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ABSTRACT 

 

 

 

 

The accuracy of prediction models for electrical loads are important as the 

predicted result can affect processes related to energy management such as 

maintenance planning, decision-making processes, as well as cost and energy savings. 

The studies on improving load prediction accuracy using Least Squares Support 

Vector Machine (LSSVM) are widely carried out by optimizing the LSSVM hyper-

parameter which includes the Kernel parameter and the regularization parameter. 

However, studies on the effects of input data determination for the LSSVM have not 

widely tested by researchers. This research developed an input selection technique 

using Modified Group Method of Data Handling (MGMDH) to improve the accuracy 

of buildings load forecasting. In addition, a new cascaded Group Method of Data 

Handing (GMDH) and LSSVM (GMDH-LSSVM) model is developed for electrical 

load prediction to improve the prediction accuracy of LSSVM model. To further 

improve the prediction model ability, a Modified GMDH has been cascaded to the 

LSSVM model to enhance the accuracy of building electrical load prediction and 

reduce the complexity of GMDH model. The proposed models are compared with 

GMDH model, LSSVM model and Artificial Neural Network (ANN) model to observe 

the prediction performance. The performances of prediction for each tested models are 

evaluated using the Mean Absolute Percentage Error (MAPE). In this analysis, the 

proposed prediction model, gives 33.82% improvement of prediction accuracy as 

compared to LSSVM model. From this research, it can be concluded that cascading 

the models can improve the prediction accuracy and the proposed models can be used 

to predict building electrical loads. 

 

 

 

 



 

 

vi 

ABSTRAK 

 

 

 

 

Ketepatan model ramalan untuk beban elektrik adalah penting kerana 

keputusan diramalkan boleh memberi kesan kepada proses yang berkaitan dengan 

pengurusan tenaga seperti perancangan penyelenggaraan, proses membuat keputusan 

serta penjimatan kos dan tenaga. Kajian untuk meningkatkan ketepatan beban ramalan 

menggunakan Mesin Sokongan Vektor Kuasadua Terkecil (LSSVM) dijalankan 

secara meluas dengan mengoptimumkan parameter hiper LSSVM yang merangkumi 

parameter Kernel dan parameter regularisasi. Walau bagaimanapun, kajian tentang 

kesan penentuan data masukan bagi LSSVM tidak diuji secara meluas oleh penyelidik. 

Kajian ini membangunkan teknik pemilihan data masukan dengan menggunakan 

Kaedah Kumpulan Pengendalian Data Diubahsuai (MGMDH) untuk menambahbaik 

ketepatan peramalan beban bangunan. Selain itu, model Kaedah Kumpulan 

Pengendalian Data (GMDH) dan LSSVM (GMDH-LSSVM) bersiri yang baru telah 

dibangunkan untuk menambahbaik ketepatan peramalan model LSSVM. Untuk 

meningkatkan lagi keupayaan model ramalan, GMDH yang diubahsuai telah 

diletakkan secara bersiri dengan model LSSVM untuk menambahbaik ketepatan 

bangunan ramalan beban elektrik dan mengurangkan tahap kerumitan model GMDH. 

Model – model yang dicadangkan ini dibandingkan prestasi ramalannya dengan model 

GMDH, LSSVM dan Rangkaian Neural Buatan (ANN). Prestasi ramalan dinilai 

menggunakan Min Peratusan Ralat Mutlak (MAPE). Dalam analisis ini, model 

ramalan yang dicadangkan telah memberikan peningkatan ketepatan ramalan 

sebanyak 33.82% berbanding model LSSVM. Daripada penyelidikan ini, dapat 

disimpulkan bahawa model ramalan bersiri dapat menambahbaik ketepatan model 

ramalan dan model-model cadangan ini boleh digunakan untuk peramalan beban 

elektrik bangunan. 

 



 

 

vii 

TABLE OF CONTENTS 

 

 

 

 

CHAPTER    TITLE                  PAGE 

 

  DECLARATION       ii 

  DEDICATION       iii 

  ACKNOWLEDGMENTS      iv 

ABSTRACT        v 

  ABSTRAK        vi 

  TABLE OF CONTENTS      vii 

  LIST OF TABLES        xi 

  LIST OF FIGURES                 xiii 

  LIST OF ABBREVIATIONS      xv 

LIST OF SYMBOLS               xvii 

LIST OF APPENDICES              xviii 

 

1  INTRODUCTION       1 

  1.1  Background       1 

  1.2  Problem Statement      3 

  1.3  Objectives       4 

  1.4  Scopes of Work      4 

  1.5 Significance of Study      5 

  1.6 Thesis Outline       6 

 

 

 



 

 

viii 

2  LITERATURE REVIEW      7 

  2.1  Introduction       7 

  2.2  Forecasting Trending      8 

  2.3  Load Forecasting Analysis Categories   11 

  2.4  Load Forecasting Approaches    12 

   2.4.1 Regression – based models    13 

   2.4.2 Time Series Approach    14 

   2.4.3 Artificial Neural Network (ANN)   15 

   2.4.4 Support Vector Machine (SVM)   18 

   2.4.5 Least Square Support Vector Machine (LSSVM) 20 

   2.4.6 Group Method of Data Handling (GMDH)  23 

   2.4.7 Classical Forecasting Models    25 

  2.5  Energy Management      26 

  2.6  Buildings Electrical Loads     28 

  2.7 Summary       32 

 

3  RESEARCH METHODOLOGY     33 

3.1  Introduction       33 

3.2  Research Framework      34 

3.3  Data Collection      35 

3.4  Input Identification Technique Using Modified  

Group Method of Data Handling (GMDH)   36 

3.4.1 Traditional Group Method of Data Handling 

(GMDH) Technique     36 

3.4.2 Proposed Modified GMDH (MGMDH) Technique 41 

3.5 Improved LSSVM Technique for Load Forecasting   

  using Cascaded GMDH-LSSVM    46 

3.5.1 LSSVM Technique for Load Prediction  46 

3.5.2 Proposed Cascaded GMDH-LSSVM Technique 51 

3.6 Proposed Cascaded Modified GMDH LSSVM for   

  Load Prediction Accuracy     55 

 

 

 



 

 

ix 

3.7 Development of Artificial Neural Network   59 

3.8 Model Input Determination     61 

   3.8.1 Input determination 1: Trial and Error Method 62 

   3.8.2 Input determination 2: Multiple Linear   

    Regressions (MLR) Method    62 

  3.9 Summary       68 

 

4  RESULTS AND DISCUSSION     69 

  4.1 Introduction       69 

4.2 Detail of Case Study      70 

 4.2.1 Load Pattern in April 2013 for Case 1  70 

 4.2.2 Load Pattern in May 2013 for Case 2   71 

 4.2.3 Load Pattern in June 2013 for Case 3   72 

4.3 Input Selection Techniques Using GMDH and  

Modified GMDH for Load Prediction   72 

4.3.1 Input Selection Using GMDH for Case 1 (April) 73 

4.3.2 Input Selection Using GMDH for Case 2 (May) 74 

4.3.3 Input Selection Using GMDH for Case 3 (June) 75 

4.3.4 Input Selection Using Modified GMDH for   

 Case 1 (April)      77 

4.3.5 Input Selection Using Modified GMDH for  

 Case 2 (May)      78 

4.3.6 Input Selection Using Modified GMDH for   

   Case 3 (June)      79 

4.4 Proposed Cascaded GMDH - LSSVM Technique for  

Load Prediction      81 

 4.4.1 Proposed Cascaded GMDH-LSSVM for  

Case 1 (April)      81 

 4.4.2 Proposed Cascaded GMDH-LSSVM for  

Case 2 (May)      82 

 4.4.3 Proposed Cascaded GMDH-LSSVM for  

Case 3 (June)      84 

 

 



 

 

x 

4.5 Proposed Cascaded Modified GMDH-LSSVM for  

Accuracy of Load Prediction     85 

 4.5.1 Proposed Cascaded Modified GMDH-LSSVM for  

 Case 1 (April)      85 

4.5.2 Proposed Cascaded Modified GMDH-LSSVM for  

 Case 2 (May)      87 

4.5.3 Proposed Cascaded Modified GMDH-LSSVM for  

 Case 3 (June)      89 

  4.6 Load Prediction using LSSVM Method   90 

4.6.1 LSSVM Prediction for Case 1 April   91 

4.6.2 LSSVM Prediction for Case 2 May    92 

4.6.3 LSSVM Prediction for Case 3 June   93 

  4.7 Load Prediction using Artificial Neural Network Method 95 

   4.7.1 Artificial Neural Network Prediction for   

    Case 1 April      95 

   4.7.2 Artificial Neural Network Prediction for   

    Case 2 May      97 

   4.7.3 Artificial Neural Network Prediction for  

Case 3 June      98 

  4.8 Comparison of Forecasting Results    99 

4.9 Prediction Impacts                101 

4.10 Summary                  104 

 

5  CONCLUSIONS AND RECOMMENDATIONS             105 

  5.1 Conclusions                 105 

  5.2 Research Contribution               107 

  5.3 Recommendations                107 

 

REFERENCES                   108 

Appendix A                    118 

Appendix B                    130 

Appendix C                    147 

 



 

 

xi 

LIST OF TABLES 

 

 

 

 

TABLE NO.     TITLE        PAGE 

2.1  Forecasting Categories      11 

2.2  ANN Advantages and Disadvantages     16 

2.3  Parameters Affecting Energy Used in Buildings   29 

3.1  Transfer function       41 

3.2  Example of electrical load data for multiple linear regression 65 

3.3 The input structure of the models for the time series prediction 

Model for April 2013       66 

3.4  The input structure of the models for the time series prediction  

Model for May 2013       67 

3.5  The input structure of the models for the time series prediction  

Model for June 2013       67 

4.1  Error analysis of GMDH for electricity load in April 2013  73 

4.2  Error analysis of GMDH for electricity load in May 2013  74 

4.3  Error analysis of GMDH for electricity load in June 2013  76 

4.4  Error analysis of Modified GMDH for electricity load in   

  April 2013        77 

4.5  Error analysis of Modified GMDH for electricity load in   

  May 2013        78 

4.6  Error analysis of Modified GMDH for electricity load in   

  June 2013        80 

4.7 Error analysis of Cascaded GMDH-LSSVM for electricity load in 

April 2013        81 

4.8 Error analysis of Cascaded GMDH-LSSVM for electricity load in 

May 2013        83 



 

 

xii 

4.9 Error analysis of Cascaded GMDH-LSSVM for electricity load in 

June 2013        84 

4.10 Error analysis of Cascaded Modified GMDH-LSSVM for electricity 

load in April 2013       86 

4.11 Error analysis of Cascaded Modified GMDH-LSSVM for electricity 

load in May 2013       88 

4.12 Error analysis of Cascaded Modified GMDH-LSSVM for electricity 

load in June 2013       89 

4.13  Error analysis of LSSVM for electricity load in April 2013  91 

4.14  Error analysis of LSSVM for electricity load in May 2013  92 

4.15  Error analysis of LSSVM for electricity load in June 2013  94 

4.16  Error analysis of ANN for electricity load in April 2013  96 

4.17  Error analysis of ANN for electricity load in May 2013  97 

4.18  Error analysis of ANN for electricity load in June 2013  98 

4.19 Summary of comparative results between the GMDH GLSSVM and 

LSSVM Models                 100 

 

 



xiii 

 

LIST OF FIGURES 

 

 

 

 

FIGURE NO.    TITLE         PAGE 

3.1  Research Framework       34 

3.2  GMDH structure       41 

3.3  Modified GMDH structure      45 

3.4  LSSVM Structure       49 

3.5  Cascaded GMDH-LSSVM Structure     54 

3.6  Cascaded Modified GMDH-LSSVM structure   58 

4.1  Average electrical load pattern in April 2013    71 

4.2  Average electrical load pattern in May 2013    71 

4.3  Average electrical load pattern in June 2013    72 

4.4 Comparison of power response between GMDH technique and  

actual load data in April 2013      74 

4.5 Comparison of power response between GMDH technique and  

Actual load data in May 2013      75 

4.6 Comparison of power response between GMDH technique and  

actual load data in June 2013      76 

4.7 Comparison of power response between Modified GMDH technique 

and actual load data in April 2013     78 

4.8 Comparison of power response between Modified GMDH technique 

and actual load data in May 2013     79 

4.9 Comparison of power response between Modified GMDH technique 

and actual load data in June 2013     80 

4.10 Comparison of power response between cascaded GMDH – LSSVM 

technique and actual load data in April 2013    82 

4.11 Comparison of power response between cascaded GMDH – LSSVM 

technique and actual load data in May 2013    83 

 



xiv 

 

4.12 Comparison of power response between cascaded GMDH – LSSVM 

technique and actual load data in June 2013    85 

4.13 Comparison of power response between cascaded Modified GMDH – 

LSSVM technique and actual load data in April 2013  87 

4.14 Comparison of power response between cascaded Modified GMDH – 

LSSVM technique and actual load data in May 2013  88 

4.15 Comparison of power response between cascaded Modified GMDH – 

LSSVM technique and actual load data in June 2013  90 

4.16  Comparison of power response between LSSVM technique and  

actual load data in April 2013      91 

4.17  Comparison of power response between LSSVM technique and  

actual load data in May 2013      93 

4.18  Comparison of power response between LSSVM technique and  

actual load data in June 2013      94 

4.19  Comparison of power response between ANN technique and  

actual load data in April 2013      96 

4.20  Comparison of power response between ANN technique and  

actual load data in May 2013      98 

4.21  Comparison of power response between ANN technique and  

actual load data in June 2013      99 

 



xv 

 

LIST OF ABBREVIATIONS  

 

 

 

 

AACO   - Adaptive Ant Colony Optimization 

AEMAS - ASEAN Energy Management Scheme 

ANN   - Artificial Neural Network 

ARIMA - Auto Regressive Integrated Moving Average 

ARIMAX  - Auto Regressive Integrated Moving Average with 

    Exogenous Variables 

ARMA - Auto Regressive Moving Average 

ARMAX - Auto Regressive Moving Average with Exogenous 

    Variables 

ASEAN - Association of South East Asian Nations 

BEMS   - Building Energy Management System 

BPNN - Back-Propagation Neural Network 

DE - Differential Evolution 

FOA   - Fly Optimization Algorithm 

GA   - Genetic Algorithm 

GLSSVM  - GMDH and LSSVM 

GMDH  - Group Method of Data Handling 

GRNN - General Regression Neural Network 

HVAC   - Heating, Ventilation and Air-Conditioning System 

kW - kilo Watt 

kWh - kilo Watt hour 

LSSVM  - Least Square Support Vector Machine 

LTLF   - Long-Term Load Forecasting 

MADA - Muda Agricultural Development Authority 

MAPE - Mean Absolute Percentage Error 

MELs - Miscellaneous Electrical Loads 

MLR - Multiple Linear Regression



xvi 

 

MMSE - Minimum Mean Square Error 

MSE   - Mean Squared Error 

MTLF   - Medium-Term Load Forecasting 

PSO - Particle swarm optimization 

QPSO   - Quantum-behaved Particle Swarm Optimization 

RBF - Radial Basis Function 

RMSE - Root Mean Square Error 

SEU - Significant Energy User 

SLT - Statistic Learning Theory 

SRM - Structural Risk Minimization 

SSE - Sum of Squared Error 

STLF   - Short-Term Load Forecasting 

SVM   - Support Vector Machine 

SVR   - Support Vector Regression 

TNB - Tenaga Nasional Berhad 

 

 

 



xvii 

 

LIST OF SYMBOLS 

 

 

 

 

    - Regularization parameter 

    - Kernel Parameter 

    - Summation 

    - Weight vector 

(x)    - Non-linear function 

R   - Correlation Coefficient 

XT   - Transverse of X 

L   - Lagrangian 

    - Insensitive tube (SVM)  

C   - Error Cost 

tt    - t-test 

i    - Coefficient of variables 

i
S    - Estimated standard deviation of i  

e   - Residual error 

 

 

 

 

 

 

 

 



xviii 

 

LIST OF APPENDICES 

 

 

 

 

APPENDIX  TITLE    PAGE 

 

A Prediction Data         118 

B Building Electrical Load Data in April 2013     130 

C List of Publications        147 

 

 

 



1 

 

CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1  Background 

 

 

The tremendous development of countries around the globe in recent years 

especially in the economic and industrial sectors has great impact on electrical energy 

consumption. Population growth and the demands of quality lifestyle also contribute 

significantly to the demand for electrical energy. Commercial buildings and residential 

areas are major electrical energy consumers and the efficient use of electrical energy 

in this sector can help to reduce energy demands and the environmental impact of 

electricity generation especially in the reduction of pollution, carbon footprint and 

greenhouse effects. Monitoring and auditing the use of electricity in buildings can also 

contribute to reducing energy consumption and energy cost. 
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It is for this reason that energy management plays an important role in saving 

energy and cost as well as reducing the negative impact to the environment. For energy 

management planning of buildings, the forecasting method is useful in predicting 

future scenarios of building loads based on current situation. The objective of building 

electrical load forecasting is to evaluate the building’s electrical energy consumption 

and electrical load pattern so that good decisions can be made regarding energy cost, 

building design, maintenance and management planning. Evaluation is an important 

element in the analysis of electrical load patterns from a forecasting model. The 

accuracy of the forecasting results is important because of good decision can be made 

for a particular building based on the forecasting results. The use of forecasting 

techniques to find new information has increased due to the varieties of data available 

in our daily lives. Various forecasting techniques are used to analyze data and these 

techniques will be discussed in this thesis. 

 

Based on previous studies, there are a variety of forecasting methods have been 

used. The implementation of forecasting methods using Artificial Intelligence and Soft 

Computing have helped in the development of this forecasting method. The studies on 

improving load forecasting accuracy using Least Square Support Vector Machine 

(LSSVM) are widely carried out by optimizing the LSSVM hyper-parameter which 

includes the Kernel parameter and the regularization parameter. However, studies on 

the effects of input data determination for the LSSVM are not widely tested by 

researchers. The selection of a suitable input data set plays an important role in 

determining the accuracy of the load forecasted by the LSSVM model. Thus, this 

research will look at the impact on the selection of input for LSSVM by using Group 

Method of Data Handling (GMDH) and Modified GMDH to forecast buildings' 

electrical load. This model has been used in dealing with uncertainty and linear or non-

linear systems in many fields. 
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1.2 Problem Statement 

 

 

Prediction accuracy in the electric load analysis is important issue since the 

prediction result will influence the decision making process and future planning. 

Therefore, the research on improving the prediction accuracy are continuously 

conducted. One of the factors that affects the prediction accuracy is the input 

determination. However, the emphasis on the selection of input to the prediction 

models are not much discussed, although it is important to determine the accuracy of 

forecasting model. Currently, prediction using Least Square Support Vector Machine 

(LSSVM) model has been widely implemented in many fields. However, the use of 

LSSVM models without aided with the appropriate input would lead to inaccurate 

prediction results. Hence, this research will improve the LSSVM model to make the 

prediction results more accurate. Additionally, the application of LSSVM in prediction 

of building electrical load has been widely used. In the input selection process using 

Group Method of Data Handling (GMDH) model, it has a tendency to produce more 

complex network. This will make the prediction accuracy disturbed due to the 

complexity developed. The problem statement stated above can be summarize into 

three points which are 

 

i. The input selection for the prediction models are not much discussed, 

although it is important to determine the accuracy of forecasting model. 

ii. LSSVM forecasting model without appropriate input would lead to 

inaccurate prediction results. 

iii. The conventional GMDH method has a tendency to produce more complex 

network. 
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1.3 Objectives 

 

 

 The objectives of this research are 

 

i. To develop input selection technique using Modified Group Method of Data 

Handling (MGMDH) for buildings load forecasting. 

 

ii. To develop a new model termed as cascaded GMDH-LSSVM to solve 

buildings electrical load prediction accuracy.  

 

iii. To propose Cascaded Modified GMDH-LSSVM structure for accuracy of 

electrical load prediction and reduce the complexity of GMDH model.  

 

 

 

 

1.4 Scopes of Work 

 

 

 The scope and limitations of this research are as follows: 

 

i. The analysis is limited to short-term load prediction analysis. 

ii. Historical data for analysis are collected from a higher learning 

institution, which is in the commercial buildings category. 

iii. Load analysis is limited to the assessment of electric energy 

consumption of the building. 

iv. The LSSVM hyper-parameters used in Cascaded GMDH-LSSVM and 

Cascaded Modified GMDH-LSSVM are fixed in order to observe the 

effect of input data set of the forecasting results. 
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1.5 Significance of the Research 

 

 

The research on prediction methods and its implementation in prediction 

building electrical loads can be useful to various parties such as the commercial 

building management. There are various methods of forecasting available including 

the single prediction method and also hybrid methods. This research was conducted to 

study the prediction accuracy performances of a hybrid method in prediction building 

electrical loads. In this research, an existing prediction method, the LSSVM model 

was cascaded with the GMDH and Modified GMDH model. The GMDH was used to 

determine the inputs and the LSSVM used the inputs to predict the time series of loads. 

Suitable input for prediction is important as it will provide accurate results in electrical 

load prediction. The analysis of load prediction for buildings can help building energy 

managers determine a building’s electrical load patterns. By knowing the near future 

electrical load patterns, building energy managers can identify where, when, and how 

much energy will be used and able to plan on optimizing the electrical energy usage 

in buildings. 
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1.6 Thesis Organization 

 

 

 This thesis is organized in five main chapters.  

 

 Chapter 1 provides a brief overview of the research background including the 

problem statement, thesis objective, scope of work and significant of the research.  

 

Chapter 2 addresses the literatures on the existing prediction methods in 

building load prediction and their importance to energy consumption planning 

activities. The brief of Energy Management and Building Electrical Loads also 

presented in this chapter. 

 

 Chapter 3 presents the methodology conducted in this research. The forecasting 

methods used in this research are presented which are the GMDH, Modified GMDH, 

Cascaded GMDH - LSSVM and Cascaded Modified GMDH - LSSVM. 

 

 Chapter 4 details out the prediction results from the tested models and the 

proposed model. The performance of the proposed model and the other models are 

compared based on the model accuracy and presented in tables and figures. 

 

Chapter 5 provides the thesis conclusion with some recommendations for 

future works. This chapter also presented the research contribution at the end of this 

chapter. 
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