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ABSTRACT 

Satellite-Derived Bathymetry (SDB), a new method which derives bathymetric 

data from multi-spectral satellite imagery, has yet to be recognised as a new acquisition 

method for shallow water hydrographic survey mapping.  Currently, SDB has received 

substantial attention from researchers worldwide, but most of the studies primarily 

focused on remote sensing environments.  The questions about precision and accuracy 

are always the subject of interest in the surveying field but went unreported in most of 

the studies.  Hence, this study aims to develop an improved SDB algorithm model 

which is capable of delivering better accuracy for shallow water hydrographic survey 

mapping application in a tropical environment.  High resolution multi-spectral satellite 

imageries from the Sentinel-2A, Pleiades and WorldView-2 of Tawau Port, Sabah and 

Pulau Kuraman, Labuan were derived.  Both places have diverse seabed topography 

parameters.  A conceptual model of Multi-Layer Optimisation Technique (M-LOT) 

was developed based on Stumpf derivation model.  Accuracy assessment of M-LOT 

was carried out against derivation models of Lyzenga and Sumpf. Two types of 

accuracy assessment were involved: Statistical Assessment and International 

Hydrographic Organization (IHO) Survey Standard evaluation. The findings showed 

M-LOT model managed to achieve up to 1.800m and 1.854m Standard Deviation (SD) 

accuracy for Tawau Port and Pulau Kuraman respectively.  In addition, M-LOT has 

shown a better derivation compared to Stumpf’s, where a total of 13.1% more depth 

samples meeting the IHO minimum standard for Tawau Port.  Furthermore, M-LOT 

has generated an extensive increment up to 46.1% depths samples meeting the IHO 

minimum standard for Pulau Kuraman.  In conclusion, M-LOT has significantly 

shown improved accuracy compared to Stumpf, which can offer a solution for SDB 

method in shallow-water hydrographic survey mapping application.   
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ABSTRAK 

Batimetri Penghasilan Satelit (SDB), kaedah baru yang menghasilkan data 

batimetri dari imej satelit pelbagai spektral masih belum lagi diiktiraf sebagai kaedah 

baru untuk pemetaan pengukuran hidrografi di perairan cetek.  Pada masa ini, SDB 

telah menarik perhatian ramai penyelidik dari seluruh dunia namun kebanyakan kajian 

memberi keutamaan dalam bidang penginderaan jarak jauh.  Persoalan berkaitan 

ketepatan dan kejituan sentiasa menjadi perkara utama dalam bidang pengukuran, 

tetapi tiada pelaporan mengenainya dalam kebanyakan kajian.  Oleh itu, kajian ini 

bertujuan untuk membangunkan model algoritma SDB yang mampu menghasilkan 

ketepatan yang lebih baik khususnya bagi aplikasi pemetaan pengukuran hidrografi 

kawasan cetek untuk persekitaran tropika.  Imej-imej satelit pelbagai spektral 

beresolusi tinggi dari Sentinel-2A, Pleiades dan WorldView-2 bagi kawasan 

Pelabuhan Tawau, Sabah dan Pulau Kuraman, Labuan telah dihasilkan.  Kedua-dua 

kawasan tersebut mempunyai parameter topografi dasar laut yang berbeza.  Model 

konsep Teknik Pengoptimuman Pelbagai Lapisan (M-LOT) dibangunkan berasaskan 

model penghasilan Stumpf.  Penilaian ketepatan M-LOT telah dilaksanakan dengan 

model Lyzenga dan Stumpf.  Dua jenis penilaian ketepatan telah digunakan; Penilaian 

Statistik dan evaluasi Piawaian Pengukuran Pertubuhan Hidrografi Antarabangsa 

(IHO). Dapatan ini menunjukkan model M-LOT berjaya menghasilkan ketepatan 

1.800m dan 1.854m sisihan piawai untuk Pelabuhan Tawau dan Pulau Kuraman.  Di 

samping itu, M-LOT telah menunjukkan penghasilan yang lebih baik berbanding 

Stumpf di mana penambahan sebanyak 13.1% sampel kedalaman berjaya mencapai 

piawaian minimum IHO bagi kawasan Pelabuhan Tawau.  Tambahan pula, M-LOT 

telah menghasilkan peningkatan yang lebih ketara iaitu sebanyak 46.1% sampel 

kedalaman mencapai piawaian minimum IHO bagi kawasan Pulau Kuraman.  

Kesimpulannya, M-LOT telah menghasilkan ketepatan yang lebih baik berbanding 

Stumpf dan mampu menawarkan penyelesaian bagi kaedah SDB untuk aplikasi 

pemetaan pengukuran hidrografi kawasan cetek.   
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Study 

 

According to the National Aeronautics and Space Administration (NASA), 

there are more complete maps of the surface of the Moon or Mars than the ocean floor 

of Earth (NASA, 2016).  Geographical facts indicate that water covers close to 70 per 

cent of the earth’s surface, yet only less than 15 per cent of the seafloor area worldwide 

have been appropriately surveyed using shipborne measurements (Copley, 2014).  

Apparently, the majority of such survey activities have been made along the major 

shipping routes of the world.  This is because the production of navigational charts 

were originally regulated based on Chapter V of the International Convention for the 

Safety of Life at Sea (SOLAS), where there is an obligation under the Convention to 

provide safe routes for shipping (IMO, 1974).  Therefore, it is of no surprise to find 

that the majority of the surveyed area globally only focused on the shipping routes of 

the world.  This typical worldwide setting has left an expanse of unsurveyed territory, 

mainly in the very remote areas and shallow water spaces within nearshore which are 

unsafe for navigation.  This situation also occurs in Malaysian waters, where the 

majority of hydrographic surveys conducted in Malaysia are only focused on the main 

shipping routes.   

 

According to the database provided by the Malaysian National Hydrographic 

Centre (NHC), the majority of shallow water areas, both in Peninsular Malaysia and 

Sabah and Sarawak near the shorelines are still unsurveyed.  The database map in 

Figure 1.1 shows the status of hydrographic survey data comprising of 4 categories as 

follows; 
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d. Very old data (before 1950).   

 

This database was updated until November 2017.  The map shows significant 

gaps in the shallow water areas especially on the East Coast of Peninsular Malaysia 

and nearshore of Sarawak.  There is no getting away from the fact that nearshore 

hydrographic data are imperative these days.  Concurrently, the demand for 

bathymetry data has increased exponentially in recent years for maritime-related 

industries, especially for nearshore marine base activities.  The demand has 

tremendously increased as more fields require the information primarily for the use of 

marine navigation, environment protection management, marine resources exploration 

and exploitation, fishing industry, marine science research, maritime defense, tourism 

and recreation, national spatial data infrastructure and maritime boundary delimitation 

(IHO, 2005).  

 

 

 

 

 

 

 

 

 

 

Figure 1.1 The hydrographic survey data status in Malaysia (NHC) 
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The growing demands from various fields have shaped the evolution of the 

acquisition technique of bathymetric data; from a shipborne platform to airborne and 

even using space-borne acquisition (Pe’eri et al., 2014).  The discovery of the 

electromagnetic spectrum (EMR) being able to penetrate water space leads to the 

breakthrough acquisition technique of extracting bathymetric data from space-borne 

platforms.  Figure 1.2 describes the evolution of the bathymetry data acquisition 

technique from shipborne to the space-borne platform.  The space-borne bathymetry 

acquisition technique for shallow water areas which is also known as Satellite-Derived 

Bathymetry (SDB) is more than just mere rhetoric.  The rapid and vast development 

of remote sensing technology has brought in SDB as a new revolution to the 

hydrographic surveying (Stumpf et al., 2003; Louchard et al., 2003; Brando and 

Dekker 2003; Lyzenga et al., 2006; Albert and Gege, 2006; Vanderstraete et al., 2006; 

Su et al., 2008; Bachmann et al., 2012; Flener et al., 2012; Doxani et al., 2012; 

Bramante et al., 2013; Pe’eri et al., 2014; Tang and Pradhan, 2015; Ehses and Rooney, 

2015; and Chybicki, 2018).   

 

Figure 1.2 The evolution of bathymetry data acquisition technique 

 

In recent years, remote sensing technology via the airborne acquisition has 

been accepted as an alternative technique in the bathymetric data acquisition process 

among the hydrography communities, especially in the shallow water area.  Thus far, 

for seafloor mapping within shallow coastal waters, the Light Detection And Ranging 

(LiDAR) which is an airborne bathymetric acquisition technique, has been deployed 

in various countries including Malaysia. Indeed, LiDAR has produced reliable 
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bathymetric data which is capable of achieving 20 cm vertical accuracy (Pe’eri et al., 

2014).  In certain conditions, undoubtedly this technology is capable of meeting the 

International Hydrographic Organisation (IHO) Special Order survey requirements.  

Table 1.1 describes the nominal maximum detectable depth by various airborne 

bathymetric acquisitions (Lillycrop and Banic, 1993; Finkl et al., 2005; Brock et al., 

2004).  The data demonstrate clearly that these airborne acquisition techniques are 

commonly able to penetrate quite significant depths and achieve acceptable vertical 

accuracy.  Nonetheless, there are still limitations in this airborne acquisition technique.  

 

Table 1.1: LiDAR systems nominal maximum detectable depth  

System Developed By Nominal 

Maximum 

Detectable Depth 

SHOALS  

(Scanning Hydrographic Operational 

Airborne LiDAR Survey) 

Teledyne Optech 

Incorporated, Canada 

40 m 

LADS  

(Laser Airborne Depth Sounder) 

Tenix LADS 

Corporation, Australia 

70 m 

NASA EAARL  

(Experimental Advanced Airborne 

Research LiDAR) 

 

NASA, United States 25 m 

 

 

The major limitation of airborne bathymetric acquisition is not just on the 

maximum penetration range which depends heavily on water clarity, but the 

practicality in implementing this method on survey ground. The issuance of permits to 

operate a LiDAR system is the primary concern for the service providers while 

operating in a semi-enclosed maritime region like Malaysia. It is challenging to 

manage the flight path without entering the territory of neighbouring states, and the 

situation can trigger untoward incidents between both parties. With all the perilous 
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issues, the operation cost of a LiDAR system in this region can be extremely high, 

especially when the application is for chart updating which requires more frequent 

flyovers (Minghelli-Roman et al., 2009; Pe’eri et al., 2014). Hence, with more new 

satellites being launched and new sensors developed every year, a noteworthy number 

of research whether international or local, have been conducted to assess and analyse 

the SDB acquisition techniques since this remote-sensing technology is considered as 

an attractive option for seafloor mapping (Bramante et al., 2013; Pe’eri et al., 2014; 

Chybicki, 2018 ). 

 

 

1.2 Problem Statements 

 

An operating surveying platform for bathymetry data acquisition in the shallow 

water area, which is defined as an area having a depth less than 15 meters, is always 

considered to be a high operational risk due to limited navigation availability.  The 

shipborne soundings commonly in use is a Singlebeam Echo Sounder System (SBES) 

that often produces a low spatial resolution (Lyzenga, et al., 2006; Kanno, et al., 2011).  

Hence, considering the limitation of the shipborne acquisition remotely sensed data 

technique, either the active technique (airborne) or the passive technique (space-borne) 

would be the best available option to be utilised instead.  In addition, bathymetry data 

derived from the remote sensing platform is not something new for hydrographic 

application (Gould et al., 2001; Stumpf et al., 2003; Louchard et al., 2003; Brando and 

Dekker, 2003; Lyzenga et al., 2006; Albert and Gege, 2006; Su et al., 2008; Bachmann 

et al., 2012; Flener et al., 2012; Doxani et al., 2012; Bramante et al., 2013; Tang and 

Pradhan, 2015; Su et al., 2015; Vinayaraj et al., 2015; Guzinski et al., 2016; Toming 

et al., 2016; Jegat et al., 2016; Chybicki et al., 2018).  

 

Although SBD has received substantial attention by researchers in the recent 

decades, unfortunately, most of the studies have primarily focused on the development 

and enhancement of the established algorithms which are more inclined to remote 
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sensing environments (Doxani et al., 2012; Bramante et al., 2013; Su et al., 2015; 

Vinayaraj et al., 2015; Guzinski et al., 2016; Toming et al., 2016; Jegat et al., 2016; 

Mohamed et al., 2015; Martins et al., 2017; Allen et al., 2017). Indeed, most of the 

outcomes from the above studies are indirectly beneficial to the hydrographic survey 

industry. However, most of the studies did not address a significant issue which 

mystifies the surveyor community in Malaysia; which is acknowledgement of the 

detail accuracy of the depth estimations produced by the SDB technique.  Precision 

and accuracy are always the subject of interest to surveyors.  However, this part went 

unreported in most of the studies.   

 

To embrace the SDB technology in the hydrographic surveying industry, the 

depth estimations produced by the SDB need to be analysed with the requirements laid 

down in the IHO Standards for Hydrographic Surveys (IHO, 2008). Therefore, it is 

timely to have a detailed study in this country to assess, evaluate and analyse the 

capability and consistency of SDB outcomes in Malaysia’s environment settings 

comprehensively together with the standards specified by the hydrographic surveying 

industry.  Furthermore, the ‘local settings’ which refers to the tropical environment 

consist of entirely different parameter settings as compared to most of the above-

mentioned studies that were cited. 

 

 

1.3 Research Questions 

 

Since the SDB technology is relatively new to the hydrographic industry in 

Malaysia, one question that was posed amongst surveyors about this technology is on 

the acceptability of the data provided from satellite remotely sensed technique 

concerning surveying industry practicality.  Bramante et al. (2013), Pe’eri et al. (2014) 

and Tang and Pradhan (2015), used available soundings (depths) from the Electronic 

Navigation Chart (ENC) and bathymetric charts for the algorithm in deriving depths 

data. The results generated from the analysis might be sufficient enough and relevant 
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to other field applications such as reconnaissance of chart adequacy, managing of the 

coastal zone and marine biodiversity modelling and so forth. However, in the 

surveying industry, the level of accuracy demanded is comparatively higher. In 

addition, the issue of consistency also needs to be addressed.   

 

Therefore this research is addressing the gap identified from the reviews as 

above. The analysis of the gap has shaped a few fundamental research questions;   

 

a. Which is the most practical algorithm model to adopt in this country’s 

tropical weather and muddy water condition?   

 

b. How reliable is the SDB technology in producing a consistent level of 

accuracy in the field of hydrographic surveying, especially for the 

shallow water area?   

 

c. Which class of survey standard (IHO) that this technology is capable of 

achieving?   

 

d. What improvement can be developed to simplify the current processing 

procedure that can be adapted into hydrographic surveying application?  

 

 

1.4 Research Objectives 

 

This research focuses more on utilising the technology of the optical remote 

sensing tools to derive bathymetry data for hydrographic surveying applications.  In 

general, this research has successfully explored in detail the ability of light penetrating 

the body of water through various available techniques and algorithms in which it has 

provided a physical basis for modelling of bathymetry data from a few types of multi-

spectral satellite data.  As the field of SDB is still new in Malaysia, the primary 
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objective that is set for this research is to identify, examine and develop the most 

practical SDB method which is capable of delivering the best outcomes for shallow 

water hydrographic mapping.  In order to meet the desired aim, the research is focused 

on the following objectives.  

 

a. Objective 1: To identify the performance of the empirical model 

algorithms, Lyzenga  and Stumpf, in deriving bathymetry data 

modelling from multi-spectral satellite imageries in a tropical 

environment; 

 

b. Objective 2: To determine the level of reliability produced from the 

algorithms focusing on the shallow water area which reflects on the 

hydrographic mapping applications.  

 

c. Objective 3: To assess the degree of accuracy and standards of 

bathymetric data derived from SDB technology in meeting the standard 

and specifications laid by IHO. 

 

d. Objective 4: To develop the new calibration of the SDB empirical 

method with an optimisation technique focusing on the tropical 

environmental parameter. 

 

 

1.5 Scope of Study 

 

The introduction of a high-resolution multi-spectral imagery satellite was a 

catalyst in the the SDB field for it to be a fast-growing technology and ultimately has 

fascinated a significant number of researchers around the globe.  Consequently, the 

study scope has been reshaped and re-aligned in order to achieve the desired 

objectives.  Thus, the study has placed emphasis at the critical stage of the processing 

part which deals in confronting the bottom reflectance in determining the bathymetric 
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model in the shallow water area where the interest of the area will incline into 

identifying the TSB.  Indirectly, this approach will minimise the discussions on the 

other processing parts, such as the sun glint removal and atmospheric correction stages.  

In deriving the bathymetric data from satellite imageries, this research focused on the 

capabilities of few satellite imageries.  To have variety in evaluating the outcome of 

SDB, this research adopted three type of satellite imageries.  Table 1.2 lists down in 

detail the kind of satellite imageries and the bands which will be used for the research.  

 

Table 1.2: List of satellite imageries and bands used 

Satellite Data/ 

Category 

Spatial 

Resolution 

Wave Length Bands (nm) Area/Date 

Captured 

Sentinel 2 

(High-

Resolution) 

10 m 

 

Blue: 447 to 545 

Green: 538 to 582 

Red: 645 to 682 

Near IR: 763to 907 

Tawau  

(29 Nov 2016) 

Labuan  

(28 June 2017) 

Pleiades  

(Very High-

Resolution) 

2 m 

 

Blue: 430 to 550 

Green: 500 to 600 

Red: 590 to 710 

Near IR: 740 to 940 

Tawau  

(12 July 2016) 

 

WorldView2 

(Very High-

Resolution) 

0.5 m 

 

Coastal Blue: 400 to 450 

Blue: 450 to 510 

Green: 510 to 580 

Yellow: 585 to 625 

Red: 625 to 695 

RedEdge: 705 to 745 

Near IR: 770 to 895 

Near IR2: 840 to 1040 

Labuan  

(26 June 2015) 

 

1.6 Study Areas 

 

Two (2) areas with contradicting seabed parameters conditions were identified 

for this research.  The selection of Tawau Port (Sabah) and Pulau Kuraman (Wilayah 

Persekutuan Labuan) as study areas are aligned in meeting the research objectives 
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where at least two (2) areas with different coastal seabed topography parameters were 

fully tested.  Availability of data (bathymetry, tidal and satellite images) was the 

primary criteria for choosing both locations as study areas.  At the same time, both 

areas perfectly met the parameters required for this research.   

 

The main feature for the Tawau Port study area is a protected coastal area with 

a low gradient condition (coastal type 1P and 1M) which holds a typical condition of 

relatively high water turbidity.  This condition is considered as the standard criteria for 

the majority of the coastal regions in Malaysia.  Thus, the results from Tawau Port is 

capable of representing the majority of shallow water conditions in Malaysia.  

Whereas, Pulau Kuraman study area consists of a very different water condition and 

different seabed topography parameter.  Although the water clarity is better as 

compared to Tawau Port, Pulau Kuraman is an exposed coastal area (coastal type 2E 

and 3E) which has an irregular seabed topography. The condition is due to the diversity 

of the seabed classifications which are a mixture of sand, coral, rock, seaweed and 

seagrass.  Figure 1.3 indicates the geographical location of both study areas.  

 

 

 

 

 

 

 

 

 

Figure 1.3 Geographical location of the study areas, the Tawau Port (Sabah) and Pulau 

Kuraman (W.P Labuan) 



 

 

11 

 

1.7 Significance of Study 

 

This study has delivered a significant contribution to various fields, especially 

primary stakeholders such as NHC as the national focal point for all hydrographic 

surveying activities. Likewise, to the Department of Survey and Mapping Malaysia 

(DSMM), this research has provided a new approach in assisting the authority to 

update the national Territorial Sea Baselines (TSB).  Nevertheless, this research did 

not fall short in delivering significant research novelty.  

 

 

1.7.1 Delivering New Guidelines to Malaysian Hydrographic Industry 

 

The most significant outcome of this research is the answer to whether the SDB 

technology is acceptable in the field of hydrographic surveying in this country.  The 

SDB technology is considered as a new method for bathymetry data acquisition. There 

are a number of algorithms and techniques available in deriving bathymetry data.  

However, not all algorithms and technologies are suitable in term of practicality for 

the hydrographic surveying industry in Malaysia.  Therefore, this research has 

successfully addressed the uncertainties and ambiguities by finding the suitable 

algorithm and technique to be adopted in Malaysia.  This positive outcome will 

undoubtedly be able to assist in the challenging task of the NHC in filling in massive 

gaps of data on the very shallow water areas nationwide. 

 

In conjunction with Universiti Teknologi Malaysia, a research university 

alongside the National Blue Ocean Strategy concept, this research has also facilitated 

the NHC as the national authority in developing a new set of guidelines in SDB 

acquisition technique and to provide the direction for the surveying industry in the 

country on this rapidly developing SDB technology.  On top of that, this research has 

also assisted the NHC in participating with the IHO Technical Working Group under 



 

 

12 

 

the Hydrographic Services and Standards Committee (IHO, 2015b), to study and 

develop the standards for the SDB technology as a new surveying method.  As the 

standard for SDB technology is now in the pipeline, this research delivered a 

significant contribution to NHC as the outcomes have portrayed an accurate view of 

the capability of this promising technology to be adopted in this country. 

 

 

1.7.2 Identifying The Nation’s Territorial Sea Baseline (TSB) 

 

The other stakeholder who directly benefited from this research is DSMM as 

the lead agency in maritime delimitation activities. Malaysia has a total of 55,6285 

km2 maritime area as compared to 329,960 km2 of land area (NHC, 2016). This 

sizeable maritime area rationalises Malaysia to have more maritime neighbours as 

compared to the land neighbours (Haller-Trost, 1998; and Forbes and Basiron, 2008).  

Therefore, there is a necessity to address the question; where does the sea begin?  

Technically, under the Convention, the datum or the starting line for measuring the 

width of maritime jurisdictional zones encompassing from the coast seaward is the 

Territorial Sea Baseline (Forbes and Basiron, 2008).  

 

According to Article 5 of the Convention, “the normal baseline of a coastal 

state is the low-water mark as delineated on the large-scale charts adopted by the 

coastal state” (United Nation, 1982).   From this datum, the zone of jurisdiction, as 

provided in the UNCLOS 1982, namely the Territorial Sea (Article 3), the Contiguous 

Zone (Article 33), an Economic Exclusive Zone (Article 57) and the Continental Shelf 

(Article 76) are measured.  Undeniably, all these articles demonstrate the importance 

for a coastal state to determine the TSB, which must then portrayed on charts (Reed, 

2000; Prescott and Schofield, 2004 and Schofield, 2012).  The only method of defining 

the national TSB is through bathymetry data collection.  Therefore, the coastal state 

shall utilise the unsurpassed acquisition method available to produce the optimum 

outcomes.  
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Although DSMM had carried out a complete detail survey to identify national 

TSB, nevertheless, the surveying method which was adopted more than 14 years ago 

is arguably was not the best method to be applied as the Single Beam Echo Sounder 

System (SBES) was manifestly unable to provide comprehensive coverage.  As better 

technology is now available, it is timely to revisit the whole process and implement 

the latest technology for the benefit of the country.  Indeed, the positive outcomes from 

this research can undoubtedly be utilised by DSMM as a tool to assess our current 

TSB.  Theoretically, by adopting this SDB technology, the data coverage becomes 

more substantial and  a comprehensive coverage can be visualised. This approach is 

ideally capable of discovering some potential new low water line and low tide 

elevation within the whole nation shallow water areas.  If this happens, this research 

certainly will be beneficial to Malaysia as we might gain more territory in our maritime 

zones.  

 

 

1.7.3 Providing Significant Research Novelty 

 

In the perspective of research novelty, this research has produced a new 

technique for SDB calibration.  M-LOT is an in-house tool developed using MATLAB 

software which applies the combination of the least square adjustment method and 

linear correlation algorithm which has successfully improved the results in terms of 

quality and consistency.  In general, the hardest part of the processing of the SDB 

application is the depth calibration process before applying the empirical inversion 

model.  The conversational process is not only time-consuming but also requires 

additional skills and experiences of the hydrographic surveyor.  M-LOT has simplified 

the painstaking element and has been proven in making the process easier in deriving 

bathymetry data from SDB application.  

 



 

 

14 

 

1.8 Thesis Outline 

 

This research thesis consists of six (6) chapters which are Introduction, 

Literature Review, Research Methodology, Model’s Calibration and Depth Derivation 

Results and the Results and Analysis.  The detailed thesis outline of all chapters are 

elaborated in the following sub-paragraphs. 

 

 

1.8.1 Introduction 

 

The first chapter of this thesis is an introduction chapter.  This chapter presents 

the general view of this research which covers Background of Study, Problem 

Statements, Research Questions, Research Objectives, Scope of Study, Study Areas, 

Methodology and Significance of the Study. 

 

 

1.8.2 Literature Review 

 

This chapter discusses the literature studies on related research works 

especially on SDB and divulges the research gaps.  In addition, the technical 

information about multi-spectral images and remote sensing technology is also 

elaborated on.  The topics discussed in this chapter are the Fundamentals of SDB, SDB 

for Hydrographic Mapping, types of Multi-spectral Satellite Imagery and Derivation 

Models used in SDB and the Research Gaps Finding. 
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1.8.3 Research Methodology 

 

This chapter illuminates on the methodology adopted for the research.  All 

work processes in meeting every single objective were discussed comprehensively.  

The topics illustrating the workflow of this research which consist of the five (5) 

phases involved are the Pre-Research Phase, Data Collection Phase, Data Processing 

Phase, Depth Derivation Phase and Data Analysis Phase. 

  

 

1.8.4 Model’s Calibration and Depth Derivation Using Multi-Spectral Satellite 

Imageries  

 

 

This chapter discusses in detail the outcomes of the calibration and depth 

derivation processes.  The calibration process that delivers the variables required for 

all three adopted model Lyzenga, Stumpf and M-LOT were described 

comprehensively.  Consequently, this chapter also enlightens on the results that are 

obtained from models depth derivation.  The subject discussed in this chapter are 

divided into Model’s Depth Calibration Results and Depth Derivation Outcomes. 

 

 

1.8.5 Result and Discussions 

 

This chapter illuminates in detail the final findings of the research.  The 

discussion covers the quantitative evaluation of all depth derivation model outcomes 

and the analysis of the IHO survey standards assessment process. Furthermore, this 

chapter also comprehensively elaborates on the findings and performance of every 

single model including the level of improvement achieved by M-LOT. The 
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