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ABSTRACT 

Nano-polycrystalline samples of aluminum oxide doped carbon (Al2O3:C) 
and aluminum oxide doped carbon co-doped with magnesium (Al2O3:C, Mg) were 
investigated in search for the most efficient thermoluminescence (TL) dosimeter with 
low sensitivity to light and applicable for various radiation energy. Six samples were 
prepared and the samples were found to be nano-polycrystalline powder with particle 
size in the range of 30 to 250 nm through X-ray Diffraction (XRD) and Transmission 
Electron Microscope (TEM) analysis. Those samples were exposed to Cobalt-60 
gamma rays to determine the optimum concentration of dopant. The optimum 
concentration of dopant in atomic weight percentage (at%) is 0.2 at% of carbon 
dopant for doped sample (C2) and 0.2 at% of magnesium dopant of co-doped sample 
(C2MG2). Samples with optimum dopant were irradiated by 10 and 12 MeV 
electrons, 6 and 10 MV high energy x-rays over a lower dose range 0.5 to 4.0 Gy 
from linear accelerator (LINAC) and by Cobalt-60 gamma rays over the dose ranges 
of 0.5 to 4.0 Gy, and a higher dose range 10 to 100 Gy. Sample C2 and C2MG2 
exhibit two TL peaks at higher dose while single peak at lower dose. Sample C2MG2 
shows a linear dose response over a dose range of 0.5 to 4.0 Gy subjected to 10 and 
12 MeV electrons and 6 and 10 MV high energy x-rays. Sample C2MG2 also shows 
a linear dose response over a dose range of 0.5 to 4.0 Gy and 10 to 100 Gy when 
exposed to Cobalt-60 gamma rays. TL sensitivity of sample C2MG2 is 14.22 higher 
than that of sample C2 when exposed to Cobalt-60 gamma rays. TL sensitivity of 
sample C2MG2 subjected to electron and high energy x-rays irradiation is still higher 
than that of sample C2 but lower in value compared to TL sensitivity of sample 
C2MG2 subjected to Cobalt-60 gamma rays. Addition of Mg has also minimized 
thermal fading of sample C2MG2 and improved reproducibility significantly for all 
delivered energy. However, sample C2MG2 is more sensitive to sunlight compared 
to sample C2, and both samples were not sensitive to fluorescence light even after 24 
h of exposure. The minimum detectable dose of sample C2MG2 subjected to Cobalt-
60 gamma rays, electron and high energy x-rays are 2.76, 12.49 and 13.83 mGy, 
respectively. TL properties of sample C2MG2 are influenced by the energy of 
electrons and photons. Sample C2MG2 also shows good TL properties as TL 
dosimeter. The measured effective atomic number, Zeff of sample C2MG2 is 11.14 
and can be considered as bone-equivalence material. Kinetic analysis revealed that 
the glow curve of sample C2MG2 followed general kinetic order. Using four 
different methods, the activation energies were calculated to be in the range of 1.08 
to 1.70 eV and frequency factor is between 1012 to 1019 s-1. The findings of the study 
show that nano-polycrystalline Al2O3:C, Mg is less affected by the light and has a 
capability to be used in radiation dose monitoring. 
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ABSTRAK 

Sampel nano-polihablur aluminium oksida berdopkan karbon (Al2O3:C) dan 
aluminium oksida berdopkan karbon dan diko-dopkan bersama magnesium 
(Al2O3:C, Mg) telah diselidiki untuk memperoleh dosimeter termopendarcahaya (TL) 
yang paling cekap dengan rendah peka cahaya dan berguna untuk pelbagai tenaga 
sinaran. Enam sampel telah disediakan dan sampel ini telah ditemui sebagai serbuk 
nano-polihablur dengan zarah bersaiz dalam julat 30 hingga 250 nm melalui analisis 
belauan sinar-X (XRD) dan mikroskopi penghantaran elektron (TEM). Sampel 
tersebut didedahkan kepada sinar gama Cobalt-60 untuk menentukan kepekatan 
dopan optimum. Kepekatan dopan optimum dalam peratusan jisim atom (at%) ialah 
0.2 at% dopan karbon bagi dop sample (C2) dan 0.2 at% dopan magnesium bagi ko-
dop sampel (C2MG2). Sampel ini disinari elektron bertenaga 10 dan 12 MeV, sinar-
x bertenaga tinggi 6 dan 10 MV pada julat dos rendah 0.5 hingga 4.0 Gy dari mesin 
pemecut linear (LINAC) dan sinar gama Cobalt-60 pada julat dos 0.5 hingga 4.0 Gy 
dan julat dos tinggi dari 10 hingga 100 Gy. Sampel C2 dan C2MG2 mempamerkan 
dua puncak TL pada julat dos tinggi dan satu puncak tunggal pada julat dos rendah. 
Sampel C2MG2 menunjukkan sambutan dos yang linear pada julat dos 0.5 hingga 
4.0 Gy terhadap penyinaran elektron bertenaga 10 dan 12 MeV dan sinar-x bertenaga 
tinggi 6 dan 10 MV. Sampel C2MG2 juga menunjukkan sambutan dos yang linear 
pada julat dos 0.5 hingga 4.0 Gy dan 10 hingga 100 Gy setelah didedahkan pada 
sinar gama Cobalt-60. Kepekaan TL bagi sampel C2MG2 adalah 14.22 lebih tinggi 
daripada kepekaan TL sampel C2 setelah didedahkan pada sinar gama Cobalt-60. 
Kepekaan TL sampel C2MG2 yang dikenakan elektron dan sinar-x bertenaga tinggi, 
masih lebih tinggi daripada kepekaan TL sampel C2 tetapi lebih rendah nilainya 
berbanding kepekaan TL apabila disinari sinar gama Cobalt-60. Penambahan Mg 
turut meminimumkan kepudaran haba bagi sampel C2MG2 dan menambah baik 
kebolehgunaan semula dengan ketara bagi semua tenaga yang diberi. Walau 
bagaimanapun, sampel C2MG2 ditemui lebih peka terhadap cahaya matahari 
berbanding sampel C2 dan kedua-dua sampel tidak peka terhadap cahaya pendarfluor 
walaupun selepas 24 jam pendedahan. Dos boleh kesan minimum oleh sampel 
C2MG2 setelah disinari dengan sinar gama Cobalt-60, elektron dan sinar-x bertenaga 
tinggi, masing-masing ialah 2.76, 12.49 dan 13.83 mGy. Sifat TL bagi sampel 
C2MG2 adalah dipengaruhi oleh tenaga elektron dan foton. Sampel C2MG2 juga 
menunjukkan sifar TL yang baik sebagai dosimeter TL. Nombor atom berkesan, Zeff 
yang diukur bagi C2MG2 ialah 11.14 dan ini merupakan bahan setara tulang. 
Analisis kinetik mengesahkan bahawa lengkung berbara C2MG2 mengikut tertib 
kinetik umum. Menggunakan empat kaedah berbeza, tenaga pengaktifan dihitung 
berada pada julat 1.08 hingga 1.70 eV dan faktor frekuensi antara 1012 hingga 1019 s-

1. Keputusan kajian menunjukkan bahawa nano-polihablur Al2O3:C, Mg kurang peka 
terhadap cahaya dan mempunyai keupayaan sebagai pemantau dos sinaran.
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CHAPTER 1 

1 INTRODUCTION 

1.1 Overview 

Ionizing radiation dosimetry plays a very important role in several fields such 

as radiotherapy, nuclear medicine diagnosis, nuclear medicine, earth science, food 

irradiation, geological and archaeological dating methods, etc. Nowadays, one of the 

most useful dosimetry is thermoluminescence dosimetry where it is generally 

acknowledged to be the most widely used and cost-effective technique for radiation 

dosimetry (ionizing and non-ionizing), being almost certainly the most popular 

technique for routine monitoring of occupational and medical radiation exposure 

(Portal, 1981). In medicine, thermoluminescence dosimeter (TLD) is used to measure 

radiotherapy absorbed dose and surface entrance due to diagnostic imaging 

procedure. In industrial field, it is used for environmental monitoring and personal 

monitoring equipment for radiation workers (Abdullah, 2011). 

The investigation on dosimetric technique has shown promising future of 

thermoluminescence (TL) and has expanded enormously by different materials, 

design and variable after the discovery of Daniels and his co-workers in 1940s. 

When new materials of TL are introduced, they come with advantages and 

disadvantages in a package. Hence, it boosts more researchers to work more deeply 

in this TL area. The development of this research is important because each small 

finding either positive or negative could be the small step for a bigger success. The 

materials used in TLD also extended into various forms such as solid pellet, chips, 

nanoparticle, optical fibers, powders and thin films. In early years, TL materials also 
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widespread from lithium fluoride (LiF) to calcium sulphate (CaSO4), calcium 

fluoride (CaF2), aluminum oxide (Al2O3) and beryllium oxide (BeO). These 

materials were also doped and co-doped with various dopants such as, magnesium 

(Mg), titanium (Ti), cuprum (Cu), phosphorus (P), manganese (Mn), dysprosium 

(Dy), carbon (C), europium (Eu), yttrium (Y), terbium (Tb) and thulium (Tm).  

1.2 Research Background 

As mentioned in section 1.1, there are many materials that have been 

introduced and examined as a good TL candidate. Al2O3 is one of the materials that 

was first experienced as a TL dosimeter. Later, it received much less attention 

because of higher competition with other sensitive phosphors, and apart from several 

isolated studies, it was forgotten (Portal, 1986). However, from time to time, 

nowadays particularly, favorable properties of certain Al2O3 material have been 

demonstrated. In 1990, Akselrod M S and his group has introduced highly sensitive 

TL α-Al2O3:C (TLD-500) single crystal detectors that was found to be 40-60 times 

higher than LiF:Mg, Ti (TLD-100) (Akselrod et al., 1990a). This finding encouraged 

other researchers to believe in Al2O3 material and recognize that dopants in Al2O3 

played a very important role in producing enhanced TL dosimetry.  

In α-Al2O3:C, carbon impurities play important role to produce a highly 

sensitive TLD. It was understood that, there are many factors that influence TL 

properties in production of TLDs such as type of used material, the amount and the 

type of impurities and intentional dopants, their chemical bond and method of 

introduction into the lattice, the thermal, optical and mechanical treatment of the 

material. These parameters decide that how many electrons could trap in the 

forbidden region and how deep the electron have been trapped during a TL process 

(McKinlay, 1981). From earlier studies, it is known that Al2O3 has many useful 

properties as a dosimeter, such as, linearity in a wide dose range, mechanical 

resistance, easy handling and cheapness (Osvay and Biro, 1980). From the useful 

properties of Al2O3 material, one can make the most use of it, if one can overcome 

any of it limitation. 
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In addition to the kind of TL material, radiation type also has a significant 

role in TL properties. There are many type of radiation that have been used and 

studied in TL area, including X-rays and radiation particles such as an electron, 

photon, and neutron (James and Farrington, 1957, Mehta and Sengupta, 1976, 

Hashim et al., 2009, Azziz et al., 1997, Nikiforov et al., 2014, Leong et al., 2015). 

This type of radiation exposure is used in medical field, environmental monitoring, 

personnel monitoring, and food industries that incoherence with increasing TLD 

usage. Upon this reason, TL dosimeter should have the ability to measure all type of 

radiation energy with a wide range of dose independently. Moreover, none of the 

manufactured TLDs can measure all types of radiation energy independently. So, the 

high sensitivity of TLD-500 should be used wisely and its ability should be 

improvised in measuring radiation dose. 

1.3 Research Problem 

It is widely known that, commercialized α-Al2O3:C has higher sensitivity than 

pioneer LiF: Mg, Ti dosimeter. However, higher sensitivity does not mean popular 

choices, since LiF: Mg, Ti still the favorite dosimeter that is used and studied 

because it has a lot more information available after 75 years of its study. While α-

Al2O3:C has been studied for about 25 years, yet there are still lacks of 

knowledgeable information. Hence there are still lots of rooms for the improvement 

in α-Al2O3:C dosimeter. Despite being an unpopular choice, there are still 

workplaces or laboratories that favored TLD-500 over TLD-100H like Defense 

Research Establishment Ottawa (DREO). Radiation Effect Group (REG) at DREO 

chooses TLD-500 because it is better suited to DREO’s need (Erhardt et al., 2001). 

This situation exactly fits the need of producing a better TLD because different 

places or people would acquire different needs. Therefore, different types of 

dosimeters are needed. 

It is also well-known that TLD-500 experiences significant light-induced 

effects (Bos, 2001, Erhardt et al., 2001, McKeever et al., 1995, McKeever and 

Moscovitch, 2003, Moscovitch et al., 1993). This is one of its disadvantages despite 
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being a phenomenal sensitive dosimeter. The light induced effects can be explained 

in two ways. The light-induced TL increases the TL intensity, while light-induced 

fading decreases the TL intensity. So, most of researchers or users of TLD-500 have 

to take a great care towards this dosimeter to avoid any visible light exposure that 

stimulates light-induced effects. As in DREO, a careful lab practice is implemented 

upon the using of TLD-500 to avoid light-induced background or fading under 

laboratory light. This is also the reason to improve this dosimeter light sensitivity by 

using a special case or apply some changes in its material. The light-induced effect is 

also a fading characteristic that could depend upon impurity concentration, annealing 

temperature and times, cooling rates and storage temperatures (Chen and McKeever, 

1997). Hence, changing and/or addition of new impurity, improve the temperature 

and time of annealing or cooling could be the solution for minimizing the light-

induced effect or even better to make it disappear. It may not be a perfect success but 

it can be a progressive way toward success.  

Hence, in order to produce new progression for a better dosimeter, Mg 

element is chosen to co-doped in alumina material where Mg shows prominent 

features in heightened host material sensitivity and small changes in its composition 

give strong effects to main peak intensity of LiF:Mg, Cu, P dosimeter (Knezevic´ et 

al., 2010, Chen and Stoebe, 2002). In addition, Al2O3:C, Mg luminescence detector 

does not require light protection when studied for radiation-induced fluorescence 

(Akselrod and Akselrod, 2006). Adding Mg could be the solution of light sensitivity 

characteristic for Al2O3 family for TL material. Rodriguez (2010) also stated in his 

thesis that annealing of single crystal Al2O3:C, Mg would result in increasing of 

recombination centers that would improve its sensitivity comparable to Al2O3:C or 

even greater than Al2O3:C in certain dosimetric applications (Rodriguez, 2010). In Saharin 

et al. (2014) study of TL in Al2O3:C, Mg under 5 – 70 Gy gamma irradiation prove 

that, adding Mg as a co-dopant enhanced TL response.  Hence, Mg element is a great 

choice of impurity, as it has shown remarkable features of increasing TL sensitivity 

and can avoid unnecessary light protection.  
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Most of the TL dosimeters are in the form of crystal because TL sensitivity of 

crystal is higher than other phase due to TL mechanism involved. TLD-500 which is 

in the form of single crystal that can be prepared using Czochralski method, 

precipitation and evaporation method, chemical vapor deposition, etc. These are 

complex preparation methods to achieve single crystal material. Thus, study aims to 

prepare new material without disregarding the crystal form but with some 

modification in preparation method by choosing polycrystalline form. The 

polycrystalline preparation method is easier than crystalline growth method, where it 

can be produced using hot pressed method. The hot pressed method is a technique 

where desire composition is mixed. Then, the mixture is put in a graphite mold, heat 

is provided and the sample is pressed. Hence, it is simpler, cheaper and easier 

method to employ with well-equipped laboratories. In addition, nanostructured TL 

material has shown prominent enhancement in TL response of high dose in many 

study (Bitencourt and Tatumi, 2009, de Azevedo et al., 2006, Prathibha et al., 2014, 

Salah et al., 2011). However, they were less studied for lower dose measurement and 

light induced effect occurs mainly in single microcrystalline form. Therefore, nano-

polycrystalline sample with nanoparticle size is preferred for this study. 

Considering these above said factors, carbon doped alumina co-doped with 

magnesium (Al2O3:C, Mg) nano-polycrystalline powder was carefully chosen for TL 

study as an alternative to single crystal TLD-500. To the best of our knowledge, no 

other study had synthesized a nano-polycrystalline Al2O3:C, Mg for TL properties 

measurement. Furthermore, TL performance of this newly nano-polycrystalline 

Al2O3:C, Mg comprised of various ionizing radiation such as 60Co gamma rays (Co-

60), high energy x-rays (6 and 10 MV) and high energy electron (10 and 12 MeV) 

with a wide range of doses assessed at room temperature. This study also emphasize 

on the enhancement of light-sensitivity of the newly proposed TLD. 
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1.4 Research Objectives 

This research embarks on the following objectives: 

1. To characterize crystalline state and material composition of Al2O3:C, 

Mg. 

2. To determine TL dosimetric properties of Al2O3:C, Mg irradiated with 

various x-rays (1.25 MeV Co-60, 6 and 10 MV) and electron energies (10 

and 12MeV). 

3. To evaluate the TL kinetic parameter of the Al2O3:C, Mg irradiated to 

various ionizing radiation (Co-60 gamma, high energy x-rays and 

electron). 

1.5 Research Scope 

This research emphasis on the Al2O3:C, Mg powder as a TL material. The 

selected samples of Al2O3:C and Al2O3:C, Mg powder undergo structural and 

composition elements measurement using; X-ray diffraction (XRD) analysis, 

Transmission Electron Microscopy (TEM) analysis and Field Emission Scanning 

Electron Microscope – Energy Dispersive X-ray (FESEM-EDX) elemental analysis. 

Al2O3:C, Mg and Al2O3:C were then exposed to various photons (Cobalt-60 at 

Universiti Kebangsaan Malaysia, 6 and 10 MV at Institut Kanser Negara and 

Hospital Sultan Ismail) and high energy electron (10 and 12 MeV at Institut Kanser 

Negara and Hospital Sultan Ismail) at the same time. This experiment is designed to 

investigate the relationship of annealing temperature and time with TL properties, TL 

glow curve, linearity, sensitivity, fading, minimum detectable dose and 

reproducibility according to the exposed radiation. Both materials are compared in 

order to analyze the TL properties of Al2O3:C, Mg powder as new developed TL 

material from Al2O3:C family. Photon energy response for Al2O3:C, Mg powder is 

calculated using the mass energy absorption coefficient ratio (MEACR) method. The 

kinetic parameters also obtained using initial rise method, peak shape method, whole 
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glow peak method, and curve fitting method to understand TL phenomenon and trap 

nature of the chosen material.  

1.6 Research Significances 

The relevance of the present study relates to the solving of problems and the 

needs of technology to prepare better and efficient TL material for various 

applications. However, this outstanding TL material cannot be achieved without 

great research and deep understanding in this area. Thus, detailed study of the 

enhanced TL characteristic by adding co-dopant into host material becomes essential 

to determine the effect and thus contributes to further material development. The 

effect could be explained by TL properties in favor of this study that reckoned to be 

useful in TL study which provides the knowledge on the suitability of Al2O3:C, Mg 

powder as a radiation measurement tool. In addition, this study would also offer 

valuable information on characterizing and handling Al2O3:C, Mg powder as TL 

material. 

1.7 Outline 

This thesis describes the TL characterization of carbon doped alumina co-

doped with magnesium (Al2O3:C, Mg) irradiated by various type of ionizing 

radiation. The thesis is divided into five chapters. Chapter 1 is the introduction of the 

study, which explains the purpose of this study, its importance, and the justification 

of material selection. Chapter 2 describes some background knowledge on TL 

phenomenon, review on the previous works done on alumina material in TL area, 

and basic principles of TL properties engaged in this study. Details of the sample 

preparation, design of the experimental and the measurement techniques employed 

are outlined in Chapter 3. In Chapter 4, all the experimental results and discussion 

are presented. Finally, Chapter 5 presents the conclusions of the research and future 

outlook of the study. Additional information associated with this thesis is given in 

the Appendices. 
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