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ABSTRACT 

Building concrete structures deficiencies, a crucial issue highlighted by the 

building and construction industry worldwide is happening at an alarming rate. 

Deteriorations of these structures are accelerated by several factors such as 

environmental impacts, population growth and human activities. Hence, maintenance 

plays an important role to assure that the building is at its topmost service condition to 

extend its service life. However, the building maintenance aspects in Malaysia are still 

unsatisfactory where repairs are only conducted after service breakdown. Thus, to 

overcome this problem, an image-based non-destructive technique comprising 

numerical modelling and ground penetrating radar (GPR) is introduced for building 

concrete structures assessment. To address the first objective of the study, 

characterising and modelling backscatter from high frequency GPR for concrete inner 

structure and deficiency features were conducted with numerical modelling using 

finite-difference time-domain (FDTD) method. These were performed on concrete 

slabs with various types of defects and conditions for 1, 1.5 and 2 GHz frequencies 

antennas. Next, the second objective targets the application and assessment of the 

simulated models in laboratory scale and real structures. Aladdin GPR system with 2 

GHz full-polar antenna was employed for surveying a reinforced concrete beam 

specimen with cracks induced by continuous hydraulic loadings as well as four in-

service buildings. Results indicated that the backscatter for each object was unique and 

can be distinguished from one another. The 2 GHz frequency antenna had the highest 

resolution among the three antenna frequencies and identified cracks as small as 3 mm. 

Meanwhile, changes in the concrete inner structure due to cracks can be determined as 

the cracked area has a distinct signal trace from its surroundings. The outcomes 

obtained from the numerical modelling and GPR inspections have a good agreement 

between each other, and the results confirmed that the high frequency GPR can be 

adopted for building concrete structures assessment which can reduce maintenance 

costs and prevent catastrophic failures.  
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ABSTRAK 

Kecacatan struktur konkrit bangunan merupakan isu penting yang 

diketengahkan oleh industri bangunan dan pembinaan di seluruh dunia dan berada 

pada tahap yang membimbangkan. Kemerosotan struktur ini dipercepatkan oleh 

beberapa faktor seperti kesan alam sekitar, pertumbuhan populasi dan aktiviti manusia. 

Oleh itu, penyelenggaraan memainkan peranan penting untuk memastikan bangunan 

itu berada pada tahap perkhidmatan tertinggi untuk melanjutkan hayat 

perkhidmatannya. Walau bagaimanapun, aspek penyelenggaraan bangunan di 

Malaysia masih kurang memuaskan di mana pembaikan hanya dilakukan selepas 

berlaku kerosakan. Oleh itu, untuk mengatasi masalah ini, teknik tidak merosakkan 

berasaskan imej yang terdiri daripada pemodelan berangka dan radar penembusan 

tanah (GPR) diperkenalkan untuk penilaian bangunan struktur konkrit. Untuk 

menangani objektif pertama kajian ini, ciri dan pemodelan hamburan balik dari GPR 

berfrekuensi tinggi untuk struktur dalaman dan kecacatan konkrit dikendalikan dengan 

pemodelan berangka menggunakan kaedah finite-difference time-domain (FDTD). Ia 

dilakukan untuk papak konkrit dengan pelbagai jenis kecacatan bagi antena 

berfrekuensi 1, 1.5 dan 2 GHz. Seterusnya, objektif kedua mensasarkan aplikasi dan 

penilaian model simulasi dalam skala makmal dan struktur sebenar. Sistem GPR 

Aladdin dengan antena kutub penuh 2 GHz digunakan untuk mengukur spesimen 

rasuk konkrit bertetulang dengan keretakan yang disebabkan oleh beban hidraulik 

yang berterusan serta empat bangunan dalam perkhidmatan. Keputusan menunjukkan 

bahawa hamburan balik untuk setiap objek adalah unik dan boleh dibezakan dari satu 

sama lain. Antena berfrekuensi 2 GHz mempunyai resolusi tertinggi antara tiga 

frekuensi antenna dan mengenal pasti retak sekecil 3 mm. Sementara itu, perubahan 

struktur dalaman konkrit akibat retakan boleh ditentukan kerana kawasan retak 

mempunyai jejak isyarat yang berbeza dari persekitarannya. Hasil yang diperoleh 

daripada pemodelan berangka dan pemeriksaan GPR mempunyai persetujuan yang 

baik antara satu sama lain, dan hasilnya mengesahkan bahawa GPR berfrekuensi tinggi 

boleh digunakan untuk penilaian bangunan struktur konkrit yang dapat mengurangkan 

kos penyelenggaraan dan mencegah malapetaka kegagalan.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of the Study 

Concrete amounts to the largest of all artificial materials in quantity 

(Ramachandran, 2001). It has existed as the most widely used construction materials 

for a few decades due to its economical and outstanding technical properties 

(Popovics, 1992). However, defects or deteriorations influenced the service condition 

and lifespan of concrete structures. Both macro or micro defects are detrimental to the 

health of the concrete structures and can lead to deterioration rely on the extent of their 

presence, surroundings conditions and maintenance carried out during the life cycle. 

After all, macro defects cause more damage and faster deterioration compared to micro 

defects as it has a larger size (The Constructor, 2014a). 

Meanwhile, deterioration is an unavoidable natural process which begins at the 

moment of constructing the concrete structures (Assaf et al., 1996; Zuraidi et al., 

2011). The population growth, low funding, increased loading in several sectors that 

grow significantly, without uniformity and consistency in design, construction and 

operation routines, poor quality installation, insufficient investigation and 

maintenance, and narrower environmental and health prerequisites speeded up their 

structural ageing process (Kabir et al., 2009). Learning the causes of concrete structure 

damage is critical for the repair and rehabilitation work (Woodson, 2012) and thus, 

Table 1.1 presented the causes and relating symptoms of concrete distress and 

deterioration (Woodson, 2009; 2012).
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3 

Surface-breaking cracks may display on concrete structures as results of the 

chemical attack, repeating service loads or weathering. Structural failures may lead 

eventually by cracks extending into the material, starting from the surface, or play a 

role in the concrete reinforcement corrosion (Goueygou et al., 2008). In material 

science, to monitor the deterioration process, locating of cracking processes inside 

structures is often a good sign before failures (Grosse, 2013). Loss of life is the worst 

scenario as a result of failure while at best is the loss of asset use and therefore a 

financial loss (Elfergani et al., 2013). Performing defects and deterioration detection 

regularly can prevent structural failure as it is essential to extend the operational life 

and ensure the structure is in good condition. However, until today, although concrete 

structures inspection and investigation had been introduced and performed since a few 

decades ago, structural failures and collapses are still happening around the world. 

Some of the major structural failure and collapse cases around the world (1995 to 

2016) are shown in Table 1.2.
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A large number of the death toll and huge financial and economic loss caused 

by these structural failures and collapses alerted the world about the importance of 

concrete structures inspection. The absence of suitable, scientific and systematic 

maintenance and inadequacy of understanding of the environmental status holds 

responsible for the non-functioning or failure of a concrete structure to its wished 

service quality (The Constructor, 2014b). Inaccurate assessment such as undetected 

degradations may induce catastrophic accidents, or overestimation of damage can 

cause investments loss due to unnecessary repair work or reinforcement. The top-level 

accuracy and efficiency are therefore needed by the inspection methods to fulfil the 

demands of the structure management (Rhazi, 2001). 

At present, two form approaches adopted for concrete structures inspection are 

destructive testing (DT) and non-destructive testing (NDT). These methods have 

diverse efficiencies on various kinds of deterioration (Aldahdooh and Bunnori, 2013). 

Visual inspection of the structural surface is cost-effective and simple for mechanical 

damage evaluation, but precise information on crack depth cannot be obtained 

(Goueygou et al., 2008). At times, visual inspection is backed by laboratory analysis 

on samples of materials derived from drilling for estimating the durability parameters 

(Rhazi, 2001). Reliable and useful results can be obtained since the cores are 

mechanically tested to destruction. However, this expensive and time-consuming 

method allows only rather few tests to be performed on a large structure (Tuncan et 

al., 2008). Therefore, NDT can be used as a preliminary to subsequent coring in 

reducing or minimising the number of collected cores as coring has severe damage to 

the concrete (IAEA, 2002). 

NDT approaches have been proven to be assured and may give early warning 

of structural failure due to the non-destructive nature and ability to examine the 

concrete structures plus an extensive and dense amount of data with a high efficiency. 

Early warning is notably crucial considering it is allegedly too late to perform repair 

works when substantial rebar corrosion, cracks, delamination and spalling emerge at 

the concrete surface (Lai et al., 2010a). Repair expenses for the existing structures are 

able to be marked down significantly by the systematic employment of NDT 

approaches and supervising within a structure management system (Kohl et al., 2005). 
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Specifically, from the economic perspective, repair and restoration of flawed concrete 

structures are more preferential than constructing a new one, particularly if works are 

attempted as soon as the damage is induced (Shah and Ribakov, 2008). Therefore, it is 

contributing to the demand for the advancement of efficient inspection approaches 

ahead of repair works (RILEM Technical Committee, 2010). 

In Malaysia, periodic inspection of buildings is mentioned in Section 85A of 

Act 133 Street, Drainage and Building Act 1974 in the Laws of Malaysia. According 

to this act, the buildings that are exceeding five storeys and more than ten years from 

the date the Certificate of Fitness (CF) or Certificate of Completion and Compliance 

(CCC) was issued, required a periodic inspection. During this inspection, a visual 

inspection is performed and when essential, a full structural investigation is conducted 

by a registered professional engineer (AGC, 2014). The engineer needs to prepare 

either the report for visual inspection or full structural inspection of the building’s 

condition after the inspection. This is important for buildings maintenance and 

rehabilitation, but unfortunately, the act is not strictly enforced. There are still lacking 

in the building maintenance aspects, although buildings are constructed under strict 

supervision and in line with the British Standard. The scenario is worsened as 

sometimes, without much attention paid to the civil and structural elements, building 

maintenance is observed just about the electrical and mechanical system (Suffian, 

2013). To overcome this problem, high frequency ground penetrating radar (GPR) is 

employed in this study for building concrete structure assessment. 

GPR is among the most promising NDT techniques for concrete structure 

assessment. It has been demonstrated in geophysics for soil assessments for several 

decades and nowadays, smaller structures are possible to be investigated alongside the 

advancement in high frequency antennas and powerful computer systems (Kohl et al., 

2005). In recent years, GPR has been preferred as an effective means to ‘look through’ 

concrete structures (Lai et al., 2009) and it has been employed for periodic 

examination and maintenance of the masonry and reinforced concrete (RC) structure. 

Depths inspection is relatively shallow in civil engineering applications and only 

microwaves or short pulses electromagnetic (EM) waves are used (Zheng et al., 2003). 
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Hence, GPR of higher frequency EM waves is utilised for small and shallow target 

detection as it has a shorter wavelength and promising better resolution. 

1.2 Problem Statement 

Concrete structure assessment plays an important role in buildings 

maintenance and rehabilitation. It should be carried out on a regular basis to keep the 

service condition at a satisfactory level and extend the service life of the building. The 

occurrence of disastrous events such as structural failures and collapses can also be 

prevented by monitoring and evaluating the buildings from time to time. Visual 

inspection and non-imaging NDT techniques are utilised traditionally for in-service 

concrete structure assessment, but only shallow qualitative data is provided. 

Quantitative and more precise information can be obtained from imaging NDT 

methods. With the advancement in technology, high resolution subsurface imaging of 

concrete structure can be achieved by using high frequency GPR. However, 

interpreting the recorded radar signal is complicated and it requires a skilled and 

experienced operator. To increase the understanding and knowledge on the radar 

backscatter and aid in interpretation, numerical modelling for various types of defects 

in the concrete structure is performed. Although there is literature in determining and 

characterising the radar backscatter of concrete structural deficiencies, the types of 

defects simulated are limited. Besides, the numerical models are created mostly for 

GPR antennas with frequencies of 1 GHz or less and there are only a few studies which 

conducted for GPR antennas with higher frequencies. Thus, to bridge this gap, GPR 

responses for concrete inner structure and several types of deficiencies, such as rebar 

corrosion, voids of different materials and fillings, and concrete with different 

moisture contents are modelled for GPR antennas with three higher frequencies of 1, 

1.5 and 2 GHz. 

Surprisingly, visual inspection still remains as the most widely used method 

for concrete structure inspection and investigation. This method is relatively simple, 

but subjective to the skill and experience of the operators. Moreover, only qualitative 

and surface information can be provided. Therefore, other NDT approaches can be 
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employed as a complement to visual inspection. GPR is among the most promising 

NDT technique for concrete surveys, but it is less applied in developing countries, 

although it has been introduced and available in the market for more than 30 years. 

The lack of knowledge and expertise on the technology contributes to the less 

popularity of the method in these countries. NDT methods such as rebound hammer, 

ultrasonic testing and impact echo are adopted for concrete examination, but these 

methods do not reveal the subsurface condition since they are non-imaging. As an 

imaging approach, GPR is employed for concrete structure assessment, but lower 

frequency antennas are often utilised and there are only several studies which deployed 

antennas with frequencies of 2 GHz or higher. Thus, high frequency 2 GHz GPR 

antenna is proposed in this study as it can provide high resolution and detailed 

subsurface images. This allows embedded targets and anomalies to be detected. 

1.3 Objectives 

The aim of this study is to perform building concrete structure assessment using 

image-based NDT technique. The specific objectives are: 

(a) To characterise and model backscatter from high frequency GPR for concrete 

inner structure and deficiency features. 

(b) To apply and assess the simulated models in laboratory scale and real 

structures. 

1.4 Scope of the Study 

The scope of the study is as follows: 

(a) Simulation is carried out for concrete inner structure such as rebars and 

deficiency features including RC slab in good condition, RC slab with defects, 

RC slab containing defects with different moisture content, RC slab with 
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cracks, RC slab with honeycombs, RC slab with voids, RC slab with a variety 

of conditions in rebars and concrete slab with voids of different materials and 

fillings. These deficiencies are selected as they represent the problems in the 

concrete structure. 

(b) Numerical modelling is performed for GPR with 1, 1.5 and 2 GHz antenna 

frequencies. Antenna frequencies less than 1 GHz is not considered in this 

study as generally antenna frequencies of 1 GHz and above is utilised in 

concrete structures inspection. 

(c) Finite-difference time-domain (FDTD) technique is employed for numerical 

modelling. This approach is chosen as it is comparatively simple and allow the 

simulation of realistic GPR models. Simulation is carried out with GprMax 

software while the outputs are displayed with coding in MATLAB software. 

(d) An experimental study is carried out at the laboratory on an RC beam specimen 

with hydraulic loads exerted to induce cracks. GPR scanning is conducted in 

the initial state and on every 50 kN intervals of increasing loads until the 

specimen failed. This permits radar signal collection for cracks under a 

controlled environment. 

(e) Case studies are conducted for four in-service concrete structures, including 

newly completed building, five-year-old building, concrete wall to be 

demolished and concrete floor with a poor waterproof design to examine the 

effectiveness of GPR in detecting defects in real-world condition. These four 

structures are chosen as they are from different building categories and have a 

different condition or defect. 

(f) The Aladdin GPR system with 2 GHz full-polar antenna is utilised for both 

experimental study and in-service concrete structure survey. This high 

frequency antenna is suitable for concrete structures inspection as high 

resolution and more detailed data can be obtained. Data acquisition is done 

simultaneously in two perpendicular directions and the required survey time is 

reduced by 50%. K2FastWave and GRED HD software by IDS are used for 

GPR data acquisition and processing, respectively. 
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1.5 Significance of the Study 

Building concrete structure assessment is an effective approach for reducing 

the life cycle costs of the structure from construction to maintenance. GPR surveys can 

be conducted as a part of building condition assessment (BCA) and the acquired high 

resolution concrete subsurface images can be integrated into the building information 

system (BIS). When as-built drawings are absent, the information recorded by GPR 

can be utilised for construction details determination. The correctness of the available 

structure drawings can be assured besides evaluating the feasibility of the suggested 

structure works. Surveyors, engineers and contractors can employ a GPR system for 

deficiency detection prior to fix and repair works. Detailed views of the concrete 

subsurface are obtained from the surveys and the most appropriate repair method is 

suggested based on the available information. This permits maintenance and repair to 

be carried out easier. The risk of injury or accidents can be minimised by finding 

potentially hazardous materials that are embedded in the structure. This is of utmost 

importance particularly when the public is concerned, as any of such accidents can be 

calamitous. 

Infrastructure and property developers can apply this technique for 

construction site monitoring and structural health assessment on a regular basis. 

Stakeholders such as MASS Rapid Transit Corporation Sdn. Bhd. and Prasarana 

Malaysia Berhad can monitor the structures under construction to prevent shoddy 

construction. The constructions are often carried out on location with heavy traffic 

flows and any accidents can be disastrous. In-service structures should also be 

inspected and examined periodically to ensure that they are safe for use. PLUS 

Malaysia Berhad and Malaysia Airports Holding Berhad can use GPR system for 

regular assessment of the expressways and airport runways, respectively, and 

maintenance can be carried out with reference to the data acquired and information 

gathered. 

Government departments and agencies, such as the Department of National 

Heritage can use the data acquired by the GPR system for conservation and 

rehabilitation of historical landmarks and buildings. As-built structural drawings are 
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commonly not available for these structures and hence, the recorded radar signal is 

important for identifying the construction details. These structures are usually 

subjected to defects and deteriorations due to their ages. The backscatter of the 

deficiency features can be studied to suggest the most suitable and proper repair works 

to preserve the historical buildings as these buildings are important assets of the 

country. Local authorities, for example, Kuala Lumpur City Hall and Iskandar Puteri 

City Council can use GPR system for inspecting and monitoring in-service buildings 

regularly as it induces only minimal disruption to occupied buildings. Maintenance 

can be carried out on time to cut down the maintenance costs and extend the 

operational life of the structure. 

1.6 Organisation of the Thesis 

This thesis outlines the study conducted for building concrete structure 

assessment using an image-based non-destructive technique. Radar backscatter 

recorded by GPR is evaluated and analysed to detect deficiencies in concrete 

structures. The thesis is divided into five chapters to describe the successful 

implementation of the method for concrete structure assessment and deficiency 

detection. 

The thesis starts with chapter 1, the introduction chapter where the background, 

problem statement, objectives, scope and significance of the study are identified and 

determined. The thesis organisation is presented in the last part. The literature review 

can be observed in chapter 2 where based on previous studies, a comprehensive review 

is made about the methods and techniques applied for concrete structure deficiency 

assessment and evaluation. This is followed by chapter 3 and chapter 4 which 

correspondingly explained the methodology used and the results obtained in this study. 

Last but not least, the thesis ends with chapter 5 where conclusion, limitation and 

recommendation derived from the study is shown.  
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