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ABSTRACT 

 

 

 

 

The synthesis of aluminium oxide (alumina) Al2O3 nanopowders has attracted 

much attention because of its high specific surface area and a large number of defects 

in its crystalline structure, which make it widely applicable in ceramic applications. 

In this study, co-precipitation technique was used to synthesize single-phase alumina 

nanopowders under various annealing temperatures.  The crystalline phase, purity, 

morphology, chemical bonds and optical properties of the prepared powders were 

characterized by different spectroscopy techniques.  To realize a real understanding 

of phenomena regarding nanoparticles growth, the material on an atomic scale must 

be studied.  In this case, electronic and optical properties of the alumina at atomic 

scale have also been studied by the first principles within the framework of density 

functional theory (DFT).  The computational approach is based on a full-potential 

linearized augmented plane wave method (FP-LAPW) within the generalized 

gradient approximation (GGA), local density approximation (LDA), and modified 

Becke–Johnson (mBJ) potential.  The experimental results show the direct phase 

transitional behavior of γ-Al2O3 into θ-Al2O3 at annealing temperature of 900ºC.     

X-ray diffraction (XRD) and Brunauer–Emmett–Teller analysis confirm the 

existence of alumina nanopowders with particle diameters of < 5 nm, which also can 

be classified as ultrafine powder.  The surface areas of prepared nanopowders were 

366.67 m
2
/g (200ºC) and 100 m

2
/g (900ºC) for γ-Al2O3 and θ-Al2O3, respectively. 

The optical results indicate that γ-Al2O3 possesses a lower band gap (5.5 eV), 

compared to the θ-Al2O3 (5.8 eV).  Theoretical results show that these compounds 

have a direct band gap (Γ-Γ) of 5.375 eV and 4.716 eV for γ-Al2O3 and θ-Al2O3, 

respectively.  Several optical parameters of these materials were also investigated. 

The values of the real part of dielectric constant   ( ) are found to be 3.259 and 

3.694 for γ-Al2O3 and θ-Al2O3, respectively, while the refractive indices   ( ) are 

found to be 1.806 for γ-Al2O3 and 1.922 for θ-Al2O3.  These GGA findings are 

consistent with the experimental results and are better than the other approximations.  

There are no salient differences between GGA and LDA results.  The present results 

advocate the use of this material as transparent conducting layer in solar cell 

structure, which can be operated in a wide energy range. 
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ABSTRAK 

 

 

 

 

Sintesis serbuknano aluminium oksida (alumina) Al2O3 telah menarik banyak 

perhatian kerana keluasan permukaan tertentu yang tinggi dan banyak kecacatan di 

dalam struktur kristal, menyebabkan ia digunakan dengan meluas dalam aplikasi 

seramik.  Dalam kajian ini, teknik ko-pemendakan telah digunakan untuk 

mensintesis serbuknano alumina fasa tunggal di bawah pelbagai suhu sepuh lindap.  

Fasa kristal, ketulenan, morfologi, ikatan kimia dan sifat optik bagi serbuk yang 

disediakan telah dicirikan dengan pelbagai teknik spektroskopi.  Bagi mendapatkan 

pemahaman sebenar tentang fenomena pertumbuhan nanopartikel, bahan pada skala 

atom perlu dikaji.  Dalam hal ini, sifat elektronik dan optik alumina pada skala atom 

telah juga dikaji dengan prinsip pertama dalam rangka teori fungsi ketumpatan 

(DFT).  Pendekatan komputeran adalah berdasarkan kaedah gelombang satah penuh 

berpotensi dilelurus dan diperkukuhkan (FP-LAPW) dalam penghampiran kecerunan 

umum (GGA), penghampiran kepadatan tempatan (LDA), dan keupayaan Becke-

Johnson (mBJ) yang diubahsuai.  Keputusan eksperimen menunjukkan transisi fasa 

terus γ-Al2O3 kepada θ-Al2O3 pada suhu sepuh lindap 900ºC.  Pembelauan sinar-X 

(XRD) dan analisis Brunauer-Emmett-Teller mengesahkan kehadiran serbuknano 

alumina dengan diameter zarah < 5 nm, yang juga boleh dikelasifikasikan sebagai 

serbuk ultra-halus.  Luas permukaan serbuknano yang di sediakan masing-masing 

adalah 366.67 m
2
/g (200ºC) dan 100 m

2
/g (900ºC) untuk γ-Al2O3 dan θ-Al2O3.  

Keputusan optik menunjukkan bahawa γ-Al2O3 mempunyai jurang jalur yang lebih 

rendah (5.5 eV), berbanding θ-Al2O3 (5.8 eV).  Keputusan teori menunjukkan 

bahawa sebatian-sebatian ini mempunyai jurang jalur langsung (Γ-Γ) masing-masing 

adalah 5.375 eV dan 4.716 eV untuk γ-Al2O3 dan θ-Al2O3.  Beberapa parameter 

optik bahan-bahan ini juga telah dikaji. Nilai bahagian nyata pemalar dielektrik   ( ) 

masing-masing adalah 3.259 dan 3.694 untuk γ-Al2O3 dan θ-Al2O3, manakala nilai 

indeks biasan   ( ) adalah 1.806 untuk γ-Al2O3 dan 1.922 untuk θ-Al2O3.  Penemuan 

GGA ini adalah selaras dengan keputusan eksperimen dan adalah lebih baik daripada 

penghampiran lain.  Tiada perbezaan yang ketara antara keputusan GGA dan LDA.  

Keputusan ini menyokong penggunaan bahan ini sebagai lapisan pengalir telus 

dalam struktur sel solar, yang boleh dikendalikan dalam julat tenaga yang luas. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

According to Drexler et al. (1991), the term nanotechnology means 

controlling the process based on molecule-by-molecule to the control of product 

using high precision systems. Since then, the nanotechnology term is basically used 

for any materials or devices, which are structured on the nanometer scale. Today, 

nanotechnology turned out to be a multidisciplinary science including but not limited 

to chemistry, biology, engineering and materials science and solid state physics. 

 

 

Ceramic is another type of inorganic and non-metallic materials, which have 

been produced centuries ago. These materials are avaiable in bulk as well as in 

nanosize. The earliest ceramic compounds were made from naturally raw materials. 

However, it was found that natural minerals could be refined or doped to achieve 

required properties. Also, there is so-called composite material, which is a mixture of 

two or more materials that insoluble in one another, and it possesses properties 

eminent of any of the component materials. If the composite includes at least one 

material which has nanoparticles size less than 100 nm then it is named 

nanocomposite (Seal et al., 2004; Camargo et al., 2009). Kamigaito (1991) reported 

that the changes in material properties could be observed when nanoparticle size is 

less than a particular level, which is called the critical size, as follow: 

 

 

I. Less than 5 nm, which makes expected changes in catalytic activities. 

II. Less than 20 nm, which makes hard magnetic materials. 
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III. Less than 50 nm, which makes expected changes in refractive index. 

IV. Less than 100 nm, which makes expected to achieve super magnetism. 

V. Less than 100 nm, which makes expected changes in mechanical 

strengthening or restricting matrix dislocation movement. 

VI. Less than 100 nm, which makes expected changes in producing toughening. 

VII. Less than 100 nm, which makes expected changes in modifying hardness and 

plasticity. 

 

 

The ceramics with grain diameter less than 100 nm known as nanocrystalline 

ceramics are attracting more attention in recent years, due to their unique properties 

and the broad diversity of utilization. Therefore, there is growing interest in the 

nanostructural routes to develop their synthetic pathways (Woodfield et al., 2008; 

Kanazirev, 2010; Corr, 2013). Fang et al. (2016) have observed that using sol-gel 

method is better than the conventional solid-state reaction method for synthesizing 

(K0.16Na0.84)0.5Bi4.5Ti4O15 (KNBT) nanoparticles powder, also known as 

nanopowders (Nps). They found an increase in Curie temperature, and a decrease in 

resistivity from 10
8
 Ωcm to 10

7
 Ωcm at 500 °C of KNBT ceramic with reducing 

grain size. Furthermore, measurements of the magnetization for GaMnN ceramics 

showed a typical paramagnetic behavior of Nps with grain size distributions in the 

range of 2-60 nm (Gosk et al., 2016). 

 

 

Synthesis of single metal oxide Nps has attracted much interest compared to 

other ceramic materials due to their unique electronic, thermal and mechanical 

properties, which make it the basis for the structural materials of mechanical parts 

and functional materials for many electrical parts. One such material is aluminium 

oxide, also called alumina with the chemical formula Al2O3. It has been widely used 

in ceramic applications depending on its high specific surface areas and large number 

of defects in its crystalline structure, such as microporous catalysts, ultra-hard 

coatings, in electroluminescent flat-screen displays (Doremus, 2008), and as 

nanostructured fillers for ceramic matrix composite materials (Vahtrus et al., 2015). 

Many survey also reported alumina as a main element in ceramic matrix 

nanocomposites (Camargo, et al., 2009; Koli et al., 2014). 
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Currently, great challenges and opportunities in the industry of solar cells are 

mainly focused on incorporating nanostructure materials in their structure, which lie 

in making of substantial improvements in these materials to increase efficiency for 

the generation, conversion, transmission and use of energy. In recent years, alumina 

material had been instrumental in attempts overcoming these challenges. A 

core@shell structure like Al2O3@ZnO (Lung et al., 2016), Ag@Al2O3 (Goh et al., 

2016) and SnO2@Al2O3 (Heiba et al., 2016) were used as a new strategy to improve 

optical absorption in solar cells. Lung, et al. (2016) found that by coating the Si solar 

cell with Al2O3@ZnO as the antireflection layer would create a gradient of the 

refractive index and this leads to a decrease in the reflectance effectively, as known 

that the refractive index of alumina (α-Al2O3) is 1.76, it is located between that of 

ZnO (1.931) and air (1.0). The ideal thickness of an insulating alumina shell 

surrounding Ag and SnO2 nanoparticles have been investigated, where the optical 

absorption enhancement within the poly(3-hexylthiophene) (P3HT) film by the 

plasmonic electric field and the spatial separation of charge carriers from 

recombination centres are balanced to give the maximum polaron concentration 

(Goh, et al., 2016). On the other hand, alumina that incorporated into the SnO2, 

decreases the grain size of the mixed oxides SnO2@xAl2O3 to below 10 nm 

compared to pure SnO2 over 41 nm. Alumina can effectively prevent SnO2 from 

further aggregations in the process of annealing by largely increasing in the specific 

surface area for mixed oxide samples (Heiba, et al., 2016). 

 

 

Properties of a material can also be studied by computational approach. 

Nowadays, approaches based on density functional theory (DFT) are able to 

calculate the physical properties such as structural, electronic and optical. These 

approaches are considered more and more popular in many fields as material science, 

condensed matter, and quantum chemistry. Even in some cases, it has replaced the 

experimental methods which are difficult to execute under standard conditions, or 

understand the behavior of physics phenomena for real materials and to make 

specific predictions of new materials, as well as a reducing the time and cost. 

Various computer packages has employed DFT such as in quantum chemistry and 

solid state physics software packages. They normally come along with other 

methods, such as WIEN2k code (Blaha et al., 2001a). 
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1.2 Problem Statement 

 

 

Nanoparticles alumina with different phases have been widely investigated 

and used in many applications due to their excellent mechanical and optical 

properties that are superior to other conventional ceramic materials. However, 

because of their highly disordered nature existing crystallographic models are 

insufficient to describe the structure of many important alumina phases (Kovarik et 

al., 2015). Varying properties of alumina with its constituent transition phases as 

compared to single-phase material have been observed, where Arifa et al. (2016) 

have observed that the band gap for κ-Al2O3 is around 4.053 eV that is smaller than 

for α-Al2O3 8.8 eV (French, 1990). This indicates semiconductor behaviour for some 

alumina phases.  

 

 

It has been mentioned that the powder form is a cornerstone of many 

materials. There is a dire need to choose suitable economical powder preparation 

methods, easily availability of raw materials that can be used to enhance grain size, 

structure and low-cost nanopowder. In-depth exploration of earlier studies reveals 

that these materials are usually synthesised by means conventional mechanical routes 

and expensive physical methods. However, inhomogeneity and non-controllable 

particle size of the products is always a problem. More chemical and physical 

methods have been used to prepare nanoparticles materials, but researchers still work 

on to improve their properties and reduced cost. This work will use chemical co-

precipitation method to synthesize various alumina phases. Chemical co-precipitation 

method is one of the promising approaches to synthesize homogeneous 

nanoparticles. In fact, it has been recognized as one of the most simple and 

economical methods for preparing nanostructure materials. 

 

 

A real understanding of fundamental growth-related phenomena can be 

achieved only by studying the material on an atomic scale. Apart from experimental 

computer calculations one can perform such investigations, but the time cost and 

accurate calculations are the main obstacles to these research. A complementary of 

experimental and computer simulation able to highlight the best of the two methods 

and produces much better solution. 
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1.3 Research Objectives  

 

 

The following objectives are set to achieve in the proposed study. 

 

1. To synthesize γ- and θ-Al2O3 -Nps materials by using chemical co-precipitation 

technique. 

2. To determine the structure and morphology of both alumina phases.  

3. To determine the optical properties of γ- and θ-Al2O3 -Nps experimentally, and 

complemented by theoretical computing of absorption coefficient, optical 

conductivity, refractive index, extinction coefficient, real and imaginary part of 

the dielectric function, and reflectivity spectra.  

4. To calculate the electronic properties including the band structure, and the total 

and partial density of states of both γ- and θ-Al2O3. 

 

 

 

 

1.4 Scope of Research 

 

 

The goal of this work is to make new insights and to advance knowledge for 

phase’s transitional behaviour of alumina. It consists of two parts; an experimental 

and theoretical work. As for the experimental study, co-precipitation method is used 

to synthesize alumina Nps under different annealing temperature of 200 
°
C, 400 

°
C, 

600 
°
C, 800 

°
C, 900 

°
C, 1000 

°
C, 1100 

°
C, 1200 

°
C. X-ray diffraction (XRD) is used 

to determine the various phase of alumina. The structure parameters can be 

calculated from XRD results that help to create structure files for the next part of this 

study. Additionally, further morphology and structure analysis are performed using 

field emission scanning electron microscopy (FESEM), energy dispersive X-ray 

spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and single point 

Brunauer–Emmett–Teller (BET). In particular, Fourier transform infrared 

spectroscopy (FTIR) and Raman spectra are employed to confirm chemical bonds of 

materials. In addition optical properties of alumina powders and estimation of band 

gap will be performed using ultraviolet-visible spectroscopy (UV-Vis). 
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The theoretical work involved to develop and innovate unit cell for both 

alumina phases depends on the parameters obtained from XRD analyses, and then 

assess the reality of findings by comparing with experimental results. Fundamental 

electronic and optical properties of γ- and θ- alumina are explored by first principles 

within the framework of DFT. The commercial WIEN2k package is employed for 

this task, which is based on full-potential linearized augmented plane wave method 

(FP-LAPW) within the local density approximation (LDA), generalized gradient 

approximation (GGA), and by modified Becke-Johnson (mBJ) potential as the 

exchange-correlation functions. Therefore, this calculation focus on many parameters 

like band structure, the total and partial density of states, absorption coefficient, 

optical conductivity, refractive index, extinction coefficient, real and imaginary part 

of the dielectric function, and reflectivity coefficient. These calculations can be used 

to cover the lack of data for the studied alumina phases. 

 

 

 

 

1.5 Significance of Study 
 

 

In an attempt to investigate nanostructured material including the 

development of method of its synthesis for the improvement of its performance and 

properties, γ-Al2O3 and θ-Al2O3 were synthesized by means of co-precipitation 

method under different heat treatment effect. This is to achieve the transition phase 

behaviour with careful processing of the specimens to produce a high purity phases. 

The report on the formation of phase transformation of alumina (γ→ θ) within 200 
°
C 

-1200 
°
C, which enhances the stability of these two phases can be a major 

breakthrough. In addition, the characterization and analysis of their properties 

provide fundamental information on morphology, composition and chemical bonds 

as fingerprints of these two phases, which can be considered references to update 

FTIR and Raman data bases. Present optical results prove that γ-Al2O3 (θ-Al2O3) 

have a band gap 5.5 eV (5.8 eV) smaller than α-Al2O3 band gap 8.8 eV (French, 

1990), which show the material can be utilized in many optoelectronic devices. 

 

 

The contribution of this work extends to include investigation of electronic 

and optical parameters theoretically, which in some cases cannot be achieved by 



7 

 

 

 

experiment. For this reason, the framework of DFT with a highly accurate FP-LAPW 

method as implemented in the WIEN2k code contributed in showing the 

discrepancies associated with the phase transformations of alumina, which is coupled 

with a number of modified theoretical tools like LDA, GGA, and mBJ. The 

theoretical findings strongly reveal the different features of these two alumina 

phases. The comparison has been done with α-Al2O3 phase because no experimental 

optical data are available in the literature for comparison of these phases. 

 

 

Finally, new possibilities and insights are presented with the expectations that 

selected alumina phases herein would suitable for applications such as solar cells 

industry. The results of this work help in the understanding of alumina nanoparticles 

growth processes and transformation phases that provide groundwork for the solar 

cells development. The information obtained here is potentially useful to reinforce 

optical absorption by means of incorporation these materials in solar cells design as 

transparent conducting layer that could be useful to absorb all photons from UV 

range. Also, the present results would reveal a new trend of these alumina phases that 

may put it in a semiconductor list. 

 

 

 

 

1.6 Thesis Outlines 
 

 

A short background of alumina includes phases and structure is introduced in 

Chapter 1, which includes the research problem, objectives, scope, and significance 

of the present study. Chapter 2 gives a review of the previous research related to this 

work. This chapter describes the structural properties, alumina transition behaviour, 

applications, synthesis methods, and followed by electronic and optical properties 

alumina phases under DFT calculation. 

 

 

Chapter 3 presents details description of research methodology about 

experimental and computational work. Experimental results such as: XRD, BET, 

FTIR, FESEM, EDX, Raman, XPS, UV-Vis are shown and discussed in Chapter 4. 

Also, there are many physical parameters of γ-Al2O3 and θ-Al2O3 that have been 
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provided from DFT code and discussed in Chapter 5. Finally, summary of the thesis, 

conclusions drawn along with recommendations for future research work is given in 

Chapter 6. At the end of this thesis the bibliography and relevant appendices are 

arranged. 
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