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ABSTRACT 

Software changes are inevitable due to the dynamic nature of the software 

development project itself. Some software development projects practice their own 

customised methodology but mostly adopt two kinds of methodologies; Traditional 

and Agile. Traditional methodology emphasizes on detailed planning, comprehensive 

documentation and extensive design that resulted a low rate of changes acceptance. 

In contrast, Agile methodology gives high priority on accepting changes at any point 

of time throughout the development process as compared to the Traditional 

methodology. Among the primary factor that has direct impact on the effectiveness 

of the change acceptance decision is the accuracy of the change effort prediction. 

There are two current models that have been widely used to estimate change effort 

which are algorithmic and non-algorithmic models. The algorithmic model is known 

for its formal and structural way of estimation and best suited for Traditional 

methodology. While non-algorithmic model is widely adopted for Agile 

methodology of software projects due to its easiness and requiring less work in term 

of effort predictability. The main issue is that none of the existing change effort 

prediction models is proven to suits for both, Traditional and Agile methodology. 

Additionally, there is as yet no clear evidence of the most accurate change effort 

prediction model for software development phase. One of the method to overcome 

these challenges is the inclusion of change impact analysis in the estimation process. 

The aim of the research is to overcome the challenges of change effort prediction for 

software development phase: inconsistent states of software artifacts, repeatability 

using algorithmic approach and applicability for both Traditional and Agile 

methodologies. This research proposed an algorithmic change effort prediction 

model that used change impact analysis method to improve the accuracy of the effort 

estimation. The proposed model used a current selected change impact analysis 

method for software development phase which is the SDP-CIAF (Software 

Development Phase-Change Impact Analysis Framework). A software prototype was 

also developed to support the implementation of the model. The proposed model was 

evaluated through an extensive experimental validation using case scenarios of six 

real Traditional and Agile methodologies software projects. A comparative study was 

also conducted for further validation and verification of the proposed model. The 

analysis result showed an accuracy improvement of 13.44% average mean difference 

for change effort prediction over the current selected change effort prediction model. 

The evaluation results also confirmed the applicability for both Traditional and Agile 

methodologies. 
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ABSTRAK 

Perubahan perisian tidak dapat dielakkan kerana sifat dinamik projek 

pembangunan perisian itu sendiri. Sesetengah projek pembangunan perisian 

mengamalkan metodologi mereka sendiri yang telah disesuaikan tetapi 

kebanyakannya mengamalkan dua jenis metodologi; Tradisional dan Agil. 

Metodologi Tradisional memberi penekanan kepada perancangan terperinci, 

dokumentasi menyeluruh dan reka bentuk yang terperinci yang menyebabkan kadar 

penerimaan perubahan yang rendah. Sebaliknya, metodologi Agil memberi 

keutamaan yang tinggi pada penerimaan perubahan pada bila-bila masa sepanjang 

proses pembangunan berbanding metodologi Tradisional. Antara faktor utama yang 

mempunyai kesan langsung kepada keberkesanan keputusan penerimaan perubahan 

adalah ketepatan anggaran usaha perubahan. Terdapat dua model semasa yang telah 

digunakan secara meluas untuk menganggarkan perubahan usaha iaitu model 

algoritma dan bukan algoritma. Model algoritma dikenali dengan cara anggaran 

formal dan berstruktur dan paling sesuai untuk metodologi Tradisional. Sementara 

model bukan algoritma diterima pakai secara meluas bagi projek perisian metodologi 

Agil kerana ia mudah dan memerlukan kerja yang sedikit dari sudut anggaran usaha. 

Isu utama adalah kerana tiada model anggaran usaha perubahan sedia ada yang 

terbukti sesuai untuk kedua-dua metodologi Tradisional dan Agil. Selain itu, tiada 

lagi bukti yang jelas berkenaan model anggaran usaha perubahan yang paling tepat 

untuk fasa pembangunan perisian. Salah satu kaedah untuk mengatasi cabaran-

cabaran ini adalah dengan memasukkan analisis kesan perubahan di dalam proses 

anggaran. Tujuan kajian ini adalah untuk mengatasi cabaran anggaran usaha 

perubahan untuk fasa pembangunan perisian: keadaan artifak perisian yang tidak 

konsisten, kebolehulangan menggunakan pendekatan algoritma dan kebolehgunaan 

untuk kedua-dua metodologi Tradisional dan Agil. Kajian ini mencadangkan satu 

model anggaran usaha perubahan berasaskan algoritma yang menggunakan kaedah 

analisis kesan perubahan untuk meningkatkan ketepatan anggaran usaha. Model yang 

dicadangkan menggunakan kaedah analisis kesan perubahan semasa yang terpilih 

untuk fasa pembangunan perisian iaitu SDP- CIAF (Rangka Kerja Fasa 

Pembangunan Perisian - Analisis Impak Perubahan). Satu perisian prototaip juga 

telah dibangunkan untuk menyokong pelaksanaan model. Model yang dibangunkan 

dinilai melalui pengesahan eksperimen yang luas menggunakan kes senario daripada 

enam projek-projek perisian metodologi Tradisional dan Agil sebenar. Satu kajian 

perbandingan juga telah dijalankan untuk pengesahsahihan dan pengesahan lanjut 

model yang dicadangkan. Keputusan analisis menunjukkan peningkatan ketepatan 

sebanyak 13.44% perbezaan min purata bagi anggaran usaha perubahan berbanding 

model anggaran usaha perubahan semasa yang terpilih. Hasil penilaian juga 

mengesahkan kebolehgunaan dalam kedua-dua metodologi Tradisional dan Agil. 
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CHAPTER 1 

INTRODUCTION 

 

 

 

Software process consists of several defined activities which separated into 

distinct stages during software development project in order to deliver a software 

product with better quality and management. This process is also known as Software 

Development Life Cycle (SDLC) which usually starts from planning, requirement 

gathering, analysis, design, implementation, testing and ends with deployment. 

Foundational to this, there are two types of SDLC methodology mostly adopted; 

Traditional methodology and Agile methodology. Traditional methodology practices 

emphasize on detailed planning, comprehensive documentation and extensive design 

(Awad, 2005). On the contrary, Agile methodology practices customer collaboration 

over detailed planning, emphasizes on the working software over the comprehensive 

documentation and values individual interactions over extensive processes and 

design (Beck et al., 2001). Regardless of any methodology adopted, the software 

project management is required with the intent of better planning, monitoring and 

control for the software development efforts. Software development efforts planning 

or estimation in a software process is one of the important criteria to deliver a 

successful software development project (Lehtinen et al., 2014).  

 

Software development effort estimation is a process predicting how much 

work required to develop a software in a software project, and normally will be 

described in man-days or man-hours unit. Studies of software development effort 

estimation has started since 1960s (Farr and Zagorski, 1964; Nelson, 1967) and it has 

been a continuous research because there are still a lot of arguments and discussions 
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in achieving an accurate software effort estimation result (Bardsiri et al., 2013; 

Lehtinen et al., 2014). Therefore, researchers have proposed various types of 

software effort estimation techniques to date. However, most of the techniques were 

proposed to estimate the development work at the beginning of software 

development phase based on pre-defined requirements. However, during 

development phase, the requirement might change due to the dynamic nature of any 

software projects. These changes will give an impact to the software project 

management in controlling the software development effort. Therefore, effort 

estimation for the requirement changes is critical to software project management in 

providing the final deliverables of software project. At present, there is lack of 

evidence of the current effort estimation model especially for requirement changes 

during software development phase. 

 

This thesis presents a new change effort prediction model that can be used in 

both Traditional and Agile methodologies software projects. The new model 

identifies and considers the related factors that contribute to the effort estimation for 

requirement changes during software development phase. 

 

This chapter describes the background of the research, problem statement, 

research questions, objectives, scope of research, significance of the study and thesis 

organization. 

1.1 Background of the Research 

Although effort estimation has existed for decades, it still remains a great 

challenge for software project management to produce an accurate estimation and 

eventually completed the software project successfully. Several studies highlighted 

the importance of managing the changes in the software projects by the software 

project manager to ensure the project success (Agarwal and Rathod, 2006; Drew 

Procaccino et al., 2002; Lehtinen et al., 2014; Verner et al., 2007).  Lehtinen et al. 

(2014) defines a software project failure means a recognizable failure to succeed in 

the cost, schedule, scope, or quality goals of the project.  
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Kaur and Sengupta (2013) states that the most common reasons for project 

failure are rooted in the project management process itself which include identified 

estimation mistakes, unclear project goals and objectives, and project requirement 

changing during the project. In any software development project, the software 

project manager is the main role who is responsible towards the software project 

success or failure. One of the main criteria of a successful software project manager 

is, responsible in managing the software requirement changes and hence justifies the 

change acceptance decisions made.  

 

Change request may occur at any point in SDLC (Chen and Chen, 2009; 

Nurmuliani et al., 2006). It is important to manage the changes in the software to 

meet the evolving needs of the customer and hence, satisfy them (Bennett and 

Rajlich, 2000; Brooks Jr, 1956; Finkelsteiin and Kramer, 2000; Kotonya and 

Sommerville, 1998; Pfleeger and Bohner, 1990). Introducing software changes 

during software development phase may need to identify the impacts to the software 

artifacts and consequences to the efforts due to the software change. Accepting too 

many changes might lead to project cost overrun and delay. Rejecting too many 

changes may cause customer dissatisfaction. 

 

While this is the case of Traditional methodology, where software project 

manager has the option to accept or reject the change request, it is the opposite in the 

case of modern SDLC such as Agile methodology. In view of the change request, 

Agile methodology gives high priority on accepting changes at any point of time 

throughout the software development process compared to the Traditional 

methodology (Beck et al., 2001). Henceforth, an efficient software project 

management and change management in Agile methodology are more crucial, and 

accurate effort estimation are not the second option in ensuring a software project 

success. 

 

Generally, two types of information that could assist the software project 

manager in managing the software change management are change impact analysis 

and change effort prediction (Stammel and Trifu, 2011). Change impact analysis is a 

procedure of identifying the possible effect of a change, or predicting the process 

required to undertake a change (Bennett and Rajlich, 2000; Brooks Jr, 1956; 
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Finkelsteiin and Kramer, 2000; Kotonya and Sommerville, 1998; Pfleeger and 

Bohner, 1990).  Change effort estimation, on the other hand, is a procedure of 

predicting the processes and activities required in terms of work, resources and time 

in implementing the changes (Asl and Kama, 2013; Bee Bee, 2010; Chua and 

Verner, 2010). 

 

 Verner et al. (2007) highlighted it is important to software project manager 

to obtain enough information during estimation process in order to ensure the project 

success. In the context of requirement changes, the impacts to the software artifacts 

is one of the required information. Software artifacts include documents, data and 

source code or class are subjected to impact due to the changes. During software 

development phase, some documents may subject to update and review process 

which requires resources effort. In case of source code or class, some classes may 

still be under development state or not developed at all. Software project manager 

has the difficulties to make the decision whether to implement or discard the changes 

due to inconsistent states of software artifacts during software development phase. 

 

Another essential point, the change effort prediction for software 

development phase also need to consider is the effort distribution of SDLC 

methodology adopted for a software project. Few earlier studies highlighted the 

importance of phase wise effort estimation to achieve more accurate results 

(Chatzipetrou et al., 2015; Choudhari and Suman, 2012; Yang et al., 2008). For 

instance, during requirement phase in the Traditional methodology i.e. Waterfall 

model, the effort allocation for coding might be zero, but in the Agile methodology, 

coding effort must be allocated accordingly. Additionally, effort estimation for 

requirement changes also needs to consider the inconsistent states of the artifacts 

during software development phase. 

1.2 Statement of the Problem 

Software changes may occur at any stages during software development 

process. Current study stated that the Traditional methodology software projects 
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usually recorded a low rate of changes acceptance due its detailed planning, 

comprehensive documentation and extensive design (Awad, 2005). Meanwhile, 

Agile methodology gives high priority on accepting changes at any point of time 

throughout the development process due to its environment of incremental 

elaboration to fulfil the customer satisfaction (Awad, 2005; Stålhane et al., 2014).  

Regardless the SDLC models adopted by the software development projects, either 

Traditional or Agile methodology, it is crucial in managing the changes during 

software development phase in order to meet and satisfy the requirements volatility 

of the customer (Bennett and Rajlich, 2000; Brooks Jr, 1956; Finkelsteiin and 

Kramer, 2000; Kotonya and Sommerville, 1998; Pfleeger and Bohner, 1990). 

Nevertheless, accepting too many changes can drag the project timeline and increase 

project cost while declining the change request from the customer may trigger 

dissapointment. Hence, it is a very crucial needs for a software project manager to 

manage the ever changing requirements as well as make the best decision for the 

software projects success. One of the input that can assist and support the software 

project manager to make the best decision is the change effort prediction during 

software development phase.  

 

However, very little has been written on change effort prediction for software 

development phase. During this phase, two most related concepts in estimating the 

required effort for the change request are the change impact analysis and the software 

effort estimation. Change impact analysis is a procedure of identifying the possible 

effect of a change, or predicting the process required to undertake a change (Bennett 

and Rajlich, 2000; Brooks Jr, 1956; Finkelsteiin and Kramer, 2000; Kotonya and 

Sommerville, 1998; Pfleeger and Bohner, 1990). The objective of the change impact 

analysis is to detect the potential affected software artifacts (i.e., requirement, design, 

class and test artifacts) due to the change. Whereas, the objective of the change effort 

prediction is to estimate the amount of work and time required in implementing the 

particular changes (Asl and Kama, 2013; Bee Bee, 2010; Chua and Verner, 2010). 

There are two current models that have been widely used to estimate effort which are 

the Algorithmic and Non-algorithmic models. Algorithmic models that are 

commonly used in estimating effort estimation for Traditional methodology include 

the well-known COCOMO II (Boehm, 2000), Function Point Analysis 

(Lubashevsky, 1996; Yinhuan et al., 2009) and Use-Case Points (Ochodek et al., 
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2011). On the other hand, earlier researchers highlighted that Non-Algorithmic 

model such as expert estimation is preferable in estimating efforts in most of Agile 

methodology software projects (Keaveney and Conboy, 2006; Popli and Chauhan, 

2014) due to the easiness and simplicity in producing effort estimation result without 

the need of specific tools or techniques (Huang et al., 2008).  Although several 

extensions have been developed based on the current effort estimation models 

(Ahmed et al., 2012; Lazić and Mastorakis, 2009; Merlo–Schett et al.; Yang et al., 

2006), but those extensions are still lacking in considering the change effort 

prediction during software development phase.  

 

The integration of change impact analysis and effort estimation may improve 

the accuracy of change effort prediction. According to Nurmuliani et al. (2006), 

some change request attributes such as change request type and change requirements 

have direct effect on the predicted effort to implement that change. Furthermore, 

Nurmuliani et al. (2006) stated that his biggest challenges in his study were that there 

is no formal impact analysis method to support the change effort prediction, and 

there are no traceability models for the relations between requirements and classes. 

Nevertheless, there is at present, no satisfactory explanation of change impact 

analysis and software effort estimation integration has been provided. Furthermore, 

most of the current researches only focus on the change impact analysis for software 

maintenance phase and less attention had been given in software development phase 

(Kama, 2013a). Hence, it also implied that little attention has been paid to change 

effort prediction during software development phase. 

 

Software development phase includes an important factor that need to be 

considered in estimating the change effort which is the inconsistent states of software 

artifacts in estimating the change implementation effort. The attention of this factor 

is important as during the software development phase consists of: (1) the existence 

of partially developed artifacts; (2) the existence of developed artifacts that some of 

them have been developed conceptually but not technically (or have yet been 

implemented), and (3) the existence of fully developed artifacts. Although earlier 

researcher, Sharafat and Tahvildari (2008)  had proposed change impact prediction 

approach in object oriented software projects which uses the UML diagram that 

representing design of the class artifacts to estimate the propagation posibilities from 



7 

 

one class  to another class, yet the approach still did not consider the inconsistence 

states of the class artifacts. The failure to acknowledge the existence of these type of 

artifacts will lead to inaccurate estimate and hence, contribute to either project failure 

or customer dissapointment.  

 

Thus, this research was inspired by the research works of Asl and Kama 

(2013); Kama and Azli (2012) in which they consider the existence of the 

inconsistence states of the software artifacts in their change impact analysis 

approach. This research presents a new algorithmic change effort prediction model 

by including the principal of the change impact analysis approach that consider the 

inconsistence states of software artifacts to one of the established effort estimation 

model for software development phase. This new algorithmic change effort 

prediction is expected to be applicable in Traditional and Agile methodology 

software projects and may improve the accuracy of change effort prediction as 

compared to current effort estimation models. 

1.3 Research Questions 

This research deals with the main question of “How to improve the accuracy 

of software change effort prediction for software development by including a change 

impact analysis into an effort estimation model that applicable for both Traditional 

and Agile methodologies?” 

 

To provide an effective solution for the main research question, several sub-

questions are constructed: 

 

i. What are the existing software change effort prediction and change 

impact analysis techniques used for software development? 

ii. How to calculate the estimated effort required for requirement 

changes for software development? 
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iii. How effective the new change effort prediction model as compared to 

the existing effort estimation model for Traditional and Agile 

methodology software development? 

1.4 Research Objectives 

The aim of this research is to propose a new algorithmic-based software 

change effort prediction model using change impact analysis which could be used to 

improve the accuracy of the change effort prediction in the Traditional and Agile 

methodology software projects and to evaluate the applicability and accuracy 

improvement of the proposed model. Hence to achieve the aim, three objectives are 

identified as follow: 

 

i. To propose an algorithmic-based software change effort prediction 

model using a change impact analysis technique for software 

development. 

ii. To build a software change effort prediction prototype that 

implements the algorithmic-based software change effort prediction 

model for software development. 

iii. To evaluate the applicability and accuracy improvement of the 

algorithmic-based software change effort prediction model for 

Traditional and Agile methodology software development as 

compared to the existing effort prediction model. 

1.5 Scopes of Research 

The main reason of defining a research scope is to focus the research area and 

emphasize the boundaries and constraints of the research. Limitation of the research 

scopes are as following: 
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1.5.1 Research Context 

The research aims to produce a software change effort prediction model using 

existing change impact analysis for software development phase as in Figure 1.1. 

  

 

Figure 1.1  Research Context 

 

Most of change impact analysis techniques were developed to support 

software evolution or requirement changes during maintenance phase. However, this 

research only focuses on impact analysis techniques that suitable for software 

development phase. In general, software development phase differs from software 

maintenance phase due to the existence of inconsistent states of software artifacts 

such as partially developed classes. 

1.5.2 Research Challenges 

Since this research focuses on software development phase, there were 

challenges in capturing the actual information in real software projects during 

software development process. Although the intention of the research might focus on 

the software artifacts and its related components, real software project in the industry 

are constraint with other factors; for example, confidentiality, commercial 

obligations, politics, complex organization structures, among others. These factors 
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might affect the research timeline and milestones. Thus, the author outlines following 

criteria of the software projects: 

 

 Real software projects – Real software projects require participation from 

business organization or industry. Since this research might not be able to 

benefit them directly, it is difficult to capture and collect relevant data for this 

study. However, based on experiences of the author, who had involved in the 

software industry for more than 10 years, access to real software projects is 

unpretentious. 

 

 Sufficient documentation – Generally, documentation involves include the 

change request form, software requirements and software design 

documentation, source code and progress report. Meanwhile, in the case for 

Agile methodology the documentation involves may include the product 

backlogs and sprint backlogs. 

 

 Platform / Language – Software development might be created using certain 

programming platform and language. Since this research involves dynamic 

analysis process which involves the dynamic artifacts at class level, it is 

difficult to develop a prototype that will be able to handle all types of 

programming platform and language. Thus this research only focuses on a 

single or two programming platform and language that the author familiar 

with, to develop a prototype and produce the evaluation results to 

demonstrate the proposed model. 

1.6 Significance of the Research 

Main contribution of this research is significant in two perspectives. First, the 

new effort estimation model will provide crucial information in predicting the 

amount of work and time required to implement a requirement changes. The new 

model shall be applicable for two well-known software development process group: 
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(1) Traditional methodology; and (2) Agile methodology. The effort to implement 

the requirement changes need to be assessed precisely in order to support the change 

acceptance decision during software development phase. Additionally, it will support 

for better planning and prioritization of the requirements implementation during the 

Traditional and Agile methodology software development. 

 

Next, most change acceptance decision assessment during software 

development phase is based on change impact analysis techniques. The change 

impact analysis examines the potential impacts by assessing current state of software 

artifacts such as requirement specifications and source code during software 

development phase. By realizing the significance of the change impact analysis, the 

effectiveness of the development work prediction will be expected to be improved by 

including the current change impact analysis into the new change effort prediction 

model during software development phase. 

1.7 Operational Definition 

The operational definitions of terminologies used in this research are 

presented below: 

 

Traditional 

methodology 

: Describe one of the process to develop a software 

that practices detailed planning, comprehensive 

documentation and extensive design 

 

 

Agile methodology : More recent technique in developing a software 

that practices customer collaboration over 

detailed planning, emphasizes on the working 

software over the comprehensive documentation 

and values individual interactions over extensive 

processes and design. 
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Software 

development 

 

: A software engineering process in developing a 

software or in short software process. Sometimes 

also known as Software Development Lifecycle 

(SDLC) 

  

Software 

development phase 

: Identify the stages of the software process in 

developing a software. The stages may start from 

requirement, analysis, design, implementation, 

testing until deployment. 

 

Algorithmic model :  A formal technique that apply algorithms and 

formulas in order to derive a result of the 

estimation calculation. 

 

Non-algorithmic 

model 

: An informal technique that are not using any 

algorithms or formal methods and / or formulas 

in deriving the estimation result. 

 

Change : The modification or adjustment that occurs 

during software development phase, which may 

involve the requirement or the software being 

developed. 

 

Effort prediction or 

estimation 

: A process of predicting the amount of work and 

task required to develop a software that usually 

described in the form of man/days or man/hours. 

 

Change impact 

analysis 

:  A process of identifying potential consequences 

of change, or estimating what needs to be 

modified to accomplish a change. 
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Change effort 

prediction or 

estimation 

: A process of predicting the amount of work or 

task required in implementing the modification 

that occurred. 

 

Magnitude Relative 

Error (MRE) 

: An absolute value that was derived from the 

difference between the estimated value as 

compared to the actual value. 

 

Applicability : The degree of how much the new model is 

relevant to the Traditional and Agile 

methodology 

 

Accuracy : The degree of precision of the estimated effort as 

compared to the actual effort 

1.8 Organisation of the Thesis 

This thesis comprises of six chapters. This chapter gives an overview of the 

research area. It also includes the research background, problem statement, research 

questions, objectives of the research, and the scope of the research. Then it is followed 

by the significance of the research and finally it outlines the organisation of this thesis. 

 

Chapter Two discusses the comprehensive review of the literature. 

 

Chapter Three describes the research methodology used in conducting this 

research. 

 

Chapter Four introduces the proposed Change Effort Prediction Model and 

the development of the prototype. 
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