FEASIBILITY OF USING CARBON DOPED ALUMINIUM OXIDE CO-DOPED WITH MAGNESIUM AS A THERMOLUMINESCENCE DOSIMETER

AINUN JARIAH AWANG

UNIVERSITI TEKNOLOGI MALAYSIA

FEASIBILITY OF USING CARBON DOPED ALUMINIUM OXIDE CO-DOPED WITH MAGNESIUM AS A THERMOLUMINESCENCE DOSIMETER

AINUN JARIAH BINTI AWANG

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Physics)

> Faculty of Science Universiti Teknologi Malaysia

> > APRIL 2017

DEDICATION

To my beloved mom My late father My supportive in laws My loving husband My precious daughter My greatest family & My loyal friends

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful, Alhamdulillah, all praises to Allah s.w.t. for the strengths and His blessings upon completing this thesis. First and foremost, I would like to express my greatest gratitude to my supervisor and ex-supervisor, Dr. Abd Khamim bin Ismail and Prof. Dr. Husin bin Wagiran for their unending support, supervision, guidance and advice throughout this study. My deepest appreciation to my co-supervisor, Dr. Mohamad Alam Saeed and to all Health Physics Research Group members for being very helpful, informative and supportive all the way in my postgraduate years. Thank you to En. Saiful, En. Abdul Rahman, En. Jaafar, and Pn. Anisah for their assistance in my laboratory works. I am doubtly grateful to Nuclear Science Department, Universiti Kebangsaan Malaysia, Radiotherapy and Oncology Department of National Cancer Institute in Putrajaya and Oncology Treatment Center of Hospital Sultan Ismail in Johor Bahru for giving an outstanding guidance and help for sample irradiation process in this study, in particular, En. Ahmad Takim Saring, Pn Mahzom Pawanchek, Pn Fiza, En Hassan Ali, dan Cik Zati Hani. Finally, to my parents and best friends, thank you for your support, help and consideration throughout this project.

ABSTRACT

Nano-polycrystalline samples of aluminum oxide doped carbon (Al₂O₃:C) and aluminum oxide doped carbon co-doped with magnesium (Al₂O₃:C, Mg) were investigated in search for the most efficient thermoluminescence (TL) dosimeter with low sensitivity to light and applicable for various radiation energy. Six samples were prepared and the samples were found to be nano-polycrystalline powder with particle size in the range of 30 to 250 nm through X-ray Diffraction (XRD) and Transmission Electron Microscope (TEM) analysis. Those samples were exposed to Cobalt-60 gamma rays to determine the optimum concentration of dopant. The optimum concentration of dopant in atomic weight percentage (at%) is 0.2 at% of carbon dopant for doped sample (C2) and 0.2 at% of magnesium dopant of co-doped sample (C2MG2). Samples with optimum dopant were irradiated by 10 and 12 MeV electrons, 6 and 10 MV high energy x-rays over a lower dose range 0.5 to 4.0 Gy from linear accelerator (LINAC) and by Cobalt-60 gamma rays over the dose ranges of 0.5 to 4.0 Gy, and a higher dose range 10 to 100 Gy. Sample C2 and C2MG2 exhibit two TL peaks at higher dose while single peak at lower dose. Sample C2MG2 shows a linear dose response over a dose range of 0.5 to 4.0 Gy subjected to 10 and 12 MeV electrons and 6 and 10 MV high energy x-rays. Sample C2MG2 also shows a linear dose response over a dose range of 0.5 to 4.0 Gy and 10 to 100 Gy when exposed to Cobalt-60 gamma rays. TL sensitivity of sample C2MG2 is 14.22 higher than that of sample C2 when exposed to Cobalt-60 gamma rays. TL sensitivity of sample C2MG2 subjected to electron and high energy x-rays irradiation is still higher than that of sample C2 but lower in value compared to TL sensitivity of sample C2MG2 subjected to Cobalt-60 gamma rays. Addition of Mg has also minimized thermal fading of sample C2MG2 and improved reproducibility significantly for all delivered energy. However, sample C2MG2 is more sensitive to sunlight compared to sample C2, and both samples were not sensitive to fluorescence light even after 24 h of exposure. The minimum detectable dose of sample C2MG2 subjected to Cobalt-60 gamma rays, electron and high energy x-rays are 2.76, 12.49 and 13.83 mGy, respectively. TL properties of sample C2MG2 are influenced by the energy of electrons and photons. Sample C2MG2 also shows good TL properties as TL dosimeter. The measured effective atomic number, Z_{eff} of sample C2MG2 is 11.14 and can be considered as bone-equivalence material. Kinetic analysis revealed that the glow curve of sample C2MG2 followed general kinetic order. Using four different methods, the activation energies were calculated to be in the range of 1.08 to 1.70 eV and frequency factor is between 10^{12} to 10^{19} s⁻¹. The findings of the study show that nano-polycrystalline Al₂O₃:C, Mg is less affected by the light and has a capability to be used in radiation dose monitoring.

ABSTRAK

Sampel nano-polihablur aluminium oksida berdopkan karbon (Al₂O₃:C) dan aluminium oksida berdopkan karbon dan diko-dopkan bersama magnesium (Al₂O₃:C, Mg) telah diselidiki untuk memperoleh dosimeter termopendarcahaya (TL) yang paling cekap dengan rendah peka cahaya dan berguna untuk pelbagai tenaga sinaran. Enam sampel telah disediakan dan sampel ini telah ditemui sebagai serbuk nano-polihablur dengan zarah bersaiz dalam julat 30 hingga 250 nm melalui analisis belauan sinar-X (XRD) dan mikroskopi penghantaran elektron (TEM). Sampel tersebut didedahkan kepada sinar gama Cobalt-60 untuk menentukan kepekatan dopan optimum. Kepekatan dopan optimum dalam peratusan jisim atom (at%) ialah 0.2 at% dopan karbon bagi dop sample (C2) dan 0.2 at% dopan magnesium bagi kodop sampel (C2MG2). Sampel ini disinari elektron bertenaga 10 dan 12 MeV, sinarx bertenaga tinggi 6 dan 10 MV pada julat dos rendah 0.5 hingga 4.0 Gy dari mesin pemecut linear (LINAC) dan sinar gama Cobalt-60 pada julat dos 0.5 hingga 4.0 Gy dan julat dos tinggi dari 10 hingga 100 Gy. Sampel C2 dan C2MG2 mempamerkan dua puncak TL pada julat dos tinggi dan satu puncak tunggal pada julat dos rendah. Sampel C2MG2 menunjukkan sambutan dos yang linear pada julat dos 0.5 hingga 4.0 Gy terhadap penyinaran elektron bertenaga 10 dan 12 MeV dan sinar-x bertenaga tinggi 6 dan 10 MV. Sampel C2MG2 juga menunjukkan sambutan dos yang linear pada julat dos 0.5 hingga 4.0 Gy dan 10 hingga 100 Gy setelah didedahkan pada sinar gama Cobalt-60. Kepekaan TL bagi sampel C2MG2 adalah 14.22 lebih tinggi daripada kepekaan TL sampel C2 setelah didedahkan pada sinar gama Cobalt-60. Kepekaan TL sampel C2MG2 yang dikenakan elektron dan sinar-x bertenaga tinggi, masih lebih tinggi daripada kepekaan TL sampel C2 tetapi lebih rendah nilainya berbanding kepekaan TL apabila disinari sinar gama Cobalt-60. Penambahan Mg turut meminimumkan kepudaran haba bagi sampel C2MG2 dan menambah baik kebolehgunaan semula dengan ketara bagi semua tenaga yang diberi. Walau bagaimanapun, sampel C2MG2 ditemui lebih peka terhadap cahaya matahari berbanding sampel C2 dan kedua-dua sampel tidak peka terhadap cahaya pendarfluor walaupun selepas 24 jam pendedahan. Dos boleh kesan minimum oleh sampel C2MG2 setelah disinari dengan sinar gama Cobalt-60, elektron dan sinar-x bertenaga tinggi, masing-masing ialah 2.76, 12.49 dan 13.83 mGy. Sifat TL bagi sampel C2MG2 adalah dipengaruhi oleh tenaga elektron dan foton. Sampel C2MG2 juga menunjukkan sifar TL yang baik sebagai dosimeter TL. Nombor atom berkesan, Z_{eff} yang diukur bagi C2MG2 ialah 11.14 dan ini merupakan bahan setara tulang. Analisis kinetik mengesahkan bahawa lengkung berbara C2MG2 mengikut tertib kinetik umum. Menggunakan empat kaedah berbeza, tenaga pengaktifan dihitung berada pada julat 1.08 hingga 1.70 eV dan faktor frekuensi antara 10¹² hingga 10¹⁹ s⁻ ¹. Keputusan kajian menunjukkan bahawa nano-polihablur Al₂O₃:C. Mg kurang peka terhadap cahaya dan mempunyai keupayaan sebagai pemantau dos sinaran.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	II
	DEDICATION	III
	ACKNOWLEDGEMENT	IV
	ABSTRACT	V
	ABSTRAK	VI
	TABLE OF CONTENTS	VII
	LIST OF TABLES	XI
	LIST OF FIGURES	XIV
	LIST OF ABBREVIATION	XX
	LIST OF SYMBOLS	XXII
	LIST OF APPENDICES	XXIV
1	INTRODUCTION	1
	1.1 Overview	1
	1.2 Research Background	2
	1.3 Research Problem	3
	1.4 Research Objectives	6
	1.5 Research Scope	6
	1.6 Research Significances	7
	1.7 Outline	7
2	LITERATURE REVIEW	8
	2.1 Introduction	8
	2.2 Development in Al ₂ O ₃ as TL material	8
	2.3 TL dosimeter characteristic	17

2.3.1	Annealing	18
2.3.2	Glow curve analysis	19
2.3.3	Linearity/Dose Response	20
2.3.4	TL sensitivity	21
2.3.5	Fading	22
2.3.6	Reproducibility	23
2.3.7	Energy response and effective atomic number (Z_{eff})	24
2.3.8	Minimum detectable dose (MDD)	27
2.3.9	Accuracy of dose performance	28
RESEARC	H METHODOLOGY	30
3.1 Introd	uction	30
3.2 Sampl	e preparation	37
3.3 X-ray	diffraction analysis	38
3.4 Transı	mission Electron Microscope (TEM)	38
3.5 Eleme	ental composition analysis	39
3.6 Basic	TL procedure	39
3.6.1	Storage and handling	39
3.6.2	Annealing	41
3.6.3	Irradiation	42
3.6.4	Read-out	47
3.7 TLD r	reader	47
3.7.1	Background noise	50
3.7.2	PMT noise	50
3.7.3	Reference light	51
3.8 TL pro	operties measurements	51
3.8.1	Optimum concentration	51
3.8.2	Time Temperature Profile (TTP) setting optimization	52
3.8.3	Linearity	52
3.8.4	Sensitivity	53
3.8.5	Thermal fading	53
3.8.6	Optical fading	55
3.8.7	Reproducibility	55
3.8.8	Minimum detectable dose	55

3

3.9 Energy	Response	55
3.10 TL ki	netic parameters	57
3.10.1	Initial Rise Method	57
3.10.2	Peak Shape Method	58
3.10.3	Whole Glow-peak Method	60
3.10.4	Glow Curve Fitting Method	61
RESULTS	AND DISCUSSION	64
4.1 Introdu	ction	64
4.2 Structu	ral Analysis	64
4.2.1	X-ray diffraction (XRD) analysis	65
4.2.2	Transmission Electron Microscopy (TEM) analysis	68
4.2.3	Energy Dispersive X-Ray – Scanning Electron Micro	oscopy
	(EDX-SEM) analysis	69
4.3 TL pro	perties	73
4.3.1	Annealing optimization	73
4.3.2	Time temperature profile (TTP) setting	76
4.3.3	Concentration dopant and co-dopant optimization	80
4.3.4	Glow curve analysis	83
4.3.5	Linearity	90
4.3.6	Dose Response	98
4.3.7	Sensitivity	102
4.3.8	Thermal fading	104
4.3.9	Optical fading/ Light-induced effect	110
	4.3.9.1 Sunlight	111
	4.3.9.2 Fluorescence	114
4.3.10	Reproducibility	118
4.3.11	Minimum detectable dose (MDD)	121
4.3.12	Accuracy of dose performance	122
4.3.13	Effective atomic number (Z_{eff})	124
4.3.14	Energy response	126
4.4 TL kin	etic parameters	130
4.4.1	Initial rise method	130
4.4.2	Peak shape method	133

4

4.4.3 Whole glow peak method	136
4.4.4 Curve fitting method	140
4.5 Comparison of TL kinetic parameters calculated using initial	
rise, peak shape, whole glow peak and curve fitting method	143
4.6 Summary of the findings	145
5 CONCLUSION	149
5.1 Introduction	149
5.2 Conclusion.	149
5.3 Recommendations	154
REFERENCES	155
Appendices (A-F) 165 -	· 184

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Selected TL development of Al ₂ O ₃ phosphor from 1990	
	until 2015	10
3.1	List of samples concentration	37
3.2	Summary of irradiation sources, radiation energies and dose	
	ranges used	43
3.3	TTP setting for TL sample	49
3.4	Set up of TTP at acquisition temperature of 300 $^{\circ}$ C	52
3.5	Linearity test for C2 and C2MG2 powder sample	53
3.6	Thermal fading test for powder sample	54
4.1	List of calculated crystallite size for each element (i.e.	
	Al ₂ O ₃ , C, and Mg) using Scherrer's Equation based on	
	details from XRD analysis	68
4.2	Fractional weights of C2 and C2MG2 obtained by	
	theoretical calculation and FESEM-EDX analysis	73
4.3	Optimize annealing set up for carbon doped alumina and	
	carbon doped alumina co-doped magnesium	76
4.4	Time temperature profile setting (TTP) used in this study	80
4.5	TL response for every sample and relative response	
	function to C1 irradiated at 3 Gy of 12 MeV electrons	82
4.6	Summary of straight line equation and coefficient of	
	determination for C2 subjected to various type of radiation	94
4.7	Summary of straight line equation and coefficient of	
	determination for C2MG2 subjected to various type of	
	radiation	98
4.8	TL sensitivities for C2 and C2MG2 irradiated at different	

	energy consist of Co-60, 10 and 12 MeV of electron energy,	
	6 and 10 MV of high energy x-rays respectively	102
4.9	Relative sensitivity of C2MG2 to C2 at different radiation	
	source and various dose range	104
4.10	Residual signal for C2 and C2MG2 after 100-112 days of	
	irradiation at different energy i.e Co-60, electron and high	
	energy x-rays	109
4.11	Loss per month for C2 and C2MG2 of irradiation at	
	different energy i.e Co-60, electron and high energy x-rays	110
4.12	The summary of relative TL intensity for C2 and C2MG2	
	after direct exposure to sunlight for different time intervals	114
4.13	The summary of relative TL intensity for C2 and C2MG2	
	after direct exposure to fluorescence for different time	
	intervals	117
4.14	Relative standard deviation of C2 and C2MG2 TL intensity	
	for five successive cycles of annealing-irradiation-readout	
	subjected to various ionizing radiations	120
4.15	Calculated MDD and calibration factor for C2 and C2MG2	
	for Co-60, electron, and high energy x-rays	121
4.16	Values of <i>R</i> subjected to various energy	124
4.17	The nominal and measure effective atomic number, Zeff of	
	the TL samples	126
4.18	The $S(E)$ and RER values of C2 and C2MG2 calculated	
	using mass energy absorption coefficient ratio method	127
4.19	The $S(E)$ and RER values of bone calculated using mass	
	energy absorption coefficient ratio method	128
4.20	Mean activation energies, E, frequency factor, s, and	
	geometric parameters value of C2MG2 glow peak subjected	
	to 4 Gy of Co-60 gamma, 10 MeV electrons, 10 MV high	
	energy x-rays irradiation obtained using peak shape method	135
4.21	Kinetic parameters of C2MG2 glow peak subjected to 4 Gy	
	of Co-60 gamma irradiations for various kinetic orders, b	
	using whole glow curve method	137

4.22	Kinetic parameters of C2MG2 glow peak subjected to 4 Gy	
	of 10 MeV electrons irradiation for various kinetic orders, b	
	using whole glow curve method	138
4.23	Kinetic parameters of C2MG2 glow peak subjected to 4 Gy	
	of 10 MV high energy x-rays irradiation for various kinetic	
	orders, b using whole glow curve method	139
4.24	FOM calculations for several activation energy values in	
	glow curve fitting method for C2MG2 glow peak subjected	
	to 4 Gy of Co-60 gamma irradiations	140
4.25	FOM calculations for several activation energy values in	
	glow curve fitting method for C2MG2 glow peak subjected	
	to 4 Gy of 10 MeV electrons irradiation	141
4.26	FOM calculations for several activation energy values in	
	glow curve fitting method for C2MG2 glow peak subjected	
	to 4 Gy of 10 MV high energy x-rays irradiation	142
4.27	Summary of calculated TL kinetic parameters based on the	
	analysis from TL glow curve of C2MG2 subjected to 4 Gy	
	of various ionizing radiations	144
4.28	Thermoluminescence properties of C2, C2MG2 and TLD-	
	500	146

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Graph of TL intensity versus dose	21
2.2	Relative photon energy response for a few indicated TL	
	material relative to air. (McKinlay, 1981)	25
2.3	Relative importance of the three major types of γ -ray	
	equation (Attix, 2008)	26
3.1	Flow chart of methodology for present study	36
3.2	Powder grinding in agate mortar	38
3.3	Samples container and storage	40
3.4	Oven set up. a) Sample in the oven. b) Temperature and	
	time setting using THERMOSOFT program.	42
3.5	Gamma Irradiator at Universiti Kebangsaan Malaysia	
	(Gammacell 220 Excel)	44
3.6	LINAC Elekta Synergy Agility at Institut Kanser Negara	45
3.7	LINAC Siemens at Hospital Sultan Ismail	45
3.8	High energy x-rays and Electron irradiation set up	46
3.9	3500 Harshaw TLD reader	48
3.10	Powder dispenser	48
3.11	TL glow curve builds from chosen TTP setting	50
3.12	Geometrical shape parameters for peak shape method	58
4.1	XRD pattern of sample C1, C2, C2MG1, and C2MG2	65
4.2	XRD pattern of sample C2MG2 focusing on 2Theta from	
	30° to 40°	66
4.3	XRD pattern of sample C2MG2 with specific hkl	
	orientation for each element (i.e. Al ₂ O ₃ , C, and Mg)	67
4.4	TEM image of nano-polycrystalline C2MG2. The digital	

	diffraction pattern is inserted	69
4.5	SEM electron image of ; (a) C2 and (b) C2MG2	71
4.6	EDX analysis of; (a) C2 and (b) C2MG2	72
4.7	TL glow curves for carbon doped alumina co-doped	
	magnesium at different annealing time	75
4.8	Annealing temperature optimization for carbon doped	
	alumina co-doped magnesium with standard deviation	75
4.9	The glow curves of TL sample a) C2 and b) C2MG2 for	
	different heating rate	77
4.10	TTP optimization for Al2O3:C with standard deviation	78
4.11	TTP optimization for Al2O3:C, Mg with standard	
	deviation	79
4.12	TL glow curve for C1, C2, and C3 irradiate at 3 Gy of 12	
	MeV electrons	82
4.13	TL glow curve for C2MG1 and C2MG2 irradiate at 3Gy of	
	12 MeV electrons	83
4.14	TL glow curve for C2 irradiated at dose ranging from 0.5-	
	4.0 Gy of Co-60	84
4.15	TL glow curve for C2MG2 irradiated at dose ranging from	
	0.5-4.0 Gy of Co-60	85
4.16	TL glow curve for C2 irradiated at dose ranging from 0.5-	
	4.0 Gy of 10 MeV and 12 MeV electrons	86
4.17	TL glow curve for C2MG2 irradiated at dose ranging from	
	0.5-4.0 Gy of 10 MeV and 12 MeV electrons	87
4.18	TL glow curve for C2 irradiated at dose ranging from 0.5-	
	4.0 Gy of 6 MV and 10 MV high energy x-rays	88
4.19	TL glow curve for C2MG2 irradiated at dose ranging from	
	0.5-4.0 Gy of 6 MV and 10 MV high energy x-rays	89
4.20	TL glow curve for C2MG2 irradiated at dose 4.0 Gy of	
	Co-60, 10 MeV electrons and 10 MV high energy x-rays	90
4.21	TL linearity properties for C2 irradiated at various dose	
	ranging from 0.5 to 4.0 Gy of Cobalt-60	92
4.22	TL linearity properties for C2 irradiated at dose ranging	

	from 0.5 to 4.0 Gy of 10 MeV electrons	92
4.23	TL linearity properties for C2 irradiated at various dose	
	ranging from 0.5 to 4.0 Gy of 12 MeV electrons	93
4.24	TL linearity properties for C2 irradiated at various dose	
	ranging from 0.5 to 4.0 Gy of 6 MV high energy x-rays	93
4.25	TL linearity properties for C2 irradiated at various dose	
	ranging from 0.5 to 4.0 Gy of 10 MV high energy x-rays	94
4.26	TL linearity properties for C2MG2 irradiated at various	
	dose ranging from 0.5 to 4.0 Gy of Co-60	95
4.27	TL linearity properties for C2MG2 irradiated at various	
	dose ranging from 0.5 to 4.0 Gy of 10 MeV electrons	96
4.28	TL linearity properties for C2MG2 irradiated at various	
	dose ranging from 0.5 to 4.0 Gy of 12 MeV electrons	96
4.29	TL linearity properties for C2MG2 irradiated at various	
	dose ranging from 0.5 to 4.0 Gy of 6 MV high energy x-	
	rays	97
4.30	TL linearity properties for C2MG2 irradiated at various	
	dose ranging from 0.5 to 4.0 Gy of 10 MV high energy x-	
	rays	97
4.31	The linearity index for C2 irradiated at dose ranging from	
	0.5 to 4.0 Gy of 1.25 MeV Co-60 gamma, 10 MeV	
	electrons, 12 MeV electrons, 6 MV high energy x-rays,	
	and 10 MV high energy x-rays irradiation	100
4.32	The linearity index for C2MG2 irradiated at dose ranging	
	from 0.5 to 4.0 Gy of 1.25 MeV Co-60 gamma, 10 MeV	
	electrons, 12 MeV electrons, 6 MV high energy x-rays,	
	and 10 MV high energy x-rays irradiation	101
4.33	Thermal fading of C2 and C2MG2 irradiated at 10 Gy of	
	Co-60	105
4.34	Thermal fading of C2 and C2MG2 irradiated at 100 Gy of	
	Co-60	106
4.35	Thermal fading of C2 and C2MG2 irradiated at 4 Gy of 10	
	MeV electrons	107

4.36	Thermal fading of C2 and C2MG2 irradiated at 4 Gy of 10	
	MV high energy x-rays	108
4.37	Thermal fading of C2MG2 irradiated at 4.0 Gy for various	
	energy of Co-60, 10 MeV electron and 10 MV high energy	
	x-rays	108
4.38	Sunlight fading of C2 and C2MG2 sample irradiated to	
	Co-60 at dose 3 Gy	111
4.39	Sunlight fading of C2 and C2MG2 sample irradiated to 10	
	MeV electrons at dose 3 Gy	112
4.40	Sunlight fading of C2 and C2MG2 sample irradiated to 10	
	MV high energy x-rays at dose 3 Gy	113
4.41	Fluorescence fading of C2 and C2MG2 sample irradiated	
	to Co-60 at dose 3 Gy	115
4.42	Fluorescence fading of C2 and C2MG2 sample irradiated	
	to 10 MeV electrons at dose 3 Gy	116
4.43	Fluorescence fading of C2 and C2MG2 sample irradiated	
	to 10 MV high energy x-rays at dose 3 Gy	116
4.44	Reproducibility of C2 and C2MG2 for five successive	
	cycles of annealing-irradiation-readout subjected to Co-60	
	at dose 3 Gy	118
4.45	Reproducibility of C2 and C2MG2 for five successive	
	cycles of annealing-irradiation-readout subjected to 10	
	MeV electrons at dose 3 Gy	119
4.46	Reproducibility of C2 and C2MG2 for five successive	
	cycles of annealing-irradiation-readout subjected to 10 MV	
	high energy x-rays at dose 3 Gy	119
4.47	Trumpet curve of C2MG2 subjected to Co-60 gamma at 3	
	Gy	122
4.48	Trumpet curve of C2MG2 subjected to electron at 3 Gy	123
4.49	Trumpet curve of C2MG2 subjected to high energy x-rays	
	at 3 Gy	123
4.50	Comparison of RER of C2 and C2MG2 obtained by mass	
	energy absorption coefficient ratio method	127

4.51	Comparison of <i>RER</i> of bone and C2MG2 obtained by mass	
	energy absorption coefficient ratio method	129
4.52	The ln of TL intensity against $1/kT$ of the low temperature	
	peak for C2MG2 subjected at 4 Gy of Co-60 gamma	
	irradiations	131
4.53	The ln of TL intensity against $1/kT$ of the low temperature	
	peak for C2MG2 subjected to 4 Gy of 10 MeV electrons	
	irradiation	132
4.54	The ln of TL intensity against $1/kT$ of the low temperature	
	peak for C2MG2 subjected to 4 Gy of 10 MV high energy	
	x-rays irradiation	132
4.55	Geometric shape parameters of C2MG2 glow peak	
	subjected to 4 Gy of Co-60 gamma irradiations in peak	
	shape method	133
4.56	Geometric shape parameters of C2MG2 glow peak	
	subjected to 4 Gy of 10 MeV electrons irradiation in peak	
	shape method	134
4.57	Geometric shape parameters of C2MG2 glow peak	
	subjected to 4 Gy of 10 MV high energy x-rays irradiation	
	in peak shape method	134
4.58	Graph of $\ln(TL/n^b)$ against $1/kT$ of C2MG2 area under the	
	glow curve subjected to 4 Gy of Co-60 gamma irradiation	
	in whole glow curve method	137
4.59	Graph of $\ln(TL/n^b)$ against $1/kT$ of C2MG2 area under the	
	glow curve subjected to 4 Gy of 10 MeV electron	
	irradiation in whole glow curve method	138
4.60	Graph of $\ln(TL/n^b)$ against $1/kT$ of C2MG2 area under the	
	glow curve subjected to 4 Gy of 10 MV high energy x-rays	
	irradiation in whole glow curve method	139
4.61	Best fit glow curve of C2MG2 subjected to 4 Gy of Co-60	
	gamma irradiation using curve fitting method. ($E = 1.7 \text{ eV}$)	141
4.62	Best fit glow curve of C2MG2 subjected to 4 Gy of 10	
	MeV electron irradiation using curve fitting method. ($E =$	142

4.63 Best fit glow curve of C2MG2 subjected to 4 Gy of 10 MV high energy x-rays irradiation using curve fitting method. (E = 1.4 eV) 143

LIST OF ABBREVIATION

CF	-	Calibration factor
CS	-	Combustion synthesis
D _{LDL}	-	Lower detection limit
DREO	-	Defense Research Establishment Ottawa
EDX	-	Energy Dispersive X-ray
FESEM	-	Field Emission Scanning Electron Microscope
FOM	-	Figure of merit
FWHM	-	Full width at half maximum
HSI	-	Hospital Sultan Ismail
ICDD	-	International Centre for Diffraction Data
ICSD	-	Inorganic Crystal Structure Database
IEC	-	International Electrotechnical Commission
IKN	-	Institut Kanser Negara
LED	-	Light-emitting diode
LINAC	-	Linear accelerator
LLD	-	Lowest level of detection
MDD	-	Minimum detectable dose
MEACR	-	Mass energy absorption coefficient ratio
NIST	-	National Institute of Standards and Technology
OSL	-	Optically Stimulated Luminescence
PC	-	Personal computer
PDD	-	Percentage depth dose
PMT	-	Photomultiplier tube
REG	-	Radiation Effect Group
RER	-	Relative energy response
RL	-	Radioluminescence
SDD	_	Source detector distance

TEM	-	Transmission Electron Microscope
TL	-	Thermoluminescence
TLD	-	Thermoluminescence dosimeter
TSPs	-	Thermally Stimulated Processes
TTP	-	Time temperature profile
UK	-	United Kingdom
UKM	-	Universiti Kebangsaan Malaysia
USA	-	United States of America
UV	-	Ultraviolet
WinREMS	-	Windows Radiation Evaluation and Management system
WF	-	Wedge factor
XRD	-	X-ray Diffraction

LIST OF SYMBOLS

a_i	-	Fraction electron content of element <i>i</i>
\overline{B}	-	Mean TL background signal from annealed and un-irradiated
		dosimeter
b	-	Order of kinetics
D	-	Absorbed dose
D_{TLD}	-	Absorbed dose of the TLD
D_o	-	Minimum detectable dose
Ε	-	Activation energy
F	-	Calibration factor in Gy/TL unit
F_o	-	Intercept-y ftom graph TL response against absorbed dose
F(D)	-	Dose response at dose D
$F(D_1)$	-	Dose response at the lowest dose D_I
$F(D)_{material}$	-	Sensitivity of a material
$F(D)_{TLD-100}$	-	Sensitivity of TLD-100
f(D)	-	Linearity index
Ι	-	TL intensity
I_M	-	Maximum TL intensity
k	-	Boltzmann's constant
\overline{M}_{i}	-	Average TL signal of each dose level
M_j	-	Reading of the <i>j</i> th dosimeter
т	-	Slope from dose response graph
Ν	-	Trap concentration (cm ⁻¹)
N_A	-	Avogadro's number
n	-	Number of trapped electron
n _o	-	Initial number of trapped electron at time $t = 0$
р	-	Probability escape of an electron

-	Regression coefficient
-	Sensitivity
-	Relative sensitivity
-	Photon energy response
-	Frequency factor
-	Pre-exponential factor
-	Absolute temperature
-	Maximum temperature
-	Temperature of half intensity on the rising side of glow curve
-	Temperature of half intensity on the falling side of glow curve
-	Time
-	Weight fraction of the element <i>i</i>
-	Effective atomic number
-	Alpha-phase
-	Bragg angle
-	Density
-	Fluence
-	Geometric factor
-	Half-life of a trap
	-

 β - Heating rate

 R^2

S

s s'

Т

 T_M T_1

 T_2

t W_i

 Z_{eff}

 α θ

ρ

ø

μ

 $au_{1/2}$

S(D)

 $S_E(E)$

- *τ* Mean lifetime
- $\sigma_{\scriptscriptstyle B}$ Standard deviation from mean background signal
- δ High temperature half width
- τ Low temperature half width
- ω Total half intensity width
- λ Incident wavelength

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	The basic theory of thermoluminescence (TL) phenomena	
	and related fields of the study	166
В	Formulas of different methods used to determine TL	
	kinetic parameters	174
С	TL glow curve at dose range between 10 to 100 Gy	
	exposed to Co-60 gamma irradiation	176
D	Theoretical calculation of weight fraction and effective	
	atomic number, Z_{eff} of the TL sample	179
E	Table of the mass energy absorption coefficients	183
F	List of Publications and Conferences	184

CHAPTER 1

INTRODUCTION

1.1 Overview

Ionizing radiation dosimetry plays a very important role in several fields such as radiotherapy, nuclear medicine diagnosis, nuclear medicine, earth science, food irradiation, geological and archaeological dating methods, etc. Nowadays, one of the most useful dosimetry is thermoluminescence dosimetry where it is generally acknowledged to be the most widely used and cost-effective technique for radiation dosimetry (ionizing and non-ionizing), being almost certainly the most popular technique for routine monitoring of occupational and medical radiation exposure (Portal, 1981). In medicine, thermoluminescence dosimeter (TLD) is used to measure radiotherapy absorbed dose and surface entrance due to diagnostic imaging procedure. In industrial field, it is used for environmental monitoring and personal monitoring equipment for radiation workers (Abdullah, 2011).

The investigation on dosimetric technique has shown promising future of thermoluminescence (TL) and has expanded enormously by different materials, design and variable after the discovery of Daniels and his co-workers in 1940s. When new materials of TL are introduced, they come with advantages and disadvantages in a package. Hence, it boosts more researchers to work more deeply in this TL area. The development of this research is important because each small finding either positive or negative could be the small step for a bigger success. The materials used in TLD also extended into various forms such as solid pellet, chips, nanoparticle, optical fibers, powders and thin films. In early years, TL materials also

widespread from lithium fluoride (LiF) to calcium sulphate (CaSO₄), calcium fluoride (CaF₂), aluminum oxide (Al₂O₃) and beryllium oxide (BeO). These materials were also doped and co-doped with various dopants such as, magnesium (Mg), titanium (Ti), cuprum (Cu), phosphorus (P), manganese (Mn), dysprosium (Dy), carbon (C), europium (Eu), yttrium (Y), terbium (Tb) and thulium (Tm).

1.2 Research Background

As mentioned in section 1.1, there are many materials that have been introduced and examined as a good TL candidate. Al₂O₃ is one of the materials that was first experienced as a TL dosimeter. Later, it received much less attention because of higher competition with other sensitive phosphors, and apart from several isolated studies, it was forgotten (Portal, 1986). However, from time to time, nowadays particularly, favorable properties of certain Al₂O₃ material have been demonstrated. In 1990, Akselrod M S and his group has introduced highly sensitive TL α -Al₂O₃:C (TLD-500) single crystal detectors that was found to be 40-60 times higher than LiF:Mg, Ti (TLD-100) (Akselrod et al., 1990a). This finding encouraged other researchers to believe in Al₂O₃ material and recognize that dopants in Al₂O₃ played a very important role in producing enhanced TL dosimetry.

In α -Al₂O₃:C, carbon impurities play important role to produce a highly sensitive TLD. It was understood that, there are many factors that influence TL properties in production of TLDs such as type of used material, the amount and the type of impurities and intentional dopants, their chemical bond and method of introduction into the lattice, the thermal, optical and mechanical treatment of the material. These parameters decide that how many electrons could trap in the forbidden region and how deep the electron have been trapped during a TL process (McKinlay, 1981). From earlier studies, it is known that Al₂O₃ has many useful properties as a dosimeter, such as, linearity in a wide dose range, mechanical resistance, easy handling and cheapness (Osvay and Biro, 1980). From the useful properties of Al₂O₃ material, one can make the most use of it, if one can overcome any of it limitation.

In addition to the kind of TL material, radiation type also has a significant role in TL properties. There are many type of radiation that have been used and studied in TL area, including X-rays and radiation particles such as an electron, photon, and neutron (James and Farrington, 1957, Mehta and Sengupta, 1976, Hashim et al., 2009, Azziz et al., 1997, Nikiforov et al., 2014, Leong et al., 2015). This type of radiation exposure is used in medical field, environmental monitoring, personnel monitoring, and food industries that incoherence with increasing TLD usage. Upon this reason, TL dosimeter should have the ability to measure all type of radiation energy with a wide range of dose independently. Moreover, none of the manufactured TLDs can measure all types of radiation energy independently. So, the high sensitivity of TLD-500 should be used wisely and its ability should be improvised in measuring radiation dose.

1.3 Research Problem

It is widely known that, commercialized α -Al₂O₃:C has higher sensitivity than pioneer LiF: Mg, Ti dosimeter. However, higher sensitivity does not mean popular choices, since LiF: Mg, Ti still the favorite dosimeter that is used and studied because it has a lot more information available after 75 years of its study. While α -Al₂O₃:C has been studied for about 25 years, yet there are still lacks of knowledgeable information. Hence there are still lots of rooms for the improvement in α -Al₂O₃:C dosimeter. Despite being an unpopular choice, there are still workplaces or laboratories that favored TLD-500 over TLD-100H like Defense Research Establishment Ottawa (DREO). Radiation Effect Group (REG) at DREO chooses TLD-500 because it is better suited to DREO's need (Erhardt et al., 2001). This situation exactly fits the need of producing a better TLD because different places or people would acquire different needs. Therefore, different types of dosimeters are needed.

It is also well-known that TLD-500 experiences significant light-induced effects (Bos, 2001, Erhardt et al., 2001, McKeever et al., 1995, McKeever and Moscovitch, 2003, Moscovitch et al., 1993). This is one of its disadvantages despite

being a phenomenal sensitive dosimeter. The light induced effects can be explained in two ways. The light-induced TL increases the TL intensity, while light-induced fading decreases the TL intensity. So, most of researchers or users of TLD-500 have to take a great care towards this dosimeter to avoid any visible light exposure that stimulates light-induced effects. As in DREO, a careful lab practice is implemented upon the using of TLD-500 to avoid light-induced background or fading under laboratory light. This is also the reason to improve this dosimeter light sensitivity by using a special case or apply some changes in its material. The light-induced effect is also a fading characteristic that could depend upon impurity concentration, annealing temperature and times, cooling rates and storage temperatures (Chen and McKeever, 1997). Hence, changing and/or addition of new impurity, improve the temperature and time of annealing or cooling could be the solution for minimizing the lightinduced effect or even better to make it disappear. It may not be a perfect success but it can be a progressive way toward success.

Hence, in order to produce new progression for a better dosimeter, Mg element is chosen to co-doped in alumina material where Mg shows prominent features in heightened host material sensitivity and small changes in its composition give strong effects to main peak intensity of LiF:Mg, Cu, P dosimeter (Knezevic' et al., 2010, Chen and Stoebe, 2002). In addition, Al₂O₃:C, Mg luminescence detector does not require light protection when studied for radiation-induced fluorescence (Akselrod and Akselrod, 2006). Adding Mg could be the solution of light sensitivity characteristic for Al₂O₃ family for TL material. Rodriguez (2010) also stated in his thesis that annealing of single crystal Al₂O₃:C, Mg would result in increasing of recombination centers that would improve its sensitivity comparable to Al₂O₃:C or even greater than Al₂O₃:C in certain dosimetric applications (Rodriguez, 2010). In Saharin et al. (2014) study of TL in Al₂O₃:C, Mg under 5 – 70 Gy gamma irradiation prove that, adding Mg as a co-dopant enhanced TL response. Hence, Mg element is a great choice of impurity, as it has shown remarkable features of increasing TL sensitivity and can avoid unnecessary light protection.

Most of the TL dosimeters are in the form of crystal because TL sensitivity of crystal is higher than other phase due to TL mechanism involved. TLD-500 which is in the form of single crystal that can be prepared using Czochralski method, precipitation and evaporation method, chemical vapor deposition, etc. These are complex preparation methods to achieve single crystal material. Thus, study aims to prepare new material without disregarding the crystal form but with some modification in preparation method by choosing polycrystalline form. The polycrystalline preparation method is easier than crystalline growth method, where it can be produced using hot pressed method. The hot pressed method is a technique where desire composition is mixed. Then, the mixture is put in a graphite mold, heat is provided and the sample is pressed. Hence, it is simpler, cheaper and easier method to employ with well-equipped laboratories. In addition, nanostructured TL material has shown prominent enhancement in TL response of high dose in many study (Bitencourt and Tatumi, 2009, de Azevedo et al., 2006, Prathibha et al., 2014, Salah et al., 2011). However, they were less studied for lower dose measurement and light induced effect occurs mainly in single microcrystalline form. Therefore, nanopolycrystalline sample with nanoparticle size is preferred for this study.

Considering these above said factors, carbon doped alumina co-doped with magnesium (Al₂O₃:C, Mg) nano-polycrystalline powder was carefully chosen for TL study as an alternative to single crystal TLD-500. To the best of our knowledge, no other study had synthesized a nano-polycrystalline Al₂O₃:C, Mg for TL properties measurement. Furthermore, TL performance of this newly nano-polycrystalline Al₂O₃:C, Mg comprised of various ionizing radiation such as ⁶⁰Co gamma rays (Co-60), high energy x-rays (6 and 10 MV) and high energy electron (10 and 12 MeV) with a wide range of doses assessed at room temperature. This study also emphasize on the enhancement of light-sensitivity of the newly proposed TLD.

1.4 Research Objectives

This research embarks on the following objectives:

- To characterize crystalline state and material composition of Al₂O₃:C, Mg.
- To determine TL dosimetric properties of Al₂O₃:C, Mg irradiated with various x-rays (1.25 MeV Co-60, 6 and 10 MV) and electron energies (10 and 12MeV).
- 3. To evaluate the TL kinetic parameter of the Al₂O₃:C, Mg irradiated to various ionizing radiation (Co-60 gamma, high energy x-rays and electron).

1.5 Research Scope

This research emphasis on the Al₂O₃:C, Mg powder as a TL material. The selected samples of Al₂O₃:C and Al₂O₃:C, Mg powder undergo structural and composition elements measurement using; X-ray diffraction (XRD) analysis, Transmission Electron Microscopy (TEM) analysis and Field Emission Scanning Electron Microscope – Energy Dispersive X-ray (FESEM-EDX) elemental analysis. Al₂O₃:C, Mg and Al₂O₃:C were then exposed to various photons (Cobalt-60 at Universiti Kebangsaan Malaysia, 6 and 10 MV at Institut Kanser Negara and Hospital Sultan Ismail) and high energy electron (10 and 12 MeV at Institut Kanser Negara and Hospital Sultan Ismail) at the same time. This experiment is designed to investigate the relationship of annealing temperature and time with TL properties, TL glow curve, linearity, sensitivity, fading, minimum detectable dose and reproducibility according to the exposed radiation. Both materials are compared in order to analyze the TL properties of Al₂O₃:C, Mg powder as new developed TL material from Al₂O₃:C family. Photon energy response for Al₂O₃:C, Mg powder is calculated using the mass energy absorption coefficient ratio (MEACR) method. The kinetic parameters also obtained using initial rise method, peak shape method, whole

glow peak method, and curve fitting method to understand TL phenomenon and trap nature of the chosen material.

1.6 Research Significances

The relevance of the present study relates to the solving of problems and the needs of technology to prepare better and efficient TL material for various applications. However, this outstanding TL material cannot be achieved without great research and deep understanding in this area. Thus, detailed study of the enhanced TL characteristic by adding co-dopant into host material becomes essential to determine the effect and thus contributes to further material development. The effect could be explained by TL properties in favor of this study that reckoned to be useful in TL study which provides the knowledge on the suitability of Al₂O₃:C, Mg powder as a radiation measurement tool. In addition, this study would also offer valuable information on characterizing and handling Al₂O₃:C, Mg powder as TL material.

1.7 Outline

This thesis describes the TL characterization of carbon doped alumina codoped with magnesium (Al₂O₃:C, Mg) irradiated by various type of ionizing radiation. The thesis is divided into five chapters. Chapter 1 is the introduction of the study, which explains the purpose of this study, its importance, and the justification of material selection. Chapter 2 describes some background knowledge on TL phenomenon, review on the previous works done on alumina material in TL area, and basic principles of TL properties engaged in this study. Details of the sample preparation, design of the experimental and the measurement techniques employed are outlined in Chapter 3. In Chapter 4, all the experimental results and discussion are presented. Finally, Chapter 5 presents the conclusions of the research and future outlook of the study. Additional information associated with this thesis is given in the Appendices.

REFERENCES

- Abdullah, N. A. F. 2011. *The Study on thermoluminescence Response of Ge-doped Optical Fibre using X-Ray Irradiation*. Bachelor of Science (Health Physics), University Technology Malaysia.
- Agersnap Larsen, N., Bøtter-Jensen, L. & McKeever, S. W. S. 1999. Thermally stimulated conductivity and thermoluminescence from Al₂O₃:C. *Radiat Prot Dosimetry*, 84, 87-90.
- Akselrod, A. E., Larsen, N. A., Whitley, V. H. & McKeever, S. W. S. 1999. Thermal quenching of F centre luminescence in Al₂O₃:C. *Radiat Prot Dosimetry*, 84, 39-42.
- Akselrod, M. S. & Akselrod, A. E. 2006. New Al₂O₃:C,Mg crystals for radiophotoluminescent dosimetry and optical imaging. *Radiat Prot Dosimetry*, 119, 218-21.
- Akselrod, M. S. & Kortov, V. 1990. Thermoluminescent and Exoemission Properties of New High-Sensitivity TLD α-Al₂O₃:C Crystals. *Radiat Prot Dosimetry*, 33, 123-126.
- Akselrod, M. S., Kortov, V. & Gorelova, E. A. 1993. Preparation and Properties of α-Al₂O₃:C. *Radiat Prot Dosimetry*, 47, 159-164.
- Akselrod, M. S., Kortov, V., Kravetsky, D. J. & Gotlib, V. I. 1990a. Highly sensitive thermoluminescent anion-defect α-Al₂O₃:C single crystal detectors. *Radiat Prot Dosimetry*, 33, 119-122.
- Akselrod, M. S., Kortov, V., Kravetsky, D. J. & Gotlib, V. I. 1990b. Highly sensitive thermoluminescent anion-defective α-Al₂O₃:C single crystal detectors. *Radiat Prot Dosimetry*, 32, 15-20.
- Arrieta, A., Escobar-Alarcón, L., Camps, E. & González, P. R. 2007. Thermoluminescent response of aluminium oxide thin films subject to gamma irradiation. *Radiation Effects and Defects in Solids*, 162, 745-749.

- Attix, F. H. 2008. Introduction to Radiological Physics and Radiation Dosimetry, Wiley.
- Azorin, J., Esparza, A., Falcony, C., Rivera, T., Garcia, M. & Martinez, E. 2002. Preparation and Thermoluminescence Properties of Aluminium Oxide Doped with Europium. *Radiation Protection Dosimetry*, 100, 277-279.
- Azziz, N., Ranogajec-Komor, M., Marino, S. A., Klemic, G. A. & Osvay, M. Fast neutron detection using aluminum oxide TLDs. *In:* Sabol, J., ed. IRPA Regional Symposium on Radiation Protection in Neighbouring Countries of Central Europe, 1997 Prague, Central Europe. International Radiation Protection Association, 1997, 495-497.
- Barros, V. S. M., Azevedo, W. M., Khoury, H. J. & Filho, P. L. 2010a. Preparation and Characterization of Thermoluminescent Aluminium Oxide Doped with Tb³⁺and Tb³⁺-Mg²⁺. *Journal of Physics: Conference Series*, 249, 012025.
- Barros, V. S. M., de Azevedo, W. M., Khoury, H. J., Andrade, M. E. A. & Filho, P. L. 2010b. Thermoluminescence study of aluminum oxide doped with therbium and thulium. *Radiation Measurements*, 45, 435-437.
- Bitencourt, J. F. S. & Tatumi, S. H. 2009. Synthesis and Thermoluminescence Properties of Mg²⁺ Doped of Nanostructured Aluminium Oxide. *Physics Procedia*, 2, 501-514.
- Bos, A. J. J. 2001. High Sensitivity Thermoluminescence Dosimetry. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 184, 3-28.
- Bos, A. J. J., Vijverberg, R. N. M., Piters, T. M. & McKeever, S. W. S. 1992. Effects of cooling and heating rate on trapping parameters in LiF:Mg, Ti crystals. J. Phys. D: Appl. Phys., 25, 1249-1257.
- Busuoli, G. 1981. General characteristics of TL materials. *In:* Oberhofer, M. & Scharmaan, A. (eds.) *Applied Thermoluminescence Dosimetry*. Great Britain: Adam Hilger Ltd.
- Cava, S., Tebcherani, S. M., Souza, I. A., Pianaro, S. A., Paskocimas, C. A., Longo,
 E. & Varela, J. A. 2007. Structural characterization of phase transition of Al₂O₃ nanopowders obtained by polymeric precursor method. *Materials Chemistry and Physics*, 103, 394-399.
- Chen, R. 1969a. Glow Curve With General Order Kinetics Journal of Electrochemical Society, 116, 4.

- Chen, R. 1969b. On the Calculation of Activation Energies and Frequency Factors from Glow Curves. *Journal of Applied Physics*, 40, 570-584.
- Chen, R. 1969c. On the calculation of activation energy and frequency factors from glow curves *Journal of Applied Physics*, 40, 16.
- Chen, R. & McKeever, S. W. S. 1994. Characterization Of Non Linearities In The Dose Dependence Of Thermoluminescence. *Radiation Measurements*, 23, 7.
- Chen, R. & McKeever, S. W. S. 1997. *Theory of Thermoluminescence and Related Phenomena*, World Scientific.
- Chen, R. & Pagonis, V. 2011. Advanced Methods for Evaluating Trapping Parameters. *Thermally and Optically Stimulated Luminescence*. John Wiley & Sons, Ltd.
- Chen, T. C. & Stoebe, T. G. 2002. Role of impurities in the thermoluminescence of LiF:Mg, Cu, P. *Radiation Protection Dosimetry*, 100, 243-246.
- Chithambo, M. L., Sendezera, E. J. & Davidson, T. 2002. A preliminary thermoluminescence and positron annihilation study of α-Al₂O₃:C. *Radiat Prot Dosimetry*, 100, 269-72.
- Daniels, F., Boyd, C. A. & Saunders, D. F. 1953. Thermoluminescence as a Research Tool. Science, 117, 343-349.
- Daniels, F. & Saunders, D. F. 1950. The National Academy of Sciences: Abstracts of Papers Presented at the Annual Meeting April 24-26, 1950, Washington, D. C. Science, 111, 453-463.
- de Azevedo, W. M., de Oliveira, G. B., da Silva, E. F., Jr., Khoury, H. J. & Oliveira de Jesus, E. F. 2006. Highly sensitive thermoluminescent carbon doped nanoporous aluminium oxide detectors. *Radiat Prot Dosimetry*, 119, 201-5.
- de Barros, V. S. M., de Azevedo, W. M., Khoury, H. J. & Linhares Filho, P. 2008. Combustion synthesis: A suitable method to prepare doped materials for thermoluminescent dosimetry. *Radiation Measurements*, 43, 345-348.
- de Barros, V. S. M., Khoury, H. J., Azevedo, W. M. & da Silva, E. F. 2007. Characterization of nanoporous Al₂O₃:C for thermoluminescent radiation dosimetry. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,* 580, 180-182.

- Driscoll, C. M. H., Barthe, J. R., Oberhofer, M., Busuoli, G. & Hickman, C. 1986. Annealing procedures for commonly used radiothermoluminescent materials. *Radiat Prot Dosimetry*, 14, 16.
- Erhardt, L. S., Prud'homme-Lalonde, L., Cousins, T., Estan, D. & Hoffarth, B. 2001. Comparison of Radiation Response of LiF:Mg,Cu,P and Al₂O₃:C TL Dosimeter. Canada: Defence Research Establishment Ottawa.
- Escobar-Alarcón, L., Villagrán, E., Camps, E., Romero, S., Villarreal-Barajas, J. E.
 & González, P. R. 2003. Thermoluminescence of aluminum oxide thin films subject to ultraviolet irradiation. *Thin Solid Films*, 433, 126-130.
- Furetta, C. 2003. *Handbook of Thermoluminescence*, Singapore, World Scientific Publishing.
- Furetta, C. 2008. *Questions and answers on thermoluminescence (TL) and optically stimulated luminescence (OSL)*, Singapore, World Scientific.
- Furetta, C., Prokic, M., Salamon, R. & Kitis, G. 2000. Dosimetric characterisation of a new production of MgB₄O₇:Dy, Na thermoluminescent material. *Appl Radiat Isot*, 52, 243-250.
- Furetta, C. & Weng, P. S. 1998. Operational Thermoluminescence Dosimetry, Singapore, World Scientific.
- Garlick, G. F. J. & Gibson, A. F. 1948. The Electron Trap Mechanism of Luminescence in Sulphide and Silicate Phosphors. *Proceedings of Physical Soceity*, 60, 574-589.
- Gimadova, T. I., Bessonova, T. S., Tale, I. A., Avvakumova, L. A. & Bodyachevsky, S. V. 1990. On The Thermoluminescence Mechanism of Non-Doped Corundum Monocrystals with Defect Structure. *Radiat Prot Dosimetry*, 33, 47-50.
- Göksu, H. Y., Bulur, E. & Wahl, W. 1999. Beta Dosimetry Using Thin-Layer α– Al₂O₃:C TL Detectors. *Radiat Prot Dosimetry*, 84, 451-455.
- Grossweiner, L. I. 1953. A Note on the Analysis of First-Order Glow Curves. Journal of Applied Physics, 24, 24.
- Gundu Rao, T. K., Bhatt, B. C. & Page, P. S. 2008. Defect centers and thermoluminescence in Al₂O₃:Si,Ti. *Radiation Measurements*, 43, 295-299.
- Hashim, S., Al-Ahbabi, S., Bradley, D. A., Webb, M., Jeynes, C., Ramli, A. T. & Wagiran, H. 2009. The thermoluminescence response of doped SiO₂ optical

fibres subjected to photon and electron irradiations. *Applied Radiation and Isotopes*, 67, 423-427.

Hendee, W. R. & Ritenour, E. R. 2003. Medical Imaging Physics, Wiley.

- Horowitz, Y. S. 1981. The Theoretical and Microdosimetric Basis of Thermoluminescence and Applications to Dosimetry. *Physics in Medicine* and Biology, 26, 765-824.
- Hubbell, J. H. & Seltzer, S. M. 1995. Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients. *In:* Gaithersbug, M. D. (ed.). National Institute of Standards and Technology.
- James, K. R. & Farrington, D. 1957. Thermoluminescence studies of aluminum oxide. J. Phys. Chem., 61, 629-633.
- Kitis, G., Gomez-Ros, J. M. & Tuyn, J. W. N. 1998. Thermoluminescence glowcurve deconvolution functions for first, second and general orders of kinetics. *Journal of Physics D: Applied Physics*, 31, 2636-2641.
- Kitis, G., Papadopoulos, J. G., Charalambous, S. & Tuyn, J. W. N. 1994. The influence of heating rate on the response and trapping parameters of a-Al₂O₃:C. *Radiat Prot Dosimetry*, 55, 8.
- Knezevic´, Z., Ranogajec-Komor, M. & Miljanic, S. 2010. Effect of dopants on TL characteristics of LiF:Mg,Cu,P detectors. *Radiation Measurements*, 45, 573-575.
- Kortov, V. 2007. Materials for thermoluminescent dosimetry: Current status and future trends. *Radiation Measurements*, 42, 576-581.
- Kortov, V. & Milman, I. I. 1996. Thermally Stimulated Luminescence of Dosimetric α-Al₂O₃ Crystals *Russian Physics Journal*, 39, 1122-1134.
- Kortov, V., Milman, I. I., Kirpa, V. I. & Lesz, J. 1994. Some features of α-Al₂O₃ dosimetric thermoluminescent crystals. *Radiat Prot Dosimetry*, 55, 279-283.
- Kortov, V. S. 2010. Nanophosphors and outlooks for their use in ionizing radiation detection. *Radiation Measurements*, 45, 512-515.
- Kreyling, W. G., Semmler-Behnke, M. & Chaudhry, Q. 2010. A complementary definition of nanomaterial. *Nano Today*, 5, 165-168.
- Kristianpoller, N., Chen, R. & Israeli, M. 1974. Dose dependence of thermoluminescence peaks. *Journal Of Physics D: Applied Physics*, 7, 1063-1072.

- Leong, C. Y., Wagiran, H., Ismail, A. K. & Ali, H. 2015. Thermoluminescence characteristics of aluminium oxide doped with carbon and titanium co-doped subjected to 6 and 10 MV photon irradiations. *J Radioanal Nucl Chem*, 1-8.
- Lim, T. Y. 2015. Evaluation of Dysprosium doped Strontium Tetraborate Glass as a Thermoluminescence Dosimeter. Doctor of Philosophy (Physics), Universiti Teknologi Malaysia.
- May, C. E. & Partridge, J. A. 1964. Thermoluminescent Kinetics of Alpha-Irradiated Alkali Halides. *The Journal of Chemical Physics*, 40, 1401-1408.
- McKeever, S. W. S. 1985. *Thermoluminescence of solids*, United States of America, Cambridge University Press, New York.
- McKeever, S. W. S., Akselrod, M. S., Colyott, L. E., Agersnap Larsen, N., Polf, J. C.
 & Whitley, V. H. 1999. Characterisation Of Al₂O₃ For Use In Thermally And Optically Stimulated Luminescence Dosimetry. *Radiat Prot Dosimetry*, 84, 163-168.
- McKeever, S. W. S. & Moscovitch, M. 2003. On The Advantages And Disadvantages Of Optically Stimulated Luminescence Dosimetry and Thermoluminescence Dosimetry. *Radiat Prot Dosimetry*, 104, 263-270.
- McKeever, S. W. S., Moscovitch, M. & Townsend, P. D. 1995. *Thermoluminescence Dosimetry Materials: Properties and Uses*, England, Nuclear Technology Publishing.
- McKinlay, A. F. 1981. Thermo-luminescence Dosimetry, Adam Hilger Ltd.
- Mehta, S. K. & Sengupta, S. 1976. Gamma dosimetry with Al₂O₃ thermoluminescent phosphor. *Physics in medicine and biology*, 21, 955-964.
- Milman, I. I., Moiseykin, E. V., Nikiforov, S. V., Mikhailov, S. G. & Solomonov, V.
 I. 2004. Luminescence properties of α-Al2O3 dosimetric crystals exposed to a high-current electron beam. *Radiation Measurements*, 38, 443-446.
- Mische, E. F. & McKeever, S. W. S. 1989. Mechanisms of Supralinearity in Lithium Fluoride Thermoluminescence Dosemeters. *Radiation Protection Dosimetry*, 29, 159-175.
- Moscovitch, M., Tawil, R. A. & Svinkin, M. 1993. Light induced fading in α Al₂O₃:C. *Radiat Prot Dosimetry*, 47, 251-253.
- Musk, J. H. 1993. Time-dependant and light induced fading in VICTOREEN model 2600-80 aluminium oxide thermoluminescence dosimeters. *Radiat Prot Dosimetry*, 47, 247-249.

- Nagabushana, K. R., Lakshminarasappa, B. N., Revannasiddaiah, D. & Fouran, S. 2008. Thermally Stimulated Luminescence Studies in Combustion Synthesized Polycrystalline Aluminum Oxide. *Bull Mater Sci*, 31, 669-672.
- Nelson, V., McLean, D. & Holloway, L. 2010. Thermoluminescent dosimetry (TLD) for megavoltage electron beam energy determination. *Radiation Measurements*, 45, 698-700.
- Nikiforov, S. V., Kortov, V. & Milman, I. I. 2002. Thermoluminescent dosemeters based on tld-500 detectors for control of neutron fields. *Radiat Prot Dosimetry*, 101, 125-128.
- Nikiforov, S. V. & Kortov, V. S. 2010. Effect of deep traps on sensitivity of TLD-500 thermoluminescent detectors. *Radiation Measurements*, 45, 527-529.
- Nikiforov, S. V. & Kortov, V. S. 2014. Dosimetric response for crystalline and nanostructured aluminium oxide to a high-current pulse electron beam. *Radiat Prot Dosimetry*, 162, 92-5.
- Nikiforov, S. V., Kortov, V. S., Zvonarev, S. V., Moiseykin, E. V. & Kazantseva, M.
 G. 2014. Basic thermoluminescent and dosimetric properties of Al₂O₃:C irradiated by pulse intensive electron beam. *Radiation Measurements*, 71, 74-77.
- Ogundare, F. O., Ogundele, S. A., Chithambo, M. L. & Fasasi, M. K. 2013. Thermoluminescence characteristics of the main glow peak in α-Al₂O₃:C exposed to low environmental-like radiation doses. *Journal of Luminescence*, 139, 143-148.
- Ortega, F., Marcazzo, J., Molina, P., Santiago, M., Lester, M., Henniger, J. & Caselli, E. 2013. Analysis of the main dosimetric peak of Al₂O₃:C compounds with a model of interacting traps. *Appl Radiat Isot*, 78, 33-37.
- Osvay, M. & Biro, T. 1980. Aluminium Oxide in TL Dosimetry Nuclear Instruments and Methods, 175, 60-61.
- Pagonis, V., Chen, R. & Lawless, J. L. 2007a. A quantitative kinetic model for Al₂O₃:C: TL response to ionizing radiation. *Radiation Measurements*, 42, 198-204.
- Pagonis, V., Kitis, G. & Furetta, C. 2007b. *Numerical and Practical Exercises in Thermoluminescence*, New York, Springer Science+Business Media, Inc.

- Pekpak, E., Yılmaz, A. & Özbayoglu, G. 2010. An Overview on Preparation and TL Characterization of Lithium Borates for Dosimetric Use. *The Open Mineral Processing Journal*, 3, 14-24.
- Polf, J. C. 2000. *The Role of Oxygen Vacancies in Thermoluminescence Processes Al*₂*O*₃:*C*. Master of Science, Oklahoma State University.
- Portal, G. 1981. Preparation and Properties of Principal TL Products. *In:* Oberhofer,
 M. & Scharmann, A. (eds.) *Applied Thermoluminescence Dosimetry*. Bristol:
 Adam Hilger Ltd.
- Portal, G. 1986. Review of The Principle Material Available for Thermoluminescent Dosimetry. *Radiat Prot Dosimetry*, 17, 351-357.
- Pradhan, A. S. 1997. Requirements of Thermoluminescence Dosimeters for Personnel Monitoring. In: Bhushan, S. & Dewangan, P. K. (eds.) Luminescence and Its Applications 97: Proceedings of the National Conference on Luminescence and Its Applications 97 (NCLA-97), October 13 - 15, 1997. New Delhi: Allied Publisher Limited.
- Prathibha, B. S., Chandrashekara, M. S., Nagabhushana, H., Ramesh, K. P., Naghabhushana, B. M. & Chikkahanumanthrayappa 2014. Thermoluminescence Studies on Sr2SiO4 Nano Powder. *Procedia Materials Science*, 5, 944-952.
- Priharti, W., Samat, B. S. & Kadir, A. B. A. 2013. Uncertainty Analysis of H_p(10)_{meas}/H_p(10)_{del} Ratio for TLD–100H at Energy 24–1250 keV. *Jurnal Teknologi*, 62, 115-118.
- Randall, J. T. & Wilkins, M. H. F. 1945a. Phosphorescence and Electron Traps. I. The Study of Trap Distributions. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 184, 365-389.
- Randall, J. T. & Wilkins, M. H. F. 1945b. Phosphorescence and Electron Traps. II. The Interpretation of Long-Period Phosphorescence. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 184, 390-407.
- Randall, J. T. & Wilkins, M. H. F. 1945c. The Phosphorescence of Various Solids. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 184, 347-364.
- Ranogajec-Komor, M. 2008. Thermoluminescence Dosimetry-Application in Environmental Monitoring. *Radiation Safety Management*, 2, 2-16.

- Ranogajec-Komor, M., Vinceković, Ž., Knežević, S. & Miljanić, S. 2002. The Influence Of Thermal Annealing On The Characteristics Of Different Al₂O₃
 Thermoluminescence Dosimeters. *Proceeding of European IRPA Congress: Towards Harmonization of Radiation Protection in Europe*. Florence, Italy.
- Rathbone, B. A., Endres, A. W. & Antonio, E. J. Evaluation of new and conventional thermoluminescent phosphors for environmental monitoring using automated thermoluminescent dosimeter readers. *In:* Casson, W. H., Thein, C. M. & Bogard, J. S., eds. 4th Conference on Radiation Protection and Dosimetry, October 23-27, 1994 1994 Orlando, Florida. Pacific Nothwest Laboratory, 371-380.
- Refaei, A. 2014. Dosimetric Properties of Neodymium doped Optical Fibers subjected to X-rays and Gamma rays. Doctor of Philosophy, Universiti Teknologi Malaysia.
- Refaei, A., Wagiran, H., Saeed, M. A. & Hosssain, I. 2014. Thermoluminescence characteristics of Nd-doped SiO₂ optical fibers irradiated with the ⁶⁰Co gamma rays. *Appl Radiat Isot*, 94, 89-92.
- Rieke, J. K. & Daniels, F. 1957. Thermoluminescence Studies of Aluminum Oxide. *The Journal of Physical Chemistry*, 61, 629-633.
- Rodriguez, M. G. 2010. Characterization of Aluminum Oxide Doped with Carbon and Magnesium for Radiation Detection. Degree of Master of Science, Oklahoma State University.
- Rodriguez, M. G., Denis, G., Akselrod, M. S., Underwood, T. H. & Yukihara, E. G. 2011. Thermoluminescence, optically stimulated luminescence and radioluminescence properties of Al₂O₃:C,Mg. *Radiation Measurements*, 46, 1469-1473.
- Rogojan, R., Andronescu, E., Ghiţulică, C. & Vasile, B. S. 2011. Synthesis and characterization of alumina nano-powder obtained by sol-gel method. U.P.B. Sci. Bull., Series B: Chemistry and Material Science, 73, 67-76.
- Saharin, N. S., Wagiran, H. & Tamuri, A. R. 2014. Thermoluminescence (TL) properties of Al₂O₃: C, Mg exposed to cobalt-60 gamma radiation doses. *Radiation Measurements*, 70, 11-14.
- Saidu, A. 2015. Dosimetric Properties of Copper and Terbium doped Zinc Borate glass co-doped Sodium. Doctor of Philosophy (Physics), Universiti Teknologi Malaysia.

- Salah, N., Khan, Z. H. & Habib, S. S. 2011. Nanoparticles of Al₂O₃:Cr as a sensitive thermoluminescent material for high exposures of gamma rays irradiations. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms*, 269, 401-404.
- Santos, S. P., Santos, S. H. & Toledo, S. P. 2000. Standard Transition Aluminas. ElectronMicroscopy Studies. *Materials Research*, 3, 104-114.
- Shonka, F. R., Rose, J. E. & Failla, G. 1958. Conducting plastic equivalent to tissue, air and polysterene. United Nation of International Conference of Peaceful Uses Atomic Energy. Geneva.
- Wagiran, H., Hossain, I., Bradley, D., Yaakob, A. N. H. & Ramli, T. 2012. Thermoluminescence Responses of Photon and Electron Irradiated Ge- and Al-Doped SiO₂ Optical Fibres. *Chinese Physics Letters*, 29.
- Walker, F. D., Colyott, L. E., Agersnap Larsen, N. & McKeever, S. W. S. 1996. The Wavelength Dependence of Light-Induced Fading of Thermoluminescence From a-Al₂O₃:C. *Radiation Measurements*, 26, 711-718.
- Yoshimura, E. M. 2007. Correlation of optically stimulated luminescence and thermoluminescence of Al₂O₃:Fe, Mg, Cr crystals. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,* 580, 606-609.
- Yukihara, E. G., Whitley, V. H., Polf, J. C., Klein, D. M., McKeever, S. W. S., Akselrod, A. E. & Akselrod, M. S. 2003. The effects of deep trap population on the thermoluminescence of Al₂O₃:C. *Radiation Measurements*, 37, 627-638.
- Zahedifar, M., Eshraghi, L. & Sadeghi, E. 2012. Thermoluminescence kinetics analysis of α-Al₂O₃:C at different dose levels and populations of trapping states and a model for its dose response. *Radiation Measurements*, 47, 957-964.