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ABSTRACT 

 

 

 

 

The unique properties of multi-walled carbon nanotubes (MWCNTs) attract 

enormous attentions as promising nanomaterials for numerous applications. In this 

research, the growth of MWCNTs using direct current (DC) arc discharge plasma 

under magnetic field effect in different ambient environments and pressures were 

investigated. Arc plasma was generated inside a vacuum chamber by contact ignition 

between two graphite rods. A DC power supply was used to supply an arc current of 

70 A and a voltage of 12 V across the graphite rods. Magnetic field was applied in 

transverse and axial configurations with field strength of 30 mT. Arc discharge 

experiments were conducted in air, hydrogen and argon environment for different 

ambient pressures of 10-2, 10-1, 1, 101 and 102 mbar. The structural and physical 

properties of MWCNTs were characterized using Transmission Electron Microscopy, 

Field Emission Scanning Electron Microscopy, Raman spectroscopy, Fourier 

Transform Infra-red spectroscopy and X-Ray diffractometry. Results showed that 

MWCNTs growth in arc discharge plasma was significantly influenced by the ambient 

environment, gas pressure, axial and transverse magnetic field. The applied transverse 

magnetic field on arc discharge plasma enhanced the growth of MWCNTs with smaller 

tube dimeter. The axial magnetic field on the other hand allowed the growth of long 

tubular structure with lesser impurities as observed under electron microscope. Results 

from Raman spectroscopy showed that high rise of G band as compared with D band 

indicates high rise of graphitic structure of MWCNTs. The MWCNTs quality was 

measured in terms of intensity ratio of the peak D band to the peak G band. High 

quality MWCNTs with less defective sites were obtained for sample prepared in 

hydrogen environment. The increase in the length of the MWCNTs was observed for 

sample prepared in the presence of inert gas argon. In conclusion, high quality 

MWCNTs were successfully synthesized using magnetic field assisted arc discharge 

technique. 
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ABSTRAK 

 

 

 

 

Keunikan sifat pelbagai lapisan karbon tiub nano (MWCNTs) menarik banyak 

perhatian  sebagai  bahan nano yang unggul  untuk pelbagai kegunaan. Dalam 

penyelidikan ini,  pertumbuhan MWCNTs menggunakan arus terus (DC) nyahcas 

plasma arka dibawah kesan medan magnet dalam persekitaran dan tekanan berbeza 

telah diselidiki. Plasma arka yang terjana didalam ruangan vakum melalui cucuhan 

sentuhan antara dua rod grafit. Sumber kuasa DC digunakan untuk menyalurkan arus 

arka 70 A dan voltan 12 V merentasi rod grafit. Medan magnet dikenakan secara 

konfigurasi melintang dan menegak dengan kekuatan medan sebanyak 30 mT. 

Eksperimen nyahcas arka dijalankan dalam persekitaran udara, hidrogen, dan argon 

pada tekanan  berbeza iaitu 10-2, 10-1, 1, 101 dan 102 mbar. Struktur dan sifat fizikal 

MWCNT dicirikan menggunakan Mikroskop Transmisi Elektron, Mikroskop 

Pengimbas Medan Pelepasan Elektron, Spektroskopi Raman, Spektroskopi 

Transformasi Fourier Infra-Merah dan pembelauan Sinar-X.  Keputusan menunjukkan 

MWCNTs tumbuh melalui nyahcas plasma arka amat dipengaruhi oleh faktor 

persekitaran, tekanan gas, medan magnet melintang dan menegak. Medan magnet 

secara melintang dikenakan pada nyahcas plasma arka meningkatkan pertumbuhan 

MWCNTs dengan diameter tiub bersaiz kecil. Selain itu, kesan medan magnet secara 

menegak menghasilkan struktur tiub yang panjang dengan bendasing yang rendah 

seperti yang diperhatikan dibawah mikroskop elektron. Keputusan spektroskopi 

Raman menunjukkan kenaikan tinggi puncak G berbanding puncak D menunjukkan 

kadar struktur grafitik yang tinggi pada MWCNTs. Kualiti MWCNTs diukur dengan 

menentukan nisbah keamatan puncak jalur D kepada puncak jalur G. MWCNTs 

berkualiti tinggi dengan kecacatan yang rendah diperoleh bagi sampel yang dihasilkan 

didalam persekitaran hidrogen. Peningkatan panjang MWCNTs dapat dilihat pada 

sampel yang dihasilkan dalam gas lengai argon. Kesimpulannya, MWCNTs berkualiti 

tinggi telah berjaya disintesiskan menggunakan kesan medan magnet berbantukan 

teknik nyahcas plasma arka.



vii 

 

 

TABLE OF CONTENTS 

 

 

 

CHAPTER TITLE     PAGE 

 DECLARATION ii 

 DEDICATION  iii 

 ACKNOWLEDGEMENT  iv 

 ABSTRACT  v 

 ABSTRAK  vi 

 TABLE OF CONTENTS  vii 

 LIST OF TABLES   x 

 LIST OF FIGURES  xi 

 LIST OF SYMBOLS  xvii 

 LIST OF ABBREVIATIONS   xix 

 LIST OF APPENDICES  xx 

 

1  INTRODUCTION 

1.0. Background of Study      1 

1.1.  Problem Statement      2 

1.2.  Objectives       4 

1.3.  Scope of Study      4 

1.4.  Significance of study      4 

1.5. Thesis Outline       5 

  

 



viii 

 

2  LITERATURE REVIEW 

2.0.  Introduction       6 

2.1.  Carbon Allotropes      7 

2.2.  Carbon Nanotube and Related Carbon-Based Product 9 

2.3.  Carbon Nanotube Physical Properties   10 

2.4.  Carbon Nanotube Growth Method    14 

2.4.1. Catalyst Assisted Carbon Nanotube Growth  16 

2.4.2. Carbon Nanotube Growth on Substrate  18 

2.5.  Carbon Nanotube Electrical And Mechanical Properties 20 

2.6.  Filling and Functionalize of Carbon Nanotube  22 

2.7.  Application of Carbon Nanotube    23 

2.8.  Experimental Work Development    25 

2.8.1. Arc Discharge Plasma     26 

2.8.2. Inter-electrode Phenomena     27 

2.8.3. Parametric Studies of Carbon Nanotube Growth 30 

2.8.4. Effect of Direct Current Electric Field  30 

2.8.5. Effect of Applied External Magnetic Field  31 

2.9. Sample Analysis of Carbon Nanotube Structure  32 

2.10. Modeling and Simulation Development   33 

 

3  RESEARCH METHODOLOGY 

3.1. Introduction       37 

3.2. Experimental Equipment      37 

3.2.1. Reaction Chamber     38 

3.2.2. Vacuum system     39 

3.2.3. Gas Regulatory System    42 

3.2.4. Power Supply      44 

3.2.5. Graphite Rod      45 

3.2.6. Permanent Magnet     45 

3.2.7. Motorized Stage     47 

3.3. Experimental Procedure     48 



ix 

 

3.3.1. Assembly Fitting     48 

3.3.2. Controlled Environment    52 

3.3.3. Arcing Process     52 

3.3.4. Sample Collection     53 

3.4. Research Flow Chart      56 

 

4  RESULTS AND DISCUSSION 

4.1. Introduction       57 

4.2. Electron Microscopy      57 

4.2.1. Transmission Electron Microscopy   57 

4.2.2. Deviation of Nanoparticle Size   71 

4.2.3. Field Emission Electron Microscopic Analysis 75 

4.3. Spectroscopic Characterization of Synthesized CNTs             90 

4.3.1. Raman Spectroscopy Analysis   90 

4.3.2. Fourier Transform Infrared Spectroscopy  99 

4.4. X-Ray Diffraction Analysis     104 

4.4.1.D-Spacing MWCNT     109 

4.4.2.Crystallite Size     112 

 

5  CONCLUSION AND RECOMMENDATION 

5.1. Conclusion  116 

5.2. Recommendation for Future Study 117 

 

REFERENCES   119 

Appendix A-D                                                   130-140 

 

  



x 

 

 

LIST OF TABLES 

 

 

 

 

TABLE NO.                                      TITLE 

 

PAGE 

3.1 Parameters and ambient environment for arc discharge process 

to synthesize carbon nanotube. 

55 

4.1 Statistic data for carbon nanotube diameter and length grow 

under different ambient condition measured by TEM. 
72 

4.2 Statistic data for carbon nanotube diameter and length grow 

under different ambient condition measured by FESEM. 
88 

4.3 Raman features of CNT in range between 1200 and 1800 cm-1. 95 

4.4 Distribution of XRD diffraction plane (002) and plane spacing 

d(002) in different environment of arc discharge plasma. 
110 

4.5 Crystallite size calculated using Debye-Scherrer equation in 

different applied ambient environment. 
113 

 

 

 

 

 

 

 

 

 



xi 

 

 

LIST OF FIGURES 

 

 

 

 

FIGURE                                CAPTION 

 

PAGE 

2.1 Sp2 configuration of carbon in honeycomb lattice layer. 8 

2.2 Single-Walled Carbon Nanotube 9 

2.3  Geometric structure of an (n,m) single walled carbon 

nanotube. 

11 

2.4 Graphene layer specifies triangular coordination of carbon 

atom identifying types of carbon nanotube upon rolled 

across dotted line. 

12 

2.5  Three main type of carbon nanotube; a) armchair, b) zig-

zag, and c) chiral formed with hemispherical capped at 

both end. 

13 

2.6  Electronic band structure of and density of state for (a) 

(10, 10) armchair carbon nanotube showing metal 

characteristic and (b) (20, 0) zig-zag carbon nanotube with 

the gap between conduction and valence band showing 

semiconductor characteristics [42]. 

14 

2.7  Nano-particle catalyst deposition. 19 

2.8  Image of brain scan using SWCNT  25 

2.9 Inter-electrode gap between two graphite electrodes. 27 

3.1   (a) Stainless steel reaction chamber and (b) schematic 

diagram of reaction chamber. 

38 

3.2  Vacuum system 39 

3.3  Diffstak 100 Diffusion pump. 40 



xii 

 

3.4  RV5 Rotary vane pump. 40 

3.5  Wide Range Gauge pressure gauge. 41 

3.6  Pirani gauge. 41 

3.7  TIC instrument controller pressure display meter. 42 

3.8  Mass flow controller for (a) Hydrogen and (b). Argon 43 

3.9  Flowmeter channel readout. 43 

3.10  Double stage gas regulators. 44 

3.11  DC power supply. 44 

3.12  Anode and Cathode graphite electrodes. 45 

3.13  Permanent magnet; (a) disc and (b) ring magnet. 46 

3.14  Magnet configuration (a) transverse and (b) axial. 47 

3.15  One dimensional motorized translational stage with 

minimum step 5nm. Inset, motor controller model 

TDC001. 

47 

3.16  Full system of arc discharge plasma. 49 

3.17  Block diagram of experimental setup 50 

3.18  Fitting assembly inside vacuum chamber. 51 

3.19  (a)Transverse and (b) Axial magnet configuration. 52 

3.20  Arc discharge plasma. 53 

3.21  Cathode and anode after discharge   process. 53 

3.22  CNT powder grained from cathode deposit. 54 

3.23  Flow chart of research methodology for synthesis carbon 

nanotube by arc discharge technique in different applied 

conditions. 

56 

4.1 TEM micrograph with different nano-structures.  58 

4.2  TEM micrographs of Carbon nanotubes samples prepared 

in Air for ambient pressures (a) 10-2 mbar, (b) 1 mbar and 

(c) 102 mbar in absence of magnetic field. 

59 

4.3  TEM micrographs of Carbon nanotubes samples prepared 

in H2 for ambient pressures (a) 10-2 mbar, (b) 1 mbar and 

(c) 102 mbar in absence of magnetic field. 

60 



xiii 

 

4.4  TEM micrographs of Carbon nanotubes samples prepared 

in Ar for ambient pressures (a) 10-2 mbar, (b) 1 mbar and 

(c) 102 mbar in absence of magnetic field.. 

62 

4.5  TEM micrographs of Carbon nanotubes samples prepared 

in Air for ambient pressures (a) 10-2 mbar, (b) 1 mbar and 

(c) 102 mbar in presence of transverse magnetic field. 

63 

4.6  TEM micrographs of Carbon nanotubes samples prepared 

in H2 for ambient pressures (a) 10-2 mbar, (b) 1 mbar and 

(c) 102 mbar in presence of transverse magnetic field. 

65 

4.7  TEM micrographs of Carbon nanotubes samples prepared 

in Ar for ambient pressures (a) 10-2 mbar, (b) 1 mbar and 

(c) 102 mbar in presence of transverse magnetic field. 

66 

4.8  TEM micrographs of Carbon nanotubes samples prepared 

in Air for ambient pressures (a) 10-2 mbar, (b) 1 mbar and 

(c) 102 mbar in presence of axial magnetic field. 

67 

4.9 TEM micrographs of Carbon nanotubes samples prepared 

in H2 for ambient pressures (a) 10-2 mbar, (b) 1 mbar and 

(c) 102 mbar in presence of axial magnetic field. 

69 

4.10  TEM micrographs of Carbon nanotubes samples prepared 

in Ar for ambient pressures (a) 10-2 mbar, (b) 1 mbar and 

(c) 102 mbar in presence of axial magnetic field. 

70 

4.11 Average carbon nanotube diameter and length growth in 

different condition applied measured from TEM. 

73 

4.12  FESEM micro graphs of carbon nanotube in Air ambient 

environment at pressure (a) 10-2 mbar, (b) 1 mbar and (c) 

102 mbar in absence of magnetic field. 

76 

4.13  FESEM micro graphs of carbon nanotube in H2 ambient 

environment at pressure (a) 10-2 mbar, (b) 1 mbar and (c) 

102 mbar in absence of magnetic field. 

77 



xiv 

 

4.14  FESEM micro graphs of carbon nanotube in Ar ambient 

environment at pressure (a) 10-2 mbar, (b) 1 mbar and (c) 

102 mbar in absence of magnetic field. 

79 

4.15  FESEM micro graphs of carbon nanotube in Air ambient 

environment at pressure (a) 10-2 mbar, (b) 1 mbar and (c) 

102 mbar in presence of external transverse magnetic 

field. 

80 

4.16  FESEM micro graphs of carbon nanotube in H2 ambient 

environment at pressure (a) 10-2 mbar, (b) 1 mbar and (c) 

102 mbar in presence of external transverse magnetic 

field. 

81 

4.17  FESEM micro graphs of carbon nanotube in Ar ambient 

environment at pressure (a) 10-2 mbar, (b) 1 mbar and (c) 

102 mbar in presence of external transverse magnetic 

field. 

82 

4.18  FESEM micro graphs of carbon nanotube in Air ambient 

environment at pressure (a) 10-2 mbar, (b) 1 mbar and (c) 

102 mbar in presence of axial magnetic field. 

84 

4.19  FESEM micro graphs of carbon nanotube in H2 ambient 

environment at pressure (a) 10-2 mbar, (b) 1 mbar and (c) 

102 mbar in presence of axial magnetic field. 

85 

4.20  

 

FESEM micro graphs of carbon nanotube in Ar ambient 

environment at pressure (a) 10-2 mbar, (b) 1 mbar and (c) 

102 mbar in presence of axial magnetic field. 

86 

4.21 FESEM micrograph and EDX spectrum of CNTs samples 87 

4.22  Raman spectra for CNTs grown in different ambient 

pressures 10-2, 10-1, 1, 101 and 102 mbar and absence of 

magnetic field under ambient environments (a) Air (b) H2 

and (c) Ar 

91 

4.23   Raman spectra for CNTs grown in different ambient 

pressures 10-2, 10-1, 1, 101 and 102 mbar and presence of 

93 



xv 

 

magnetic field with transverse configuration under 

ambient environments (a) Air (b) H2 and (c) Ar. 

4.24  Raman spectra for CNTs grown in different ambient 

pressures 10-2, 10-1, 1, 101 and 102 mbar and presence of 

magnetic field with axial configuration under ambient 

environments (a) Air (b) H2 and (c) Ar. 

94 

4.25  ID/IG of Raman spectra for CNTs grown in different 

ambient pressures 10-2, 10-1, 1, 101 and 102 mbar  for (a) 

in absence of magnetic field, (b) in presence of magnetic 

field and (c) axial magnetic field configuration under 

different ambient environments; Air, H2 and Ar. 

97 

4.26   FTIR spectra of sample synthesized in absence of 

magnetic field under (a) air (b) hydrogen and (c) argon 

ambient environment 

100 

4.27   

 

FTIR spectra of sample synthesized in presence  

transverse magnetic field under (a) air and (b) hydrogen 

and (c) argon ambient environment. 

101 

4.28  FTIR spectra of sample synthesized in presence axial 

magnetic field under (a) air (b) hydrogen and (c) argon 

ambient environment. 

102 

4.29  XRD pattern for carbon arc discharge sample in Air in 

absence of magnetic field under different pressure 

103 

4.30 XRD spectrum of CNT samples in absence of magnetic 

field under different ambient environment. 

105 

4.31  XRD spectrum of CNT samples in presence of transverse 

magnetic field under different ambient environment 

106 

4.32 XRD spectrum of CNT samples in presence of axial 

magnetic field under different ambient environment. 

107 

4.33  d(002) spacing distribution in absence of magnetic field, B0, 

in presence of transverse magnetic field, BT, and axial 

111 



xvi 

 

 

  

magnetic field, BA in three different ambient environment; 

(a) air, (b) hydrogen, and (c) argon 

4.34  Carbon nanotube wall in synthesized in different ambient 

environment without magnetic field, B0, with applied 

transverse magnetic field, BT and with applied axial 

magnetic field, BA. 

114 

   

   

   



xvii 

 

 

LIST OF SYMBOLS  

 

 

 

 

A - Ampere 

V - Voltage 

DC - Direct Current 

B0 - In absence of magnetic field 

BT - In presence of transverse magnetic field 

BA - In presence of axial magnetic field. 

mbar - milibar 

S m-1 - Siemen per meter 

GPa - GigaPascal 

nm - nanometer 

Ch - Chiral vector 

J - Current density 

B - Magnetic field 

λeff - Effective mean free path electron 

* - Delocalized electron orbital 

EF - Fermi Energy 

 - Mass flux rate 

psat - Saturation pressure 

ID - Raman D-band Intensity 

IG - Raman G-band Intensity 

d002 - 002 plane spacing 

H2 - Hydrogen 

Ar - Argon 

Pkin - Kinetic Pressure 



xviii 

 

n - density 

k - Boltzmann constant 

T - Temperature 

 

 

 

  



xix 

 

 

LIST OF ABBREVIATION  

 

 

 

 

CNT - Carbon Nanotube 

SWCNT - Single-Walled Carbon Nanotube 

DWCNT - Double-Walled Carbon Nanotube 

CVD - Chemical Vapor Deposition 

PECVD - Plasma Enhanced Chemical Vapor Deposition 

TEM - Transmission Electron Microscopy 

FESEM - Field Emission Scanning Electron Microscopy 

FTIR - Fourier Trasnform Infra-Red 

XRD - X-Ray Diffraction 

TGA - Thermogravimetric Analysis 

DTA - Derivative Thermogravimetric Analysis 

0D - Zero Dimensional 

1D - One Dimension 

3D - Three Dimension 

 

 

 



xx 

 

 

LIST OF APPENDICES 

 

 

 

 

APPENDIX TITLE 

 

PAGE 

A Carbon nanotube diameter and length measured by TEM 126 

B Metal polish used to clean the vacuum chamber. 134 

C 
Computer interface to measure distance travel by electrode 

and time elapse 
135 

D Tesla meter used to measure magnetic field strength. 136 

 

 

 

 

 



1 

 

 

CHAPTER 1 

 

 

 

  

INTRODUCTION 

 

 

 

 

1.0 Background of study 

Nanotechnology has brought up a new era of fascinating atomic scale study.  

While pursuing technological advances, carbon element come out with spectacular 

nanostructure designated in 0D, 1D, and 3D honeycomb lattice structure. Carbon 

nanotube is one of the carbon allotropes build from 1D sp2 hybridized bonding of 

carbon atom. Carbon nanotube was accidentally founded in 1991 during an arc 

discharge process of synthesize buckyball structure of carbon [1]. The unique 

properties of carbon has tremendously pledge researcher to exploit advantage of 

carbon nanotube for vast application from small scale nano size device [2] to macro 

size golf club [3] .   

Carbon nanotube is a form of straw-like structure made of single layer of 

carbon atom recognized as Single Walled Carbon Nanotube (SWCNT). In different 

ways the carbon atom bound together and defines whether SWCNT has metallic or 

semiconductor properties. The tube can even exist in Multi-layer form by spacing 0.34 

nm. The band gap of semiconductor nanotube depends on the configuration and 

diameter of the tube [4]. This remarkable structure builds up from hexagonal lattice 

structure of carbon atom layer bind by strong covalent bond. The delocalized  orbital 

of sp2 hybridized orbital enables high electron transport in carbon nanotube structure.  

The unique carbon nanotube properties are its high tensile strength maximum 

100 GPa [5], high thermal  conductivity 2000 Wm-1 K [6], and high electrical 

conductivity 10,000 S m-1 [7]. Carbon nanotube is strong but lightweight and highly 
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flexible. The high elasticity also makes carbon nanotube absorb high kinetic energy. 

Likewise this makes carbon nanotube a good material to use as functional structure 

which can withstand high temperature and high conductivity for electrical and 

electronics application and also for high durable mechanical application technology. 

In particular carbon nanotube structure can be modified for desirable application. 

Hemispherical cap can be open and the tube can be filled with nanoparticle for drugs 

delivery applications [8]. Chemical functional groups are able to attach with carbon 

nanotubes sidewall or body [9] for variety of application. Carbon nanotube composite 

certainly used for many applications including photovoltaic solar cells  [10] and 

sporting goods [11], nanoprobe [12], nano-electronic integrated circuit [13], 

stretchable sensors [14], and nanowire for supercapacitor and battery application [15]. 

Carbon nanotube can unzipped into form of graphene nano ribbon for memory device 

and processing device application [16, 17]. 

Typically, there are three main techniques used to synthesize carbon nanotube; 

arc discharge, laser ablation, and chemical vapour deposition (CVD). In vacuum arc 

discharge, plasma is generated between the different potential of electrodes. This 

generated plasma then releases highly energetic carbon particle from anode toward 

cathode contact area. The high erosion of anode from arc discharge induces carbon 

nanotube growth. The arc discharge technique has an advantage to grow carbon 

nanotube efficiently as it does not require high cost such as laser and delivers in shorter 

time as compared to CVD process. In addition, the arc discharge technique is capable 

to grow straight, highly crystalline and highly graphitized carbon nanotube structure 

[18]. 

 

 

 

 

1.1 Problem Statement  

 Carbon nanotube grows in high temperature process. Many different 

techniques have been employed  enabling growth for carbon nanotube including arc 

discharge [1], laser assistance grow [19], thermal growth [20] and chemical vapor 

deposition [21]. There are many technique that have been used to synthesize carbon 

nanotube. The arc discharge technique is one of the efficient technique to grow fast 

fine structure carbon nanotube. Arc plasma recognized as one of efficient method to 
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grow carbon nanotube among others because it is fast and able to grow highly 

crystalline and graphitized tube structure. The growth phenomena of this fascinating 

nanostructure is still on-going debate by many researcher. However, the condition 

applied will give significant impact on the growth of carbon nanotube structures.  

Close contact between electrodes can lead to ignition spark to generate arc 

plasma. The ionization of carbon releases electron   creating current within electron 

through a plasma bridge. Highly erosion anode feed ionic carbon to grow fine 

nanostructure at cathode deposit. In arc discharge method, arc plasma play important 

role towards the growth of carbon nanostructure. The physical parameter such as 

applied voltage and current, external magnetic field, electrode geometry and 

dimension, ambient environment and pressure, have very strong influence on the 

dynamics of plasma thus certainly affect the growth of carbon nanotube structure. 

The ionization of carbon release caused current flows within the electrons 

through the plasma. There are several issues regarding carbon nanotube growth in arc 

discharge process including entanglement, by product growth, low density grows, and 

lack of graphitic structure.  These are caused by non-uniform plasma expansion. In the 

arc discharge process, the two contacting graphite electrodes by small gaps will create 

arc plasma which will then evaporate carbon material and deposit carbon nanotube at 

the cathode surface area. The effect of physical parameters including current and 

voltage applied, electrode dimensions, also ambient environment and pressure onto the 

arc plasma will affect the growth of carbon nanotube structure. The optimization of 

physical parameter will enhance plasma stability and contribute toward optimized 

growth of carbon nanotube [22]. 

         The novelty of this study is by applying magnetic field in the axial and 

transverse configuration assisted onto arc plasma to grow carbon nanotube under 

different ambient environment and pressure. This research will focus on the grow 

phenomena and the physical properties of carbon nanotubes based on different 

physical parameters. The discharge process is carried out in different pressures ranging 

from 10-2 to 102 mbar in three different environments; hydrogen, argon, and air. The 

growth of carbon nanotube structure in presence of magnetic field in different 

environment and pressure has been investigated comprehensively The nanotube 

samples collected will be analyzed comprehensively under different microscopic and 

spectroscopic techniques. 
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1.2 Objectives  

The main objective of the study is to investigate in details the effect of magnetic 

field toward the growth of carbon nanotube by arc discharge technique in different 

ambient conditions. The specific objectives are to: 

i. Investigate growth of carbon nanotube by magnetic assisted arc 

discharge process by transverse and axial magnetic field configuration 

with field strength 30mT. 

ii. Determine the effect of ambient environment including Air, Hydrogen, 

and Argon and different pressures applied at 10-2, 10-1, 1, 101, and 102 

mbar on the growth of carbon nanotube. 

iii. Characterize the growth of carbon nanotube using microscopic and 

spectroscopic techniques.  

 

 

 

 

1.3 Scope of Study 

Experiment has been conducted  with electrode made of high purity 99.999% 

graphite with anode dimension outer and inner diameter used were 9 mm and 5.5 mm 

while cathode diameter 12 mm. The hole for inner diameter has depth 5 cm. Constant 

Magnetic field with strength 30 mT has been applied across arc plasma in transverse 

and axial configuration. Three different ambient environments have been applied in 

this study, air, hydrogen, and argon. Five different pressure has been applied in this 

study, 10-2, 10-1, 1, 101, 102 mbar. Sample of carbon nanotube is collected on cathode 

deposit. The samples are analysed under electron microscopy, Raman Spectroscopy, 

X-Ray diffraction, and Fourier transform Spectrophotometer. 

 

 

 

1.4 Significance of Study 

The study significantly contributes to the understanding towards optimize 

growth of carbon nanotube and role of external magnetic field. The carbon nanotube 

structural properties and characteristic grow in different magnetic configuration 

applied across arc plasma in different ambient environment and pressure are outlined 



5 

 

in this study. The combination of all carbon nanotube features and characteristic will 

construct a database for optimization of the technique used for further practical 

application. 

 

 

 

 

 

1.5 Thesis  Organization 

 The first chapter presents an overview of carbon nanotube structure, research 

background, problem statement, objectives, and scope of study. The second chapter 

provides    a review of related literature on nanotube nanostructure and its physical 

properties, different technique to synthesize carbon nanotube, factor influence carbon 

nanotube growth, and the application of carbon nanotube. In the third chapter, the 

methodology and research framework are discussed in details. This chapter described 

the equipment used, experimental setup, details of reaction chamber, parameter 

manipulation, and experimental procedure.  The fourth chapter presents the results of 

characterization of carbon nanotube sample by direct and indirect method using TEM, 

FESEM, Raman, XRD, FTIR, and TGA. Chapter five, the final chapter presents the 

summary of the entire study, discusses conclusion and some recommendation for 

future study of this unique nanomaterial.   
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