of the developed SMA 

microactuators that form the final micromanipulator would be greatly beneficial [26-

28]. 
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Furthermore, this research introduces a monolithic SMA micro-positioning 

stage that has a three DoF movement. This monolithic approach has improved the 

fabrication process at a lower cost, it has also helped in maintaining structure 

robustness and reliable actuation. These features would potentially promote the 

application of SMA-based actuators in highly precise mechanisms. In addition, by using 

SMA and its shape memory effect, a spiral-coil actuator that has a self-sensing function 

has been developed. The utilization of this actuator in the form of a resonance circuit has 

allowed the implementation of a wireless displacement sensing that is passive and very 

compact in size. This method also eliminates the need for a wired interface, which is an 

important criterion for many biomedical devices such as implantable devices. The 

successful outcomes of this research are expected to promote advances in these device 

technologies in biomedical fields and beyond. 

1.7 Thesis Outline 

This thesis is divided into seven chapters. Chapter 1 is a general overview of 

MEMS microactuators applications followed by the problem statement, objectives and 

scope of the research. Chapter 2 presents the literature review of this research, which 

covers an overview of MEMS actuation mechanisms, SMA material properties and 

actuation methods, MEMS micromanipulators, micro-positioning stage and wireless 

displacement sensing. Chapter 3 presents the thermomechanical behavior analysis of 

the bimorph SMA structure and studies the parameters that affect the displacement of 

the microactuator. Chapter 4 proposes a new structure for an SMA micromanipulator 

by integrating a sequence of SMA bimorph microactuators with three DoF and a 

gripping mechanism. Chapter 5 reports the development of a novel three-DoF 

monolithic SMA micro-positioning stage capable of linear movements along x- and y- 

axes as well as rotational movements provided by six SMA actuated springs. Chapter 

6 demonstrates a method that enables real-time displacement monitoring and control 

of micromachined resonant-type actuators using wireless radio frequency. Finally, the 

thesis concludes with chapter 7, where the key results and directions for future work 

are discussed. A list of publications arising from the thesis is given. 
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