

AN ALGORITHMIC-BASED SOFTWARE CHANGE EFFORT PREDICTION

MODEL USING CHANGE IMPACT ANALYSIS FOR SOFTWARE

DEVELOPMENT

MUHAMMAD SUFYAN BIN BASRI

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy (Software Engineering)

Advanced Informatics School

Universiti Teknologi Malaysia

JULY 2016

iii

DEDICATION

ALHAMDULILLAH…

To Allah (SWT)

For my beloved mother and father

My dearest wife, Faizura Haneem Mohamed Ali

 and children…

Luqman, Sakina, Hannah and Faheem

Thank you for the love and continuous support…

iv

ACKNOWLEDGEMENT

Firstly, I would like to express my sincere gratitude and appreciation to my

supervisors, Dr Mohd Nazri Kama and Dr Roslina Ibrahim, for the continuous

support of my PhD study and related research, their patience, motivation, and

immense knowledge. Their guidance helped me in all the time of research and

writing of this thesis. I could not have imagined having a better advisors and mentors

for my PhD study. I would like to thank them for encouraging my research and for

allowing me to grow as a researcher.

Secondly, a special thanks to both my parents and my parents-in-law for all

the sacrifices that you’ve made on my behalf. They have taught me the value of

perseverance and always prayed for my success, in my study and my career. I would

also like to thank my beloved wife and kids for their patience during the course of

my PhD. Without my wife’s support, I would not have a dearest companion who

spent sleepless nights with and was always my support in the moments when there

was no one to answer my queries.

A great gratitude goes to the Ministry of Education for sponsoring my three

years PhD study. My sincere thanks also goes to all individuals and staffs of

Advanced Informatics School, Universiti Teknologi Malaysia, Kuala Lumpur for the

advice, critical and insightful feedback in improving my quality of work and

presentation during my PhD study. Finally, my appreciation goes to those who have

been involved directly or indirectly in this research.

v

ABSTRACT

Software changes are inevitable due to the dynamic nature of the software

development project itself. Some software development projects practice their own

customised methodology but mostly adopt two kinds of methodologies; Traditional

and Agile. Traditional methodology emphasizes on detailed planning, comprehensive

documentation and extensive design that resulted a low rate of changes acceptance.

In contrast, Agile methodology gives high priority on accepting changes at any point

of time throughout the development process as compared to the Traditional

methodology. Among the primary factor that has direct impact on the effectiveness

of the change acceptance decision is the accuracy of the change effort prediction.

There are two current models that have been widely used to estimate change effort

which are algorithmic and non-algorithmic models. The algorithmic model is known

for its formal and structural way of estimation and best suited for Traditional

methodology. While non-algorithmic model is widely adopted for Agile

methodology of software projects due to its easiness and requiring less work in term

of effort predictability. The main issue is that none of the existing change effort

prediction models is proven to suits for both, Traditional and Agile methodology.

Additionally, there is as yet no clear evidence of the most accurate change effort

prediction model for software development phase. One of the method to overcome

these challenges is the inclusion of change impact analysis in the estimation process.

The aim of the research is to overcome the challenges of change effort prediction for

software development phase: inconsistent states of software artifacts, repeatability

using algorithmic approach and applicability for both Traditional and Agile

methodologies. This research proposed an algorithmic change effort prediction

model that used change impact analysis method to improve the accuracy of the effort

estimation. The proposed model used a current selected change impact analysis

method for software development phase which is the SDP-CIAF (Software

Development Phase-Change Impact Analysis Framework). A software prototype was

also developed to support the implementation of the model. The proposed model was

evaluated through an extensive experimental validation using case scenarios of six

real Traditional and Agile methodologies software projects. A comparative study was

also conducted for further validation and verification of the proposed model. The

analysis result showed an accuracy improvement of 13.44% average mean difference

for change effort prediction over the current selected change effort prediction model.

The evaluation results also confirmed the applicability for both Traditional and Agile

methodologies.

vi

ABSTRAK

Perubahan perisian tidak dapat dielakkan kerana sifat dinamik projek

pembangunan perisian itu sendiri. Sesetengah projek pembangunan perisian

mengamalkan metodologi mereka sendiri yang telah disesuaikan tetapi

kebanyakannya mengamalkan dua jenis metodologi; Tradisional dan Agil.

Metodologi Tradisional memberi penekanan kepada perancangan terperinci,

dokumentasi menyeluruh dan reka bentuk yang terperinci yang menyebabkan kadar

penerimaan perubahan yang rendah. Sebaliknya, metodologi Agil memberi

keutamaan yang tinggi pada penerimaan perubahan pada bila-bila masa sepanjang

proses pembangunan berbanding metodologi Tradisional. Antara faktor utama yang

mempunyai kesan langsung kepada keberkesanan keputusan penerimaan perubahan

adalah ketepatan anggaran usaha perubahan. Terdapat dua model semasa yang telah

digunakan secara meluas untuk menganggarkan perubahan usaha iaitu model

algoritma dan bukan algoritma. Model algoritma dikenali dengan cara anggaran

formal dan berstruktur dan paling sesuai untuk metodologi Tradisional. Sementara

model bukan algoritma diterima pakai secara meluas bagi projek perisian metodologi

Agil kerana ia mudah dan memerlukan kerja yang sedikit dari sudut anggaran usaha.

Isu utama adalah kerana tiada model anggaran usaha perubahan sedia ada yang

terbukti sesuai untuk kedua-dua metodologi Tradisional dan Agil. Selain itu, tiada

lagi bukti yang jelas berkenaan model anggaran usaha perubahan yang paling tepat

untuk fasa pembangunan perisian. Salah satu kaedah untuk mengatasi cabaran-

cabaran ini adalah dengan memasukkan analisis kesan perubahan di dalam proses

anggaran. Tujuan kajian ini adalah untuk mengatasi cabaran anggaran usaha

perubahan untuk fasa pembangunan perisian: keadaan artifak perisian yang tidak

konsisten, kebolehulangan menggunakan pendekatan algoritma dan kebolehgunaan

untuk kedua-dua metodologi Tradisional dan Agil. Kajian ini mencadangkan satu

model anggaran usaha perubahan berasaskan algoritma yang menggunakan kaedah

analisis kesan perubahan untuk meningkatkan ketepatan anggaran usaha. Model yang

dicadangkan menggunakan kaedah analisis kesan perubahan semasa yang terpilih

untuk fasa pembangunan perisian iaitu SDP- CIAF (Rangka Kerja Fasa

Pembangunan Perisian - Analisis Impak Perubahan). Satu perisian prototaip juga

telah dibangunkan untuk menyokong pelaksanaan model. Model yang dibangunkan

dinilai melalui pengesahan eksperimen yang luas menggunakan kes senario daripada

enam projek-projek perisian metodologi Tradisional dan Agil sebenar. Satu kajian

perbandingan juga telah dijalankan untuk pengesahsahihan dan pengesahan lanjut

model yang dicadangkan. Keputusan analisis menunjukkan peningkatan ketepatan

sebanyak 13.44% perbezaan min purata bagi anggaran usaha perubahan berbanding

model anggaran usaha perubahan semasa yang terpilih. Hasil penilaian juga

mengesahkan kebolehgunaan dalam kedua-dua metodologi Tradisional dan Agil.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xi

LIST OF FIGURES xiii

LIST OF ABBREVIATIONS xv

LIST OF SYMBOLS xvii

LIST OF APPENDICES xix

1 INTRODUCTION 1

1.1 Background of the Research 2

1.2 Statement of the Problem 4

1.3 Research Questions 7

1.4 Research Objectives 8

1.5 Scopes of Research 8

1.5.1 Research Context 9

1.5.2 Research Challenges 9

1.6 Significance of the Research 10

1.7 Operational Definition 11

1.8 Organisation of the Thesis 13

2 LITERATURE REVIEW 15

2.1 Introduction 15

viii

2.2 Software Development Life Cycle (SDLC) 15

2.2.1 Traditional Methodology Software Development 16

2.2.1.1 Waterfall Model 17

2.2.1.2 Spiral Model 18

2.2.1.3 Rapid Application Development 19

2.2.1.4 Rational Unified Process (RUP) 20

2.2.2 Agile Methodology Software Development 22

2.2.2.1 Extreme Programming (XP) 23

2.2.2.2 Scrum 23

2.2.2.3 Agile Unified Process (AUP) 24

2.3 Software Change Management Process 25

2.3.1 Software Change Management in Traditional Software

Development 26

2.3.2 Software Change Management in Agile Software

Development 30

2.4 Change Impact Analysis 30

2.4.1 Change Impact Analysis Types 31

2.4.2 Integrated Change Impact Analysis 35

2.4.3 Change Impact Analysis in Agile Methodology

Software Development 38

2.5 Change Impact Analysis for Software Development Phase 39

2.6 Algorithmic and Non Algorithmic Software Effort Prediction

Model 43

2.6.1 Effort Prediction in Traditional Software Development 45

2.6.2 Effort Prediction in Agile Software Development 50

2.6.3 Software Change Effort Prediction 53

2.7 Integrating Change Impact Analysis with Effort Prediction 55

2.8 Summary 59

3 RESEARCH METHODOLOGY 60

3.1 Introduction 60

3.2 Research Design 60

3.3 Operational Framework 64

3.3.1 Planning and Literature 66

ix

3.3.2 Research Design and Conceptualization 67

3.3.2.1 Experimental Design 68

3.3.2.2 Sampling Method 70

3.3.3 Model Development 70

3.3.3.1 Conceptual Model 71

3.3.3.2 Model Construction 74

3.3.4 Prototype Tool Development 75

3.3.5 Data Collection and Analysis 76

3.3.5.1 Software Projects 76

3.3.5.2 Traditional Methodology Software Projects 77

3.3.5.3 Agile Methodology Software Projects 78

3.3.6 Findings and Evaluation 78

3.3.6.1 Evaluation Discussion and Final Findings 79

3.3.6.2 Write Final Report 80

3.4 Summary 80

4 PROPOSED CHANGE EFFORT PREDICTION MODEL 81

4.1 Introduction 81

4.2 Proposed Change Effort Prediction Model 81

4.2.1 Step 1: Change Request Evaluation 84

4.2.2 Step 2: Change Impact Analysis 84

4.2.3 Step 3: Change Effort Estimation 88

4.3 Software Change Effort Prediction Prototype 95

4.3.1 Step 1: Import Class Interactions Prediction (CIP) 96

4.3.2 Step 2: Acquire Change Request (CR) 97

4.3.3 Step 3: Perform Impact Analysis 98

4.3.4 Step 4: Estimating Change Effort 103

4.3.5 Step 5: Analyse Results 104

4.4 The Model and Prototype Relationship 105

4.5 Summary 106

5 RESULTS AND DISCUSSIONS 107

5.1 Introduction 107

5.2 Evaluation Factors 107

x

5.2.1 Subjects and Case Selections 108

5.2.2 Data Collection 108

5.2.3 Evaluation Metrics 109

5.2.4 Evaluation Design 110

5.2.4.1 First Experiment - Applicability of CEPM 111

5.2.4.2 Second Experiment – Effort Prediction

Accuracy Improvement by CEPM 114

5.3 Threats to Validity 116

5.3.1 Construct Validity 116

5.3.2 External Validity 117

5.4 First Experimental Analysis Results - Applicability of CEPM 117

5.5 Second Experimental Analysis Results – Effort Prediction

Accuracy Improvement by CEPM 126

5.5.1 Set 1: Traditional methodology effort estimation model

accuracy comparison for change implementation 127

5.5.2 Set 2: Agile methodology effort estimation model

accuracy comparison for change implementation 133

5.6 Discussion 141

5.6.1 Applicability of CEPM in Traditional and Agile

Methodology Software Projects 141

5.6.2 Effort Prediction Accuracy Improvement by CEPM as

compared to the existing effort estimation models

(algorithmic and non-algorithmic) 144

5.7 Summary 145

6 CONCLUSION AND RECOMMENDATIONS 147

6.1 Research Summary 147

6.2 Research Contribution 151

6.3 Future Works 152

REFERENCES 154

Appendices A-D 166 – 190

xi

LIST OF TABLES

TABLE NO TITLE PAGE

2.1 Agile Unified Process (AUP) Discplines (Ambler, 2006) 24

2.2 Change Request Specification (Sommerville, 2010) 28

2.3 Change Impact Analysis Comparison 34

2.4 Integrated Techniques of Change Impact Analysis 37

2.5 Summary of current impact analysis technique 42

2.6 COCOMO II Scale Factor (Boehm, 2000) 46

2.7 COCOMO II Cost Driver (Boehm, 2000) 46

2.8 COCOMO II Calibrated Value 49

2.9 Algorithmic Model of effort estimation in agile software

development 53

2.10 Change Effort Prediction Attributes by Chua and Verner

(2010) 54

2.11 Change Type Values 58

3.1 Research Design Decision (Wohlin and Aurum, 2014) 62

3.2 Details of Operational Framework for Phase 1 66

3.3 Details of Operational Framework for Phase 2 67

3.4 Experimental Design Characteristics applied in this research 69

3.5 Details of Operational Framework for Phase 3 71

3.6 Details of Operational Framework for Phase 4 75

3.7 Details of Operational Framework for Phase 5 76

3.8 Case Selection of Traditional Software Projects 77

3.9 Case Selection of Agile Software Projects 78

3.10 Details of Operational Framework for Phase 6 79

4.1 RUP-Based Phase Distribution Weight (Yang et al., 2008) 93

4.2 Estimated Values for the Multipliers for RUP Based SDLC 93

xii

4.3 Waterfall-Based Phase Weight Distribution (Yang et al.,

2008) 94

4.4 Estimated Values for the Multipliers for Waterfall-Based

SDLC 94

4.5 Regular Expression Table 101

4.6 The Model and Prototype Mapping 106

5.1 Analysis Items Description 113

5.2 Traditional Methodology Software Projects Experiment

Result 118

5.3 Agile Methodology Software Projects Experiment Result 121

5.4 Overall MMRE and PRED value 124

5.5 Traditional Methodology Effort Prediction Model

Comparison 127

5.6 Shapiro-Wilk Test for Second Experiment (Traditional

methodology) 131

5.7 Independent Samples Mann Whitney U Test for Traditional

methodology 132

5.8 Agile Methodology Effort Prediction Model Comparison 134

5.9 Shapiro-Wilk Test for Second Experiment (Agile

methodology) 138

5.10 Independent Samples Mann-Whitney U Test for Agile

methodology 139

xiii

LIST OF FIGURES

FIGURE NO TITLE PAGE

1.1 Research Context 9

2.1 Waterfall model with feedback loops by Royce’s (Royce,

1987) 17

2.2 Boehm's spiral life-cycle (Boehm, 1986) 18

2.3 Prototyping approach used by RAD (Martin, 1991) 20

2.4 RUP model (Jacobson et al., 1999; Khan and Beg, 2013) 21

2.5 Agile Life Cycle (Popli and Chauhan, 2014) 22

2.6 Agile Unified Process (AUP) Lifecycle (Ambler, 2006) 25

2.7 Change Management Process (Small and Downey, 2001) 26

2.8 Change management process (Sommerville, 2010) 27

2.9 Structure of impact analysis process (Arnold and Bohner,

1993) 31

2.10 General Structure of SDP-CIAF (Kama and Azli, 2012) 42

2.11 Change Effort Prediction Model (CEPM) Conceptual Model 56

3.1 Decision points introduced by Wohlin and Aurum (2014) 61

3.2 Research Design adapted from Creswell (2003) 63

3.3 Operational Framework 65

3.4 Software Change Effort Prediction Conceptual Model 72

4.1 Change Effort Prediction Model (CEPM) 83

4.2 CEPM Step 1: Change Request Evaluation 84

4.3 CEPM Step 2: Change Impact Analysis 85

4.4 CEPM Step 3: Change Effort Estimation 89

4.5 Change Effort Prediction Prototype Main Form 95

4.6 Import CIP 96

4.7 Change Request Form 97

xiv

4.8 Static Change Impact Analysis 98

4.9 Impacted Class Purification Concept 99

4.10 Impacted Class Purification Result 99

4.11 Change Impact Analysis Result 102

4.12 Change Effort Prediction 104

4.13 Change Effort Prediction Result Analysis 105

5.1 Bar Chart of Mean MRE produced by CEPM vs. Change

Type 125

5.2 Histogram of MRE value produced by CEPM 130

5.3 Histogram of MRE value produced by COCOMO II 130

5.4 Boxplot Graph of CEPM and COCOMO II 133

5.5 Histogram of CEPM MRE value for Agile software projects 137

5.6 Histogram of Expert Based MRE value for Agile software

projects 137

5.7 Boxplot Graph of CEPM and Expert Based Estimation 140

xv

LIST OF ABBREVIATIONS

AUP - Agile Unified Process

CASE - Computer-aided Software Engineering

CEPM - Change Effort Prediction Model

CDF - Class Dependency Filtration

CIA - Change Impact Analysis

CIP - Class Interaction Prediction

CIP-IPF - Class Interaction Prediction – Impact Prediction Filter

CISE - Change Impact Size Estimation

COCOMO II - Constructive Cost Model II

DAG - Directed Acyclic Graph

FP - Function Point

FPA - Function Point Analysis

ICP - Impacted Class Purification

JAD - Joint Application Development

LOC - Line of Codes

MDA - Method Dependency Addition

MDF - Method Dependency Filtration

MMRE - Mean Magnitude Relative Error

MRE - Magnitude Relative Error

PRED - Percentage of Prediction

RAD - Rapid Application Development

RE - Relative Error

RUP - Rational Unified Process

SCM - Software Change Management

SDLC - Software Development Life Cycle

SDP-CIAF - Software Development Phase Change - Change Impact

Analysis Framework

xvi

SLOC - Single Line of Codes

UCM - Use Case Maps

UCP - Use Case Point

UML - Unified Modelling Language

XP - Extreme Programming

xvii

LIST OF SYMBOLS

CISIC - Change impact size of the impact class

rIC - Any related requirement that map to the impact class

R - Requirement’s quantity that related to the impact class

AT - Affection type of the change impact, either direct or indirect

CT - Change type of the change request

DS - Development status of the project

PM - Original estimated effort using COCOMO II in man per month

IE - Initial effort prediction using COCOMO II. It is equivalent to

PM in man per month

UE - Updated effort prediction after change implementation in man

per month

CP - Change priority multiplier or change request priority

E - Relative effort value

S - Original size prediction of the code

CS - Predicted code size after change implementation

A - COCOMO II multiplicative constant

B - COCOMO II constant variables

SF - COCOMO II scale driver values

SIC - Size of the impacted class IC

ND - Not developed class constant multiplier

TND - Quantity of the not developed affected classes

PD - Partially developed classes constant multiplier

TPD - Quantity of partially developed affected classes

FD - Fully developed classes constant multiplier

TFD - Quantity of fully developed affected classes

TIC - Total quantity of the impacted classes

EM - Effort multiplier

xviii

TDEV - Calendar time in months

C - COCOMO II constant

SCED - COCOMO II scheduling factor

SE - COCOMO II schedule equation

D - COCOMO II constant

Size - COCOMO II software size (KSLOC)

xix

LIST OF APPENDICES

APPENDIX TITLE PAGE

A CIP File Sample 166

B Change Request Sample 181

C Expert Based Estimation for Agile Software Project 183

D List of Publications 190

1

CHAPTER 1

INTRODUCTION

Software process consists of several defined activities which separated into

distinct stages during software development project in order to deliver a software

product with better quality and management. This process is also known as Software

Development Life Cycle (SDLC) which usually starts from planning, requirement

gathering, analysis, design, implementation, testing and ends with deployment.

Foundational to this, there are two types of SDLC methodology mostly adopted;

Traditional methodology and Agile methodology. Traditional methodology practices

emphasize on detailed planning, comprehensive documentation and extensive design

(Awad, 2005). On the contrary, Agile methodology practices customer collaboration

over detailed planning, emphasizes on the working software over the comprehensive

documentation and values individual interactions over extensive processes and

design (Beck et al., 2001). Regardless of any methodology adopted, the software

project management is required with the intent of better planning, monitoring and

control for the software development efforts. Software development efforts planning

or estimation in a software process is one of the important criteria to deliver a

successful software development project (Lehtinen et al., 2014).

Software development effort estimation is a process predicting how much

work required to develop a software in a software project, and normally will be

described in man-days or man-hours unit. Studies of software development effort

estimation has started since 1960s (Farr and Zagorski, 1964; Nelson, 1967) and it has

been a continuous research because there are still a lot of arguments and discussions

2

in achieving an accurate software effort estimation result (Bardsiri et al., 2013;

Lehtinen et al., 2014). Therefore, researchers have proposed various types of

software effort estimation techniques to date. However, most of the techniques were

proposed to estimate the development work at the beginning of software

development phase based on pre-defined requirements. However, during

development phase, the requirement might change due to the dynamic nature of any

software projects. These changes will give an impact to the software project

management in controlling the software development effort. Therefore, effort

estimation for the requirement changes is critical to software project management in

providing the final deliverables of software project. At present, there is lack of

evidence of the current effort estimation model especially for requirement changes

during software development phase.

This thesis presents a new change effort prediction model that can be used in

both Traditional and Agile methodologies software projects. The new model

identifies and considers the related factors that contribute to the effort estimation for

requirement changes during software development phase.

This chapter describes the background of the research, problem statement,

research questions, objectives, scope of research, significance of the study and thesis

organization.

1.1 Background of the Research

Although effort estimation has existed for decades, it still remains a great

challenge for software project management to produce an accurate estimation and

eventually completed the software project successfully. Several studies highlighted

the importance of managing the changes in the software projects by the software

project manager to ensure the project success (Agarwal and Rathod, 2006; Drew

Procaccino et al., 2002; Lehtinen et al., 2014; Verner et al., 2007). Lehtinen et al.

(2014) defines a software project failure means a recognizable failure to succeed in

the cost, schedule, scope, or quality goals of the project.

3

Kaur and Sengupta (2013) states that the most common reasons for project

failure are rooted in the project management process itself which include identified

estimation mistakes, unclear project goals and objectives, and project requirement

changing during the project. In any software development project, the software

project manager is the main role who is responsible towards the software project

success or failure. One of the main criteria of a successful software project manager

is, responsible in managing the software requirement changes and hence justifies the

change acceptance decisions made.

Change request may occur at any point in SDLC (Chen and Chen, 2009;

Nurmuliani et al., 2006). It is important to manage the changes in the software to

meet the evolving needs of the customer and hence, satisfy them (Bennett and

Rajlich, 2000; Brooks Jr, 1956; Finkelsteiin and Kramer, 2000; Kotonya and

Sommerville, 1998; Pfleeger and Bohner, 1990). Introducing software changes

during software development phase may need to identify the impacts to the software

artifacts and consequences to the efforts due to the software change. Accepting too

many changes might lead to project cost overrun and delay. Rejecting too many

changes may cause customer dissatisfaction.

While this is the case of Traditional methodology, where software project

manager has the option to accept or reject the change request, it is the opposite in the

case of modern SDLC such as Agile methodology. In view of the change request,

Agile methodology gives high priority on accepting changes at any point of time

throughout the software development process compared to the Traditional

methodology (Beck et al., 2001). Henceforth, an efficient software project

management and change management in Agile methodology are more crucial, and

accurate effort estimation are not the second option in ensuring a software project

success.

Generally, two types of information that could assist the software project

manager in managing the software change management are change impact analysis

and change effort prediction (Stammel and Trifu, 2011). Change impact analysis is a

procedure of identifying the possible effect of a change, or predicting the process

required to undertake a change (Bennett and Rajlich, 2000; Brooks Jr, 1956;

4

Finkelsteiin and Kramer, 2000; Kotonya and Sommerville, 1998; Pfleeger and

Bohner, 1990). Change effort estimation, on the other hand, is a procedure of

predicting the processes and activities required in terms of work, resources and time

in implementing the changes (Asl and Kama, 2013; Bee Bee, 2010; Chua and

Verner, 2010).

 Verner et al. (2007) highlighted it is important to software project manager

to obtain enough information during estimation process in order to ensure the project

success. In the context of requirement changes, the impacts to the software artifacts

is one of the required information. Software artifacts include documents, data and

source code or class are subjected to impact due to the changes. During software

development phase, some documents may subject to update and review process

which requires resources effort. In case of source code or class, some classes may

still be under development state or not developed at all. Software project manager

has the difficulties to make the decision whether to implement or discard the changes

due to inconsistent states of software artifacts during software development phase.

Another essential point, the change effort prediction for software

development phase also need to consider is the effort distribution of SDLC

methodology adopted for a software project. Few earlier studies highlighted the

importance of phase wise effort estimation to achieve more accurate results

(Chatzipetrou et al., 2015; Choudhari and Suman, 2012; Yang et al., 2008). For

instance, during requirement phase in the Traditional methodology i.e. Waterfall

model, the effort allocation for coding might be zero, but in the Agile methodology,

coding effort must be allocated accordingly. Additionally, effort estimation for

requirement changes also needs to consider the inconsistent states of the artifacts

during software development phase.

1.2 Statement of the Problem

Software changes may occur at any stages during software development

process. Current study stated that the Traditional methodology software projects

5

usually recorded a low rate of changes acceptance due its detailed planning,

comprehensive documentation and extensive design (Awad, 2005). Meanwhile,

Agile methodology gives high priority on accepting changes at any point of time

throughout the development process due to its environment of incremental

elaboration to fulfil the customer satisfaction (Awad, 2005; Stålhane et al., 2014).

Regardless the SDLC models adopted by the software development projects, either

Traditional or Agile methodology, it is crucial in managing the changes during

software development phase in order to meet and satisfy the requirements volatility

of the customer (Bennett and Rajlich, 2000; Brooks Jr, 1956; Finkelsteiin and

Kramer, 2000; Kotonya and Sommerville, 1998; Pfleeger and Bohner, 1990).

Nevertheless, accepting too many changes can drag the project timeline and increase

project cost while declining the change request from the customer may trigger

dissapointment. Hence, it is a very crucial needs for a software project manager to

manage the ever changing requirements as well as make the best decision for the

software projects success. One of the input that can assist and support the software

project manager to make the best decision is the change effort prediction during

software development phase.

However, very little has been written on change effort prediction for software

development phase. During this phase, two most related concepts in estimating the

required effort for the change request are the change impact analysis and the software

effort estimation. Change impact analysis is a procedure of identifying the possible

effect of a change, or predicting the process required to undertake a change (Bennett

and Rajlich, 2000; Brooks Jr, 1956; Finkelsteiin and Kramer, 2000; Kotonya and

Sommerville, 1998; Pfleeger and Bohner, 1990). The objective of the change impact

analysis is to detect the potential affected software artifacts (i.e., requirement, design,

class and test artifacts) due to the change. Whereas, the objective of the change effort

prediction is to estimate the amount of work and time required in implementing the

particular changes (Asl and Kama, 2013; Bee Bee, 2010; Chua and Verner, 2010).

There are two current models that have been widely used to estimate effort which are

the Algorithmic and Non-algorithmic models. Algorithmic models that are

commonly used in estimating effort estimation for Traditional methodology include

the well-known COCOMO II (Boehm, 2000), Function Point Analysis

(Lubashevsky, 1996; Yinhuan et al., 2009) and Use-Case Points (Ochodek et al.,

6

2011). On the other hand, earlier researchers highlighted that Non-Algorithmic

model such as expert estimation is preferable in estimating efforts in most of Agile

methodology software projects (Keaveney and Conboy, 2006; Popli and Chauhan,

2014) due to the easiness and simplicity in producing effort estimation result without

the need of specific tools or techniques (Huang et al., 2008). Although several

extensions have been developed based on the current effort estimation models

(Ahmed et al., 2012; Lazić and Mastorakis, 2009; Merlo–Schett et al.; Yang et al.,

2006), but those extensions are still lacking in considering the change effort

prediction during software development phase.

The integration of change impact analysis and effort estimation may improve

the accuracy of change effort prediction. According to Nurmuliani et al. (2006),

some change request attributes such as change request type and change requirements

have direct effect on the predicted effort to implement that change. Furthermore,

Nurmuliani et al. (2006) stated that his biggest challenges in his study were that there

is no formal impact analysis method to support the change effort prediction, and

there are no traceability models for the relations between requirements and classes.

Nevertheless, there is at present, no satisfactory explanation of change impact

analysis and software effort estimation integration has been provided. Furthermore,

most of the current researches only focus on the change impact analysis for software

maintenance phase and less attention had been given in software development phase

(Kama, 2013a). Hence, it also implied that little attention has been paid to change

effort prediction during software development phase.

Software development phase includes an important factor that need to be

considered in estimating the change effort which is the inconsistent states of software

artifacts in estimating the change implementation effort. The attention of this factor

is important as during the software development phase consists of: (1) the existence

of partially developed artifacts; (2) the existence of developed artifacts that some of

them have been developed conceptually but not technically (or have yet been

implemented), and (3) the existence of fully developed artifacts. Although earlier

researcher, Sharafat and Tahvildari (2008) had proposed change impact prediction

approach in object oriented software projects which uses the UML diagram that

representing design of the class artifacts to estimate the propagation posibilities from

7

one class to another class, yet the approach still did not consider the inconsistence

states of the class artifacts. The failure to acknowledge the existence of these type of

artifacts will lead to inaccurate estimate and hence, contribute to either project failure

or customer dissapointment.

Thus, this research was inspired by the research works of Asl and Kama

(2013); Kama and Azli (2012) in which they consider the existence of the

inconsistence states of the software artifacts in their change impact analysis

approach. This research presents a new algorithmic change effort prediction model

by including the principal of the change impact analysis approach that consider the

inconsistence states of software artifacts to one of the established effort estimation

model for software development phase. This new algorithmic change effort

prediction is expected to be applicable in Traditional and Agile methodology

software projects and may improve the accuracy of change effort prediction as

compared to current effort estimation models.

1.3 Research Questions

This research deals with the main question of “How to improve the accuracy

of software change effort prediction for software development by including a change

impact analysis into an effort estimation model that applicable for both Traditional

and Agile methodologies?”

To provide an effective solution for the main research question, several sub-

questions are constructed:

i. What are the existing software change effort prediction and change

impact analysis techniques used for software development?

ii. How to calculate the estimated effort required for requirement

changes for software development?

8

iii. How effective the new change effort prediction model as compared to

the existing effort estimation model for Traditional and Agile

methodology software development?

1.4 Research Objectives

The aim of this research is to propose a new algorithmic-based software

change effort prediction model using change impact analysis which could be used to

improve the accuracy of the change effort prediction in the Traditional and Agile

methodology software projects and to evaluate the applicability and accuracy

improvement of the proposed model. Hence to achieve the aim, three objectives are

identified as follow:

i. To propose an algorithmic-based software change effort prediction

model using a change impact analysis technique for software

development.

ii. To build a software change effort prediction prototype that

implements the algorithmic-based software change effort prediction

model for software development.

iii. To evaluate the applicability and accuracy improvement of the

algorithmic-based software change effort prediction model for

Traditional and Agile methodology software development as

compared to the existing effort prediction model.

1.5 Scopes of Research

The main reason of defining a research scope is to focus the research area and

emphasize the boundaries and constraints of the research. Limitation of the research

scopes are as following:

9

1.5.1 Research Context

The research aims to produce a software change effort prediction model using

existing change impact analysis for software development phase as in Figure 1.1.

Figure 1.1 Research Context

Most of change impact analysis techniques were developed to support

software evolution or requirement changes during maintenance phase. However, this

research only focuses on impact analysis techniques that suitable for software

development phase. In general, software development phase differs from software

maintenance phase due to the existence of inconsistent states of software artifacts

such as partially developed classes.

1.5.2 Research Challenges

Since this research focuses on software development phase, there were

challenges in capturing the actual information in real software projects during

software development process. Although the intention of the research might focus on

the software artifacts and its related components, real software project in the industry

are constraint with other factors; for example, confidentiality, commercial

obligations, politics, complex organization structures, among others. These factors

10

might affect the research timeline and milestones. Thus, the author outlines following

criteria of the software projects:

 Real software projects – Real software projects require participation from

business organization or industry. Since this research might not be able to

benefit them directly, it is difficult to capture and collect relevant data for this

study. However, based on experiences of the author, who had involved in the

software industry for more than 10 years, access to real software projects is

unpretentious.

 Sufficient documentation – Generally, documentation involves include the

change request form, software requirements and software design

documentation, source code and progress report. Meanwhile, in the case for

Agile methodology the documentation involves may include the product

backlogs and sprint backlogs.

 Platform / Language – Software development might be created using certain

programming platform and language. Since this research involves dynamic

analysis process which involves the dynamic artifacts at class level, it is

difficult to develop a prototype that will be able to handle all types of

programming platform and language. Thus this research only focuses on a

single or two programming platform and language that the author familiar

with, to develop a prototype and produce the evaluation results to

demonstrate the proposed model.

1.6 Significance of the Research

Main contribution of this research is significant in two perspectives. First, the

new effort estimation model will provide crucial information in predicting the

amount of work and time required to implement a requirement changes. The new

model shall be applicable for two well-known software development process group:

11

(1) Traditional methodology; and (2) Agile methodology. The effort to implement

the requirement changes need to be assessed precisely in order to support the change

acceptance decision during software development phase. Additionally, it will support

for better planning and prioritization of the requirements implementation during the

Traditional and Agile methodology software development.

Next, most change acceptance decision assessment during software

development phase is based on change impact analysis techniques. The change

impact analysis examines the potential impacts by assessing current state of software

artifacts such as requirement specifications and source code during software

development phase. By realizing the significance of the change impact analysis, the

effectiveness of the development work prediction will be expected to be improved by

including the current change impact analysis into the new change effort prediction

model during software development phase.

1.7 Operational Definition

The operational definitions of terminologies used in this research are

presented below:

Traditional

methodology

: Describe one of the process to develop a software

that practices detailed planning, comprehensive

documentation and extensive design

Agile methodology : More recent technique in developing a software

that practices customer collaboration over

detailed planning, emphasizes on the working

software over the comprehensive documentation

and values individual interactions over extensive

processes and design.

12

Software

development

: A software engineering process in developing a

software or in short software process. Sometimes

also known as Software Development Lifecycle

(SDLC)

Software

development phase

: Identify the stages of the software process in

developing a software. The stages may start from

requirement, analysis, design, implementation,

testing until deployment.

Algorithmic model : A formal technique that apply algorithms and

formulas in order to derive a result of the

estimation calculation.

Non-algorithmic

model

: An informal technique that are not using any

algorithms or formal methods and / or formulas

in deriving the estimation result.

Change : The modification or adjustment that occurs

during software development phase, which may

involve the requirement or the software being

developed.

Effort prediction or

estimation

: A process of predicting the amount of work and

task required to develop a software that usually

described in the form of man/days or man/hours.

Change impact

analysis

: A process of identifying potential consequences

of change, or estimating what needs to be

modified to accomplish a change.

13

Change effort

prediction or

estimation

: A process of predicting the amount of work or

task required in implementing the modification

that occurred.

Magnitude Relative

Error (MRE)

: An absolute value that was derived from the

difference between the estimated value as

compared to the actual value.

Applicability : The degree of how much the new model is

relevant to the Traditional and Agile

methodology

Accuracy : The degree of precision of the estimated effort as

compared to the actual effort

1.8 Organisation of the Thesis

This thesis comprises of six chapters. This chapter gives an overview of the

research area. It also includes the research background, problem statement, research

questions, objectives of the research, and the scope of the research. Then it is followed

by the significance of the research and finally it outlines the organisation of this thesis.

Chapter Two discusses the comprehensive review of the literature.

Chapter Three describes the research methodology used in conducting this

research.

Chapter Four introduces the proposed Change Effort Prediction Model and

the development of the prototype.

154

REFERENCES

Agarwal, N., and Rathod, U. (2006). Defining ‘success’ for software projects: An

exploratory revelation. International Journal of Project Management, 24(4),

358-370.

Ahmed, N., Asim, M. R., and Qureshi, M. (2012). A step forward to component-

based software cost estimation in object-oriented environment. arXiv preprint

arXiv:1202.2511.

Ambler, S. W. (2006, 13/5/2006). The Agile Unified Process (AUP). v1.1.

Retrieved 25/1/2016, 2016, from

http://www.ambysoft.com/unifiedprocess/agileUP.html

Anandhi, V., and Chezian, R. M. (2014, 6-7 March 2014). Regression Techniques in

Software Effort Estimation Using COCOMO Dataset. Paper presented at the

Intelligent Computing Applications (ICICA), 2014 International Conference

on, 353-357.

Ani, Z. C., and Basri, S. (2013). A Case Study of Effort Estimation in Agile

Software Development Using Use Case Points. Science International, 25(4).

Arnold, R. S., and Bohner, S. A. (1993, 27-30 Sep 1993). Impact analysis-Towards a

framework for comparison. Paper presented at the Software Maintenance

,1993. CSM-93, Proceedings., Conference on, 292-301.

Asl, M. H., and Kama, N. (2013, 4-7 June 2013). A Change Impact Size Estimation

Approach during the Software Development. Paper presented at the Software

Engineering Conference (ASWEC), 2013 22nd Australian, 68-77.

Attarzadeh, I., Mehranzadeh, A., and Barati, A. (2012, 24-26 July 2012). Proposing

an Enhanced Artificial Neural Network Prediction Model to Improve the

Accuracy in Software Effort Estimation. Paper presented at the

Computational Intelligence, Communication Systems and Networks

(CICSyN), 2012 Fourth International Conference on, 167-172.

http://www.ambysoft.com/unifiedprocess/agileUP.html

155

Awad, M. (2005). A comparison between agile and traditional software development

methodologies. University of Western Australia.

Bardsiri, V. K., Jawawi, D. N. A., Bardsiri, A. K., and Khatibi, E. (2013). LMES: A

localized multi-estimator model to estimate software development effort.

Engineering Applications of Artificial Intelligence(0).

Beck, K. (2000). Extreme programming explained: embrace change: Addison-

Wesley Longman Publishing Co., Inc.

Beck, K., Beedle, M., Bennekum, A. v., Cockburn, A., Cunningham, W., Fowler,

M., et al. (2001). Manifesto for Agile Software Development. from

http://www.agilemanifesto.org/

Bee Bee, C. (2010, 22-27 Aug. 2010). Rework Requirement Changes in Software

Maintenance. Paper presented at the Software Engineering Advances

(ICSEA), 2010 Fifth International Conference on, 252-258.

Benington, H. D. (1987). Production of large computer programs. Paper presented

at the Proceedings of the 9th international conference on Software

Engineering.

Bennett, K. H., and Rajlich, T. (2000). Software maintenance and evolution: a

roadmap. Paper presented at the Proceedings of the Conference on The

Future of Software Engineering.

Bhalerao, S., and Ingle, M. (2009). Agile estimation using CAEA: A comparative

study of agile projects. Paper presented at the Proceedings of International

Conference on Computer Engineering and Applications (ICCEA 2009).

Boehm, B. (1986). A spiral model of software development and enhancement.

SIGSOFT Softw. Eng. Notes, 11(4), 14-24.

Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., and Selby, R.

(1995). Cost models for future software life cycle processes: COCOMO 2.0.

Annals of Software Engineering, 1(1), 57-94.

Boehm, B. W. (1981). Software Engineering Economics: Prentice Hall PTR.

Boehm, B. W. (2000). Software Cost Estimation with Cocomo II: Prentice Hall.

Bohner, S. A. (2002a, 5-6 Dec. 2002). Extending software change impact analysis

into COTS components. Paper presented at the Software Engineering

Workshop, 2002. Proceedings. 27th Annual NASA Goddard/IEEE, 175-182.

http://www.agilemanifesto.org/

156

Bohner, S. A. (2002b, 2002). Software change impacts-an evolving perspective.

Paper presented at the Software Maintenance, 2002. Proceedings.

International Conference on, 263-272.

Bolar, K., and Dastidar, S. G. (2008). Estimating Effort in Agile Software

Development Using FPA and COCOMO II. ICFAI Journal of Systems

Management, 6(4), 17.

Breech, B., Tegtmeyer, M., and Pollock, L. (2006, 24-27 Sept. 2006). Integrating

Influence Mechanisms into Impact Analysis for Increased Precision. Paper

presented at the Software Maintenance, 2006. ICSM '06. 22nd IEEE

International Conference on, 55-65.

Brooks Jr, F. (1956). No Silver Bullet - Essence and Accident in Software

Engineering.

Cai, H., Santelices, R., and Xu, T. (2014, June 30 2014-July 2 2014). Estimating the

Accuracy of Dynamic Change-Impact Analysis Using Sensitivity Analysis.

Paper presented at the Software Security and Reliability (SERE), 2014

Eighth International Conference on, 48-57.

Chatzipetrou, P., Papatheocharous, E., Angelis, L., and Andreou, A. S. (2015). A

multivariate statistical framework for the analysis of software effort phase

distribution. Information and Software Technology, 59, 149-169.

Chen, C.-Y., and Chen, P.-C. (2009). A holistic approach to managing software

change impact. Journal of Systems and Software, 82(12), 2051-2067.

Choudhari, J., and Suman, U. (2012). Phase wise effort estimation for software

maintenance: an extended SMEEM model. Paper presented at the

Proceedings of the CUBE International Information Technology Conference.

Chua, B. B., and Verner, J. (2010). Examining Requirements Change Rework Effort:

A Study. arXiv preprint arXiv:1007.5126.

Chua, Y. P. (2006). Asas Statistik Penyelidikan (2 ed.): McGrraw-Hill (Malaysia).

Cleland-Huang, J. (2012). Traceability in Agile Projects. In J. Cleland-Huang, O.

Gotel and A. Zisman (Eds.), Software and Systems Traceability (pp. 265-

275): Springer London.

Cockburn, A. (2002). Agile software development: Addison-Wesley Longman

Publishing Co., Inc.

Conte, S., Dunsmore, H. E., Shen, V., and Zage, W. (1987). A Software Metrics

Survey.

157

Creswell, J. W. (2003). Research Design: Qualitative, Quantitative, and Mixed

Methods Approaches: SAGE Publications.

Creswell, J. W. (2011). Educational Research: Planning, Conducting, and

Evaluating Quantitative and Qualitative Research: Pearson.

Creswell, J. W. (2013). Research design: Qualitative, quantitative, and mixed

methods approaches: Sage.

Danhua, S., Khurshid, S., and Perry, D. E. (2009, 14-17 April 2009). Semantic

Impact and Faults in Source Code Changes: An Empirical Study. Paper

presented at the Software Engineering Conference, 2009. ASWEC '09.

Australian, 131-141.

Dieste, O., Juristo, N., Moreno, A. M., Pazos, J., and Sierra, A. (2001). Conceptual

Modeling in Software Engineering and Knowledge Engineering: Concepts,

Technqiues and Trends. In Handbook of Software Engineering and

Knowledge Engineering (pp. 733-766).

Drew Procaccino, J., Verner, J. M., Overmyer, S. P., and Darter, M. E. (2002). Case

study: factors for early prediction of software development success.

Information and software technology, 44(1), 53-62.

Faria, P., and Miranda, E. (2012, 17-19 Oct. 2012). Expert Judgment in Software

Estimation During the Bid Phase of a Project -- An Exploratory Survey.

Paper presented at the Software Measurement and the 2012 Seventh

International Conference on Software Process and Product Measurement

(IWSM-MENSURA), 2012 Joint Conference of the 22nd International

Workshop on, 126-131.

Farr, L., and Zagorski, H. J. (1964). Factors that Affect the Cost of Computer

Programming. Volume Ii. a Quantitative Analysis: DTIC Documento.

Document Number)

Fasolino, A. R., and Visaggio, G. (1999). Improving software comprehension

through an automated dependency tracer. Paper presented at the Program

Comprehension, 1999. Proceedings. Seventh International Workshop on, 58-

65.

Febbraro, N., and Rajlich, V. (2007, 13-17 Aug. 2007). The Role of Incremental

Change in Agile Software Processes. Paper presented at the Agile

Conference (AGILE), 2007, 92-103.

158

Fedotova, O., Teixeira, L., and Alvelos, H. (2013). Software Effort Estimation with

Multiple Linear Regression: Review and Practical Application. J. Inf. Sci.

Eng., 29(5), 925-945.

Finkelsteiin, A., and Kramer, J. (2000). Software engineering: a roadmap. Paper

presented at the Proceedings of the conference on The future of Software

Engineering, 3-22.

Fojtik, R. (2011). Extreme Programming in development of specific software.

Procedia Computer Science, 3(0), 1464-1468.

Garcia, C. A. L., and Hirata, C. M. (2008). Integrating functional metrics,

COCOMO II and earned value analysis for software projects using PMBoK.

Paper presented at the Proceedings of the 2008 ACM symposium on Applied

computing.

Ghazarian, A. (2008). Traceability patterns: an approach to requirement-component

traceability in agile software development. Paper presented at the

Proceedings of the 8th conference on Applied computer scince.

Hall, N. (2007). R. A. Fisher and his advocacy of randomization. Journal of the

History of Biology, 40(2), 295-325.

Hassine, J. (2015). Early modeling and validation of timed system requirements

using Timed Use Case Maps. Requirements Engineering, 20(2), 181-211.

Hassine, J., Rilling, J., Hewitt, J., and Dssouli, R. (2005, 5-6 Sept. 2005). Change

impact analysis for requirement evolution using use case maps. Paper

presented at the Principles of Software Evolution, Eighth International

Workshop on, 81-90.

Haugen, N. C. (2006, 23-28 July 2006). An empirical study of using planning poker

for user story estimation. Paper presented at the Agile Conference, 2006, 9

pp.-34.

Huang, S.-J., Chiu, N.-H., and Chen, L.-W. (2008). Integration of the grey relational

analysis with genetic algorithm for software effort estimation. European

Journal of Operational Research, 188(3), 898-909.

Humayun, M., and Gang, C. (2012). Estimating Effort in Global Software

Development Projects Using Machine Learning Techniques International

Journal of Information and Education Technology, Vol. 2, No. 3.

Ibrahim, S., Idris, N. B., Munro, M., and Deraman, A. (2005a, 15-17 February).

Implementing a Document-based Requirements Traceability: A Case Study.

159

Paper presented at the IASTED Conf. on Software Engineering, Austria, 124-

131.

Ibrahim, S., Idris, N. B., Munro, M., and Deraman, A. (2005b). Integrating Software

Traceability for Change Impact Analysis. Arab International Journal of

International Technology, 2(4), 301-308.

Ibrahim, S., Idris, N. B., Munro, M., and Deraman, A. (2006, June 26-29). A

Software Traceability Validation For Change Impact Analysis of Object

Oriented Software. Paper presented at the Software Engineering Research

and Practice, Las Vegas, 453-459.

IEEE Standard for Software Configuration Management Plans. (2005). IEEE Std

828-2005 (Revision of IEEE Std 828-1998), 1-30.

Jacobson, I., Booch, G., Rumbaugh, J., Rumbaugh, J., and Booch, G. (1999). The

unified software development process (Vol. 1): Addison-Wesley Reading.

Jorgensen, M. (2005). Practical guidelines for expert-judgment-based software effort

estimation. Software, IEEE, 22(3), 57-63.

Jørgensen, M. (2013). The influence of selection bias on effort overruns in software

development projects. Information and Software Technology, 55(9), 1640-

1650.

Jorgensen, M., and Molokken-Ostvold, K. (2004). Reasons for software effort

estimation error: impact of respondent role, information collection approach,

and data analysis method. Software Engineering, IEEE Transactions on,

30(12), 993-1007.

Jorgensen, M., and Shepperd, M. (2007). A Systematic Review of Software

Development Cost Estimation Studies. Software Engineering, IEEE

Transactions on, 33(1), 33-53.

Jørgensen, M., and Sjøberg, D. I. K. (2004). The impact of customer expectation on

software development effort estimates. International Journal of Project

Management, 22(4), 317-325.

Kama, N. (2013a). Change Impact Analysis for the Software Development Phase:

State-of-the-art. International Journal of Software Engineering and Its

Applications, 7(2), 10.

Kama, N. (2013b). Integrated Change Impact Analysis Approach for the Software

Development Phase. International Journal of Software Engineering & Its

Applications, 7(2), 9.

160

Kama, N., and Azli, F. (2012). A Change Impact Analysis Approach for the Software

Development Phase. Paper presented at the Proceedings of the 2012 19th

Asia-Pacific Software Engineering Conference - Volume 01.

Kama, N., French, T., and Reynolds, M. (2010). Impact Analysis using Class

Interaction Prediction Approach. Paper presented at the Proceedings of the

2010 conference on New Trends in Software Methodologies, Tools and

Techniques: Proceedings of the 9th SoMeT_10.

Kama, N., and Halimi, M. (2013). Extending Change Impact Analysis Approach for

Change Effort Estimation in the Software Development Phase. Paper

presented at the WSEAS International Conference. Proceedings. Recent

Advances in Computer Engineering Series.

Kama, N., and Ridzab, F. A. A. (2012). Requirement level impact analysis with

impact prediction filter. Paper presented at the International Conference on

Software Technology and Engineering (ICSTE 2012).

Kaur, R., and Sengupta, J. (2013). Software Process Models and Analysis on Failure

of Software Development Projects. CoRR, abs/1306.1068.

Keaveney, S., and Conboy, K. (2006). Cost estimation in agile development projects.

Khan, P. M., and Beg, M. M. S. S. (2013, 6-7 April 2013). Extended Decision

Support Matrix for Selection of SDLC-Models on Traditional and Agile

Software Development Projects. Paper presented at the Advanced Computing

and Communication Technologies (ACCT), 2013 Third International

Conference on, 8-15.

Khatibi, V., and Jawawi, D. N. (2011). Software cost estimation methods: A review.

Journal of Emerging Trends in Computing and Information Sciences, 2(1),

21-29.

Khurana, P., Tripathi, A., and Kushwaha, D. S. (2013, 22-23 Feb. 2013). Change

impact analysis and its regression test effort estimation. Paper presented at

the Advance Computing Conference (IACC), 2013 IEEE 3rd International,

1420-1424.

Kotonya, G., and Sommerville, I. (1998). Requirements engineering: processes and

techniques: J. Wiley.

Kumar, R. (2011). Research methodology : a step-by-step guide for beginners. Los

Angeles: SAGE.

161

Kumar, R. (2014). Research Methodology: A Step-by-Step Guide for Beginners:

SAGE Publications.

Law, J., and Rothermel, G. (2003, 3-10 May 2003). Whole program path-based

dynamic impact analysis. Paper presented at the Software Engineering, 2003.

Proceedings. 25th International Conference on, 308-318.

Lazić, L., and Mastorakis, N. (2009). The COTECOMO: COnstractive Test Effort

COst MOdel. In N. Mastorakis, V. Mladenov and T. V. Kontargyri (Eds.),

Proceedings of the European Computing Conference: Volume 2 (pp. 89-110).

Boston, MA: Springer US.

Lee, A. S. (1989). A scientific methodology for MIS case studies. MIS Q., 13(1), 33-

50.

Lehtinen, T. O. A., Mäntylä, M. V., Vanhanen, J., Itkonen, J., and Lassenius, C.

(2014). Perceived causes of software project failures – An analysis of their

relationships. Information and Software Technology, 56(6), 623-643.

Li, B., Sun, X., Leung, H., and Zhang, S. (2013). A survey of code-based change

impact analysis techniques. Software Testing, Verification and Reliability,

23(8), 613-646.

Li, J., Ruhe, G., Al-Emran, A., and Richter, M. (2007). A flexible method for

software effort estimation by analogy. Empirical Software Engineering,

12(1), 65-106.

Litoriya, R., and Kothari, A. (2013). An Efficient Approach for Agile Web Based

Project Estimation: AgileMOW. Journal of Software Engineering and

Applications, 6(06), 297.

Lubashevsky, A. (1996, 15-19 Apr 1996). Living with function points. Paper

presented at the Network Operations and Management Symposium, 1996.,

IEEE, 632-635 vol.632.

Martin, J. (1991). Rapid application development: Macmillan Publishing Co., Inc.

Mauro Gasparini, M. P. R. (2008). 7 Design of Experiments. Handbook of

Probability: Theory and Applications. SAGE Publications, Inc. Thousand

Oaks, CA: SAGE Publications, Inc.

Merlo–Schett, N., Glinz, M., and Mukhija, A. Seminar on Software Cost Estimation

WS 2002/2003. Department of Computer Science, 3-19.

162

Moløkken-Østvold, K., Haugen, N. C., and Benestad, H. C. (2008). Using planning

poker for combining expert estimates in software projects. Journal of Systems

and Software, 81(12), 2106-2117.

Nelson, E. A. (1967). Management handbook for the estimation of computer

programming costs: DTIC Documento. Document Number)

Nguyen, V., Steece, B., and Boehm, B. (2008). A constrained regression technique

for cocomo calibration. Paper presented at the Proceedings of the Second

ACM-IEEE international symposium on Empirical software engineering and

measurement.

Nurmuliani, N., Zowghi, D., and Williams, S. P. (2006). Requirements volatility and

its impact on change effort: evidence-based research in software

development projects. Paper presented at the Proceedings of the Eleventh

Australian Workshop on Requirements Engineering.

Ochodek, M., Nawrocki, J., and Kwarciak, K. (2011). Simplifying effort estimation

based on Use Case Points. Information and Software Technology, 53(3), 200-

213.

Oliver, P., and Jupp, V. (2006). Purposive sampling. In V. Jupp (Ed.), The SAGE

dictionary of social research methods (pp. 244-245): Sage.

Ott, R. L., and Longnecker, M. T. (2008). An Introduction to Statistical Methods and

Data Analysis: Cengage Learning.

Pfleeger, S. L. (1995). Experimental design and analysis in software engineering.

Annals of Software Engineering, 1(1), 219-253.

Pfleeger, S. L., and Bohner, S. A. (1990). A framework for software maintenance

metrics. Paper presented at the Software Maintenance, 1990, Proceedings.,

Conference on, 320-327.

Popli, R., and Chauhan, N. (2014, 6-8 Feb. 2014). Cost and effort estimation in agile

software development. Paper presented at the Optimization, Reliabilty, and

Information Technology (ICROIT), 2014 International Conference on, 57-61.

Popli, R., Chauhan, N., and Sharma, H. (2014, 7-8 Feb. 2014). Prioritising user

stories in agile environment. Paper presented at the Issues and Challenges in

Intelligent Computing Techniques (ICICT), 2014 International Conference

on, 515-519.

163

Popovic, J., and Bojic, D. (2012). A comparative evaluation of effort estimation

methods in the software life cycle. Computer Science and Information

Systems, 9(1), 455-484.

Royce, W. W. (1987). Managing the development of large software systems:

concepts and techniques. Paper presented at the Proceedings of the 9th

international conference on Software Engineering.

Runeson, P., and Höst, M. (2009). Guidelines for conducting and reporting case

study research in software engineering. Empirical Software Engineering,

14(2), 131-164.

Schwaber, K. (1997). Scrum development process. In Business Object Design and

Implementation (pp. 117-134): Springer.

Schwaber, K., and Beedle, M. (2001). Agile Software Development with Scrum:

Prentice Hall PTR.

Seo, Y.-S., Bae, D.-H., and Jeffery, R. (2013). AREION: Software effort estimation

based on multiple regressions with adaptive recursive data partitioning.

Information and Software Technology, 55(10), 1710-1725.

Shahid, M., and Ibrahim, S. (2016, 12-16 Jan. 2016). Change impact analysis with a

software traceability approach to support software maintenance. Paper

presented at the 2016 13th International Bhurban Conference on Applied

Sciences and Technology (IBCAST), 391-396.

Shanks, G. G., and Parr, A. N. (2003). Positivist single case study research in

information systems: a critical analysis. Paper presented at the ECIS, 1760-

1774.

Sharafat, A. R., and Tahvildari, L. (2008). Change Prediction in Object-Oriented

Software Systems: A Probabilistic Approach (Vol. 3).

Sharif, B., Khan, S. A., and Bhatti, M. W. (2012). Measuring the Impact of

Changing Requirements on Software Project Cost: An Empirical

Investigation. International Journal of Computer Science Issues (IJCSI),

9(3), 170-174.

Shepperd, M., Schofield, C., and Kitchenham, B. (1996). Effort estimation using

analogy. Paper presented at the Proceedings of the 18th international

conference on Software engineering, 170-178.

164

Shull, F., and Feldmann, R. (2008). Building Theories from Multiple Evidence

Sources. In F. Shull, J. Singer and D. K. Sjøberg (Eds.), Guide to Advanced

Empirical Software Engineering (pp. 337-364): Springer London.

Singh, M., and Vyas, R. (2012). Requirements Volatility in Software Development

Process. International Journal of Soft Computing, 2.

Small, A. W., and Downey, E. A. (2001, 2001). Managing change: some important

aspects. Paper presented at the Change Management and the New Industrial

Revolution, 2001. IEMC '01 Proceedings., 50-57.

Sommerville, I. (2010). Software Engineering (9 ed.). Harlow, England: Addison-

Wesley.

Stålhane, T., Katta, V., and Myklebust, T. (2014). Change Impact Analysis in Agile

Development. EHPG Røros.

Stammel, J., and Trifu, M. (2011). Tool-supported estimation of software evolution

effort in service-oriented systems. Paper presented at the First International

Workshop on Model-Driven Software Migration (MDSM 2011), 56.

Suri, P. K., and Ranjan, P. (2012). Comparative Analysis of Software Effort

Estimation Techniques. International Journal of Computer Applications

(0975–8887), 48(21).

Usman, M., Mendes, E., Weidt, F., and Britto, R. (2014). Effort estimation in agile

software development: a systematic literature review. Paper presented at the

Proceedings of the 10th International Conference on Predictive Models in

Software Engineering.

Valerdi, R. (2011). Convergence of expert opinion via the wideband delphi method:

An application in cost estimation models.

Verner, J. M., Evanco, W. M., and Cerpa, N. (2007). State of the practice: An

exploratory analysis of schedule estimation and software project success

prediction. Information and Software Technology, 49(2), 181-193.

Wohlin, C., and Aurum, A. (2014). Towards a decision-making structure for

selecting a research design in empirical software engineering. Empirical

Software Engineering, 1-29.

Wood, S., Michaelides, G., and Thomson, C. (2013). Successful extreme

programming: Fidelity to the methodology or good teamworking?

Information and Software Technology, 55(4), 660-672.

165

Yang, D., Wan, Y., Tang, Z., Wu, S., He, M., and Li, M. (2006). COCOMO-U: An

Extension of COCOMO II for Cost Estimation with Uncertainty. In Q.

Wang, D. Pfahl, D. Raffo and P. Wernick (Eds.), Software Process Change

(Vol. 3966, pp. 132-141): Springer Berlin Heidelberg.

Yang, Y., He, M., Li, M., Wang, Q., and Boehm, B. (2008). Phase distribution of

software development effort. Paper presented at the Proceedings of the

Second ACM-IEEE international symposium on Empirical software

engineering and measurement, 61-69.

Yin, R. K. (2003). Case Study Research: Design and Methods: SAGE Publications.

Yin, R. K. (2013). Case Study Research: Design and Methods: SAGE Publications.

Yinhuan, Z., Beizhan, W., Yilong, Z., and Liang, S. (2009, 25-28 July 2009).

Estimation of software projects effort based on function point. Paper

presented at the Computer Science & Education, 2009. ICCSE '09. 4th

International Conference on, 941-943.

Zhou, R., and Hansen, E. A. (2006). Breadth-first heuristic search. Artificial

Intelligence, 170(4–5), 385-408.

