
International Journal of Computers, Communications & Control
Vol. II (2007), No. 2, pp. 159-173

An Enhancement of the Random Sequence 3-Level Obfuscated Algorithm
for Protecting Agents Against Malicious Hosts

Kamalrulnizam Abu Bakar, Bernard S. Doherty

Abstract: With the advent of agent technology, the need for security of applications
becomes a concern that is beyond classical data security capability and considera-
tions. Without proper security protection especially against a malicious host attack,
the widespread use of agent technology can be severely impeded. The Random Se-
quence 3-level obfuscated algorithm has been proposed by the authors to improve
agent security: in this paper, an enhancement to the protection level of this algorithm
is proposed. The effectiveness of the obfuscation algorithm is enhanced by addition
of noise, which surrounds the true value carried by the agent with false values. A
malicious host can thus at best guess the true value carried by the agent.

Keywords: Agent security, Malicious host, Spying attack, Noise code.

1 Introduction

Security is considered as an important factor for an agent used in real world applications. The
problems in agent security arise when an agent is used in open and unsecured environments [8, 3]. One
kind of attack by an execution host (malicious host) is spying on the agent’s code, data and state [6, 11].
Spying attack by the malicious host may invade the agent’s privacy, especially an agent’s critical data,
for example a user’s maximum budget carried by the agent. Knowledge of an agent’s critical data gives
a malicious host an advantage in any competition over other hosts because the malicious host knows
what is expected by the agent. For example, a customised agent is sent out (in an open and unsecured
environment) to find a suitable flight with the fare price under or equal to 500 pounds. Malicious host
attack based on a spying attack is to raise the offered price until it meets the maximum price that has been
set by the agent’s owner, even though the normal price is much lower. Spying attack by the malicious
host on an agent’s data or state is difficult to detect, because the attack doesn’t leave any detectable trace
[6, 11, 5]. The executing host has to read the agent’s code, must have access to the agent’s data, and
must be able to manipulate the agent’s variable data in order to execute the agent [6, 5, 8]. Therefore, the
executing host can see and access all of the agent’s code including data and state, and is thus able to hide
any traces of an attack, which makes any attempt to address spying attack difficult.

To reduce the likelihood of this attack succeeding, the authors have proposed the Random Sequence
3-level (RS3) obfuscated algorithm [1], which obfuscates the actual value of an agent’s critical data to
prevent a malicious host spying attack. The RS3 obfuscated algorithm consists of multiple polynomial
functions which obfuscating the actual value of the agent’s critical data to produce an obfuscated value
that is meaningless to the attacker. Only selected polynomial functions are used in the conversion process
and in each selected function, multiple random inputs are implied. The main objective of using the RS3
obfuscated algorithm is to enable the comparing of confidential values within an unsecured remote host
environment without exposing the actual confidential value to an unauthorised party, using comparison of
obfuscated values rather than actual values. Unfortunately, implementing the RS3 obfuscated algorithm
alone may expose the algorithm to an attack, which could execute multiple copies of the algorithm many
times in order to analyse it, and propose actual values that will obfuscate to give the comparison outcome
sought by the malicious host.

This paper proposes an enhancement of the protection level of the RS3 obfuscated algorithm by
adding noise code in the agent application that executes in the remote host environment, to hide the
actual obfuscated value among a number of false values. The enhancement makes it more difficult for

Copyright © 2006-2007 by CCC Publications

160 Kamalrulnizam Abu Bakar, Bernard S. Doherty

the attacker to analyse the actual obfuscated value in order to discover the actual value of an agent’s
critical data: the attacker can deobfuscate the set of values carried by the agent, but can at best guess
which is the correct value.

This paper is organized as follows: Section 2 present an overview of the Random Sequence 3-level
obfuscated algorithm. Section 3 describes the random sequence 3-level obfuscated algorithm with noise
code, the implementation of noise code to enhance the obfuscated algorithm protection level and the
deobfuscation time of the RS3 obfuscated algorithm. Section 4 presents the experimental results on the
overhead of implementing noise code with the RS3 obfuscated algorithm. Section 5 analyse the strength
of the RS3 obfuscated algorithm with noise code. Section 6 presents a discussion and the conclusion is
presented in section 7.

2 An Overview of The Random Sequence 3-level Obfuscated Algorithm

The Random Sequence 3-level obfuscated algorithm [1] is an algorithm that is designed to protect
the confidentiality of an agent against malicious host spying attack. This algorithm uses three polyno-
mial functions for obfuscating the actual value of the agent’s critical data to an obfuscated value that is
meaningless to the malicious host, in order to prevent the malicious host from spying on the agent critical
data (Figure 1 show the obfuscation process of the RS3 obfuscation algorithm). The obfuscated method
used in the Random Sequence 3-level obfuscated algorithm enables the execution host to execute the
process of comparing its offer with the agent budget with both values in an obfuscated format without
the execution host having any knowledge of the actual value of the agent’s critical data. This comparing
process can be done without needing deobfuscation of the data, unlike cryptographic methods, which
require decryption of the data, thus revealing its value, before a comparison can be made.

Although the RS3 obfuscated algorithm is able to obfuscate an agent’s critical data to make it more
difficult for the malicious host to spy, the malicious host can execute multiple copies of the obfuscated
algorithm in parallel in order to analyse the algorithm quickly, making this obfuscated algorithm vul-
nerable. This attack can be addressed by limiting the processing time available to the host before the
agent is discarded [6]. However, the problem in determining an effective protection interval that can pre-
vent the malicious host having enough time to execute multiple copies of the obfuscated algorithm also
makes it difficult for this obfuscated algorithm to be implemented in real applications, where sufficient
time must be allowed for legitimate processing. In order to overcome the problem of a malicious host
executing multiple copies of the RS3 obfuscated algorithm and of determining an effective protection
interval to protect the algorithm, noise code [9, 10] is introduced for an agent that executes in the remote
host environment. The RS3 obfuscated algorithm with noise code is described in the next section.

3 The Random Sequence 3-level Obfuscated Algorithm with Noise Code

The objective for implementing the noise code in the agent application is to hide the actual obfuscated
value among a numbers of fake obfuscated values so the malicious host can at best guess at the true value
of the agent’s critical data [9, 10]. The difference between ordinary RS3 algorithm and RS3 with noise
code algorithm is in the number of obfuscated values generated and added by the master agent into the
slave agent application before the slave agent is dispatched to the remote host execution environment to
execute its tasks.

In order to discover the true value of the agent’s critical data, the malicious host must first guess the
actual obfuscated value among a number of fake obfuscated values. Any wrong decision in choosing the
obfuscated value will result in using a wrong true value of the agent’s critical data. For instance, if the
agent is equipped only with the actual obfuscated value, X without adding any noise code, the probability
that the malicious host could discover the actual obfuscated value by searching a range of values is one,

An Enhancement of the Random Sequence 3-Level Obfuscated Algorithm for Protecting Agents
Against Malicious Hosts 161

P o l y n o m i a l F u n c t i o n
F i r s t R a n d o m

N u m b e r

U s e r
B u d g e t

S e l e c t e d S e q u e n c e
N u m b e r

L e v e l 1
R a n d o m

N u m b e r m o d
F i r s t R a n d o m

N u m b e r

P o l y n o m i a l F u n c t i o n

L e v e l 2
R a n d o m

N u m b e r m o d
F i r s t R a n d o m

N u m b e r

S e l e c t e d S e q u e n c e
N u m b e r

F i r s t R a n d o m
N u m b e r

P o l y n o m i a l F u n c t i o n

L e v e l 3
R a n d o m

N u m b e r m o d
F i r s t R a n d o m

N u m b e r

S e l e c t e d S e q u e n c e
N u m b e r

F i r s t R a n d o m
N u m b e r

O b f u s c a t e V a l u e

L e v e l 1

L e v e l 2

L e v e l 3

P o l y n o m i a l r e s u l t
f r o m l e v e l 1

P o l y n o m i a l r e s u l t
f r o m l e v e l 2

Figure 1: The RS3 Obfuscation Algorithm Obfuscation Process

i.e. P(X) = 1. However, if noise codes Ei (fake obfuscated values) are added to the agent, where
i = 1,2, . . . ,100−1, the probability of discovering the actual obfuscated value is 1

100 . The probability of
guessing the actual obfuscated value becomes smaller as more noise codes are added. Figure 2 illustrates
the effect of introducing noise codes into the agent application. In addition, the time needed to guess the
actual obfuscated value will delay the malicious host in analysing the obfuscated algorithm. Therefore,
the use of an effective protection interval in enhancing the obfuscated algorithm protection will be less
important.

3.1 Implementing RS3 Obfuscated Algorithm with Noise Code

The operation of the RS3 obfuscated algorithm with noise code is almost the same as the operation
of the RS3 obfuscated algorithm without noise code (refer to [1]). The only difference between these
two obfuscated algorithms is in the number of obfuscated values generated and added by the master
agent into the slave agent application before the slave agent is dispatched to the remote host execution
environment to execute its tasks.

In the operation of RS3 obfuscated algorithm without noise code, the master agent only has to ob-
fuscate the value of user’s budget and add the obfuscated value into the slave agent application before
dispatching the slave agent to execute its tasks in the remote host execution environment. However, in
the operation of RS3 obfuscated algorithm with noise code, the master agent has to generate more than
one obfuscated value (the extra obfuscated values serve as noise codes) and add these obfuscated values

162 Kamalrulnizam Abu Bakar, Bernard S. Doherty

1 2 3 4 5 6 7 8 9 1 0

1 2 3 4 5 6 7 8 9 1 0

A n a g e n t w i t h o n e
o b f u s c a t e d v a l u e

A n a g e n t w i t h a
n u m b e r o f

o b f u s c a t e d v a l u e s

N o i s e C o d e
(a n u m b e r o f f a k e
o b f u s c a t e d v a l u e s)

+ T h e r e a l o b f u s c a t e d
v a l u e

Figure 2: The Effect of Adding Noise Codes Into The Agent Application

into the slave agent application before dispatching the slave agent to execute in the remote host execution
environment (see figure 3).

V e c t o r h o s t A d d r e s s = n e w V e c t o r () ;
d o u b l e n e w O f f e r = 0 ;
d o u b l e b e s t O f f e r 1 , b e s t O f f e r 2 , b e s t O f f e r 3 ;
U R L b e s t S h o p 1 , b e s t S h o p 2 , b e s t S h o p 3 ;

i f (N e w O b f u s c a t i o n V a l u e < = O b f u s c a t i o n V a l u e 1)) / / f a k e o b f u s c a t e d v a l u e
{
 b e s t O f f e r 1 = n e w O f f e r ;
 b e s t S h o p 1 = h o s t A d d r e s s ;
} e l s e
i f (N e w O b f u s c a t i o n V a l u e < = O b f u s c a t i o n V a l u e 2)) / / t r u e o b f u s c a t e d v a l u e
{
 b e s t O f f e r 2 = n e w O f f e r ;
 b e s t S h o p 2 = h o s t A d d r e s s ;
} e l s e
i f (N e w O b f u s c a t i o n V a l u e < = O b f u s c a t i o n V a l u e 3)) / / f a k e o b f u s c a t e d v a l u e
{
 b e s t O f f e r 3 = n e w O f f e r ;
 b e s t S h o p 3 = h o s t A d d r e s s ;
}

Figure 3: A Slave Agent Program added with Noise Code (data block)

To illustrate, the noise code is a fake obfuscated value that is generated by the master agent from
a fake user budget value. This fake user budget value is created by the master agent by adding or
subtracting a random number to or from the actual user budget value. For example, say the actual user
budget value is č500. To create a fake user budget value, the master agent needs to generate a random

An Enhancement of the Random Sequence 3-Level Obfuscated Algorithm for Protecting Agents
Against Malicious Hosts 163

number, e.g. 176. If the master agent chooses to add the random number to the actual user budget value,
the fake user budget value becomes 676. This value is then converted to the obfuscated value to represent
the fake obfuscated value. On the other hand, if the master agent chooses to subtract the random number
with the actual user budget value, the fake user budget value becomes 324. The same conversion process
will be applied to convert the fake user budget value to a fake obfuscated value. To generate more fake
obfuscated values, the master agent has to generate more random numbers.

Once the obfuscation process in the home host is completed, the master agent dispatches the slave
agent together with all the obfuscated values generated (including fake obfuscated values) to the remote
host to execute its given tasks. In the remote host execution environment, the slave agent starts its
execution process by converting any offer that was gathered from the remote host into an obfuscated
value to be used in the comparing process. For example, if the slave agent has 4 obfuscated values
(one actual and three fake values), the slave agent has to execute 4 comparing processes. If any of
the obfuscated user budget value matches the obfuscated offer value, the corresponding obfuscated user
budget value will be excluded from the obfuscation stage (see figure 4). The next obfuscation stage starts
by obfuscating a new remote host offer. In the authors’ work, a maximum of three obfuscation stages
are used to searches for a flight offer (the obfuscated user budget value is compared with the first class
obfuscated fare value in the obfuscation stage 1, business class obfuscated fare value in the obfuscation
stage 2 and economy class obfuscated fare value in the obfuscation stage 3) or less than three times if all
the obfuscated user budget values have been excluded.

O b f u s c a t i o n V a l u e 1 (F a k e)

O b f u s c a t i o n V a l u e 2 (T r u e)

O b f u s c a t i o n V a l u e 3 (F a k e)

O b f u s c a t i o n V a l u e 4 (F a k e)

O f f e r 1

R S 3 O b f u s c a t i o n
A l g o r i t h m

O f f e r 1 � s O b f u s c a t i o n
V a l u e

O b f u s c a t i o n V a l u e 2 (T r u e)

O b f u s c a t i o n V a l u e 3 (F a k e)

O b f u s c a t i o n V a l u e 4 (F a k e)

O f f e r 2

R S 3 O b f u s c a t i o n
A l g o r i t h m

O f f e r 2 � s O b f u s c a t i o n
V a l u e

O b f u s c a t i o n V a l u e 3 (F a k e)

O f f e r 3

R S 3 O b f u s c a t i o n
A l g o r i t h m

O f f e r 3 � s O b f u s c a t i o n
V a l u e

M a t c h

 N o t M a t c h

 N o t M a t c h

 N o t M a t c h

 N o t M a t c h

M a t c h

M a t c h

 N o t M a t c h

O b f u s c a t i o n S t a g e 1 O b f u s c a t i o n S t a g e 2 O b f u s c a t i o n S t a g e 3

C o m p a r i n g P r o c e s s

C o m p a r i n g P r o c e s s

C o m p a r i n g P r o c e s s

C o m p a r i n g P r o c e s s

C o m p a r i n g P r o c e s s

C o m p a r i n g P r o c e s s

C o m p a r i n g P r o c e s s

C o m p a r i n g P r o c e s s

Figure 4: The illustration of the Obfuscation Stages and the Comparing Process

After completing the execution process in the remote host, the slave agent returns to its home host
together with the remote host offer. The home host then extracts only the offer that fulfils the requirement
of the true obfuscated value for further actions.

164 Kamalrulnizam Abu Bakar, Bernard S. Doherty

3.2 The Deobfuscation Time of the RS3 Obfuscated Algorithm with Noise Code

The experiment on the deobfuscation time of the RS3 obfuscated algorithm with noise code is con-
ducted to examine the time taken by the execution host (assumed to be the malicious host) to deobfuscate
a full set of obfuscated value. The experiment is conducted using one 700 MHz personal computer with
128 MB of main memory, which running Windows 98 operating system.

In this experiment, the deobfuscation time is taken starting from the start of the deobfuscation pro-
cess for the first obfuscated value and ending when the last obfuscated value from a set of obfuscated
value have been deobfuscated. The experiment is performed by the execution host by executing the RS3
obfuscated algorithm using different input value many times until the matching obfuscated value is pro-
duced and continue until a full set of the obfuscated value are deobfuscated (see Figure 5). Twenty sets of
obfuscated values are examine with the number of values in each set ranging from five to one thousand
obfuscated values. Each set of obfuscated values contained one correct value and the remainder false
values.

R S 3 o b f u s c a t e d
a l g o r i t h m

A s e t o f i n p u t v a l u e s

O b f u s c a t e d v a l u e
p r o d u c e d

A s e t o f o b f u s c a t e d
v a l u e s s u p p l i e d

C o m p a r i n g
P r o c e s s

M a t c h ?

E n d

S t a r t

N o

Y e s

Figure 5: The Deobfuscation Process

The deobfucation time results (which were gathered in milliseconds and then converted into seconds)
of the RS3 obfuscated algorithm with noise code are shown in Table 1 and 2, and illustrated in Figure 6
and 7 respectively.

An Enhancement of the Random Sequence 3-Level Obfuscated Algorithm for Protecting Agents
Against Malicious Hosts 165

Obfuscated Values 5 10 15 20 25 30 35 40 45 50
Deobfuscation Time 8.95 21.57 29.42 37.69 49.96 60.71 62.53 72.46 81.66 85.58

Table 1: Summary Statistics of the Random Sequence 3-level Obfuscated Algorithm Deobfuscation Time
for Small Number of Obfuscated Values

Obfuscated Values 100 200 300 400 500 600 700 800
Deobfuscation Time 180.15 376.33 581.28 779.12 982.06 1142.27 1376.64 1568.75

Obfuscated Values 900 1000
Deobfuscation Time 1765.94 1887.83

Table 2: Summary Statistics of the Random Sequence 3-level Obfuscated Algorithm Deobfuscation Time
for Large Number of Obfuscated Values

P r o t e c t i o n T i m e f o r t h e R S 3 O b f u s c a t e d A l g o r i t h m w i t h N o i s e

0

2 0

4 0

6 0

8 0

1 0 0

5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
N u m b e r o f o b f u s c a t e d v a l u e s t e s t e d

Tim
e i

n S
ec

on
ds

D e o b f u s c a t i o n
T i m e

Figure 6: The Deobfuscation Time of the Random Sequence 3-level Obfuscated Algorithm for Small
Number of Obfuscated Values

From the results given in Table 1 and 2, and illustrated in Figure 6 and 7 respectively, it can be seen
that the deobfuscation time of the RS3 obfuscated algorithm with noise code increases linearly with the
number of obfuscated values in the test set. Note that even after deobfuscation, the malicious host is left
with a set of values of which only one is the correct value, and has no way of knowing which one is the
correct value.

166 Kamalrulnizam Abu Bakar, Bernard S. Doherty

P r o t e c t i o n T i m e f o r t h e R S 3 O b f u s c a t e d A l g o r i t h m w i t h N o i s e

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0
N u m b e r o f o b f u s c a t e d v a l u e s t e s t e d

Tim
e i

n S
ec

on
ds

D e o b f u s c a t i o n
T i m e

Figure 7: The Deobfuscation Time of the Random Sequence 3-level Obfuscated Algorithm for Large
Number of Obfuscated Values

4 The Overhead of Implementing Noise Code with the RS3 Obfuscated
Algorithm

The experiments to measure the overhead of implementing the RS3 obfuscated algorithm with noise
code were conducted using six 400 MHz Sun Ultra Sparc 5 workstations with 128 MB of main memory.
Each of the workstations is running the Solaris 8 operating system and is connected to the others using
100 Mbit/s UTP1 cable. All of the workstations involved in this experiment were situated in the same
room.

In this configuration, one workstation was chosen among the six workstations to be the home host
for the agent, and only this host had permission to manage and dispatch the agent. The rest of the
workstations were assumed to be remote hosts, having only the capability to receive the agent and to
dispatch the agent back to its home host.

To examine the security overhead in implementing noise code with the Random Sequence 3-level
obfuscated algorithm in an agent-based application, times are measured starting from sending of the
agents to the remote hosts and ending with the home host receiving the agents back from the remote
hosts. Four different experiments are conducted starting with one remote host, two remote hosts, three
remote hosts and five remote hosts using three different kinds of agent: a plain agent2, an agent with the
Random Sequence 3-level obfuscated algorithm (RS3) and an agent with the RS3 obfuscated algorithm
with noise code (RS3N). The times were measured using the “System.currentTimeMillis()” method in
the Java language. This method produces a specific instant in time with millisecond precision [7].

The experiment is performed for 20 runs3 and the time for each run gathered in milliseconds. The
average result of the 20 runs is taken and converted into seconds. The result is then rounded and presented
in two decimal places as shown and illustrated in Tables 4 to 7 and Figure 8 to 11 respectively.

The results of the security overhead of the Random Sequence 3-level obfuscated algorithm without
noise (RS3) and the Random Sequence 3-level obfuscated algorithm with noise are compared to the
plain agent as shown in Table 3. From these results, it can be seen that there is not much difference in

1Unshielded Twisted Pair Category 5e
2agents without security mechanisms
3The results were observed to be consistent after twenty runs

An Enhancement of the Random Sequence 3-Level Obfuscated Algorithm for Protecting Agents
Against Malicious Hosts 167

Number of Mean
Remote Hosts Plain RS3 RS3N

1 1.49 1.5 1.69
2 2.45 2.52 2.67
3 3.36 3.56 3.63
5 5.42 5.43 5.66

Table 3: Summary Statistics of The Random Sequence 3-Level Obfuscated Algorithm (1 Cycle, 1 Ob-
fuscation Value Experiment(without noise code) and 1000 Obfuscation Value Experiment(with noise
code))

the security overhead for the RS3 without noise and RS3 with noise for all numbers of remote hosts. The
highest difference is for one remote host, where the security overhead for RS3 with noise is just 12.67 %
higher than the security overhead of RS3 without noise. Therefore, it is concluded that RS3 with noise
will add a small and acceptable overhead. More detail of the results now follows:

Firstly, consider plain and RS3, then plain and RS3N experimental results.

Number of Mean Standard Error Standard Deviation
Remote Hosts Plain RS3 Plain RS3 Plain RS3

1 1.49 1.5 0.001 0.001 0.003 0.004
2 2.45 2.52 0.003 0.005 0.011 0.022
3 3.36 3.56 0.003 0.004 0.011 0.02
5 5.42 5.43 0.007 0.006 0.031 0.025

Table 4: Summary Statistics of The Random Sequence 3-Level Obfuscated Algorithm Overhead (1 Cycle
and 1 Obfuscation Value Experiment(without noise code))

Number of Mean Standard Error Standard Deviation
Remote Hosts Plain RS3N Plain RS3N Plain RS3N

1 1.49 1.54 0.001 0.001 0.003 0.003
2 2.45 2.52 0.002 0.007 0.011 0.031
3 3.36 3.51 0.003 0.005 0.011 0.022
5 5.42 5.44 0.007 0.007 0.031 0.031

Table 5: Summary Statistics of The Random Sequence 3-Level Obfuscated Algorithm (1 Cycle and 100
Obfuscation Value Experiment(with noise code))

From the results given in Tables 4 and 5 and illustrated in Figure 8 and 9 respectively, it can be seen
that the mean of the security overhead for a plain agent is almost the same as the security overhead for
RS3 and RS3N, where when comparing with RS3, the highest difference is just 5.95 % and 4.46 % when
comparing with RS3N. However, from Table 6 and illustrated in Figure 10, it can be seen that as the
number of noise codes is increased, the difference becomes larger, where the highest difference is 13.42
%, which is still considered acceptable.

From Table 7 and Figure 11, the security overhead for both the agents is almost the same as the

168 Kamalrulnizam Abu Bakar, Bernard S. Doherty

S e c u r i t y O v e r h e a d f o r I m p l e m e n t i n g T h e R a n d o m
S e q u e n c e 3 - L e v e l O b f u s c a t e d A l g o r i t h m

0
1
2
3
4
5
6

1 2 3 5
N u m b e r o f R e m o t e H o s t s

Tim
e i

n S
ec

on
ds

P l a i n
R S 3

Figure 8: Security Overhead of The Random Sequence 3-Level Obfuscated Algorithm (1 Cycle and 1
Obfuscation Value Experiment(without noise code))

S e c u r i t y O v e r h e a d f o r I m p l e m e n t i n g T h e R a n d o m
S e q u e n c e 3 - L e v e l O b f u s c a t e d A l g o r i t h m

0
1
2
3
4
5
6

1 2 3 5
N u m b e r o f R e m o t e H o s t s

Tim
e i

n S
ec

on
ds

P l a i n
R S 3 N

Figure 9: Security Overhead of The Random Sequence 3-Level Obfuscated Algorithm (1 Cycle and 100
Obfuscation Value Experiment(with noise code))

security overhead given in Tables 4 to 6, even though now the number of cycles4 has been increased to
100.

These results show that implementation of the Random Sequence 3-level obfuscated algorithm with
noise code does increase the overhead by up to 13.42 % compared to the plain agent, but the noise code
adds little to the overhead.

5 The analysis of RS3 obfuscated algorithm strength with noise code im-
plementation

To analyse the strength of the RS3 obfuscated algorithm after the implementation of noise code, the
authors have listed vulnerabilities and the way to address them as follows:

4a loopings that simulate an agent tasks

An Enhancement of the Random Sequence 3-Level Obfuscated Algorithm for Protecting Agents
Against Malicious Hosts 169

Number of Mean Standard Error Standard Deviation
Remote Hosts Plain RS3N Plain RS3N Plain RS3N

1 1.49 1.69 0.001 0.004 0.003 0.016
2 2.45 2.67 0.003 0.006 0.011 0.028
3 3.36 3.63 0.003 0.003 0.011 0.015
5 5.42 5.66 0.007 0.006 0.031 0.028

Table 6: Summary Statistics of The Random Sequence 3-Level Obfuscated Algorithm (1 Cycle and 1000
Obfuscation Value Experiment(with noise code))

Number of Mean Standard Error Standard Deviation
Remote Hosts Plain RS3N Plain RS3N Plain RS3N

1 1.48 1.65 0.0003 0.002 0.001 0.008
2 2.46 2.65 0.002 0.003 0.01 0.014
3 3.45 3.67 0.007 0.005 0.03 0.021
5 5.46 5.67 0.013 0.004 0.06 0.02

Table 7: Summary Statistics of The Random Sequence 3-Level Obfuscated Algorithm (100 Cycle and
1000 Obfuscation Value Experiment(with noise code))

S e c u r i t y O v e r h e a d f o r I m p l e m e n t i n g T h e R a n d o m
S e q u e n c e 3 - L e v e l O b f u s c a t e d A l g o r i t h m

0
1
2
3
4
5
6

1 2 3 5
N u m b e r o f R e m o t e H o s t s

Tim
e i

n S
ec

on
ds

P l a i n
R S 3 N

Figure 10: Security Overhead of The Random Sequence 3-Level Obfuscated Algorithm (1 Cycle and
1000 Obfuscation Value Experiment(with noise code))

5.1 The vulnerabilities of RS3 obfuscated algorithm with noise code

There are two main weaknesses of the RS3 obfuscated algorithm with noise code that have been
identified.

• If the attacker (malicious host) takes a guess at the correct obfuscated value from many obfuscated
values (including noise code) carried by the visiting agent and the attacker is given enough time to
execute, the attacker can execute the RS3 obfuscated algorithm many times using different result
values and watch the pattern of the RS3 obfuscated algorithm outcomes (which result value the

170 Kamalrulnizam Abu Bakar, Bernard S. Doherty

S e c u r i t y O v e r h e a d f o r I m p l e m e n t i n g T h e R a n d o m
S e q u e n c e 3 - L e v e l O b f u s c a t e d A l g o r i t h m

0
1
2
3
4
5
6

1 2 3 5
N u m b e r o f R e m o t e H o s t s

Tim
e i

n S
ec

on
ds

P l a i n
R S 3 N

Figure 11: Security Overhead of The Random Sequence 3-Level Obfuscated Algorithm (100 Cycle and
1000 Obfuscation Value Experiment(with noise code))

agent accepts and which it rejects) to analyse the chosen obfuscated value in order to discover the
actual value of agent’s critical data.

• If the noise code generated from the actual value are very much out of range from the reasonable
value, the malicious host could easily omit that values and take a guess from fewer values.

5.2 Addressing vulnerabilities of RS3 obfuscated algorithm with noise code

In order to overcome the weaknesses of the RS3 obfuscated algorithm with noise code, two main
points are suggested:

• To prevent the attacker (malicious host) from being able to guess a correct obfuscated value among
many obfuscated values in a short time, and running many tests on RS3 obfuscated algorithm by
analysing which result value the agent accepts and which it rejects, the number of noise codes
added in the agent application, could be made bigger. This is due to the fact that the probability
to guess the correct obfuscated value becomes smaller as the number of noise code added become
bigger, i.e. P(X)→ 0 as N →∞. The malicious host can at best guess the actual value from among
the noise code.

• To prevent the malicious host able to omit any of the noise code values, the value of the noise
codes must be within a reasonable range of the actual value and this can be done by limiting the
range of the random numbers.

6 Discussion

In this paper, the problem of a malicious host spying on the actual value of an agent’s critical data,
such as the user maximum budget, has been discussed. The Random Sequence 3-level obfuscated al-
gorithm, which is able to obfuscate the actual value of an agent’s critical data in order to make it more
difficult for the malicious host to spy on the actual value of the critical data, has been previously pro-
posed by the authors. To address weaknesses in the RS3 obfuscated algorithm, an enhancement has been
proposed in this paper.

An Enhancement of the Random Sequence 3-Level Obfuscated Algorithm for Protecting Agents
Against Malicious Hosts 171

The implementation of the RS3 obfuscated algorithm alone exposes the obfuscated algorithm to
the attacker that could execute multiple copies of the obfuscated algorithm many times to analyse the
algorithm. The agent owner could also face the problem of determining an effective protection interval
for the obfuscated value that is carried by the agent in order to prevent the value from being analysed
and discovered by the malicious host. These problems can be overcome by introducing noise codes
carried by the agent application to force a malicious host to guess the actual obfuscated value, thus
leaving a malicious host with at best a guess at the actual value of the user maximum budget. The noise
code implementation also delays the malicious host in analysing the obfuscated algorithm, which has
been shown in Section 3.2. Therefore, the use of an effective protection interval to enhance the level of
obfuscated algorithm protection is less important.

On the other hand, based on the experimental results on the overhead of implementing the RS3
obfuscated algorithm with noise code, the implementation of the RS3 obfuscated algorithm does increase
the overhead by up to 13.42 % compared to the plain agent, but this is considered acceptable. This
suggests the Random Sequence 3-level obfuscated algorithm can be implemented in “real world” agent
applications to protect the agent application from the spying attack by the malicious host. Experiment
shown that adding noise codes to the RS3 obfuscated algorithm gives little (12.67 %) increase in security
overhead.

7 Conclusion

The Random Sequence 3-level obfuscated algorithm is an algorithm that improves the level of pro-
tection of an agent against malicious host spying attack. This obfuscated algorithm does not protect
against all spying attacks by the malicious host, only an attack to the agent’s critical data. However, the
implementation of noise code in the agent application prevents the malicious host discovering the actual
value of critical data carried by the agent; the malicious host can at best guess the actual value from
among a number of noise values. The addition of noise code has strengthened the protection of the ob-
fuscated algorithm and has reduced the likelihood of successful attack on the RS3 obfuscated algorithm,
with very small increase in execution time.

References

[1] Abu Bakar, K. and Doherty, B. S.: A Random Sequence 3-level Obfuscated Algorithm for Protect-
ing Mobile Agents Against Malicious Hosts. Proceedings of the 2003 International Conference on
Informatics, Cybernetics and Systems. I-Shou University(2003) 525 – 530

[2] DiVincenzo, D. P., Leung, D. W. and Terhal, B. M.: Quantum Data Hiding. IEEE Transactions on
Information Theory, Vol. 48, No. 3. IEEE(2002) 580–598

[3] Farmer, W.M. and Guttman, J.D. and Swarup, V.: Security for Mobile Agents: Issues and Require-
ments. Proceedings of the 19th National Information System Security Conference. Baltimore (1996)
591–597

[4] Harmsen, J. J. and Pearlman, W. A.: Steganalysis of Additive Noise Modelable Information Hiding.
Proceedings of SPIE Electronic Imaging 5022. SPIE (2003) 21–24

[5] Hohl, F.: A Framework to Protect Mobile Agents by Using Reference States. In: Proceedings of
the 20th international conference on distributed computing systems (ICDCS 2000). IEEE Computer
Society (2000) 410-417

172 Kamalrulnizam Abu Bakar, Bernard S. Doherty

[6] Hohl, F.: Time Limited Blackbox Security: Protecting Mobile Agents from Malicious Hosts. In: G.
Vigna (Ed.). Mobile Agent and Security. Lecture Notes in Computer Science, Vol. 1419. Springer-
Verlag, Berlin(1998) 92–113

[7] Sun Microsystems, Inc. Java 2 Platform Std. Ed. V1.3.1 http://java.sun.com/j2se/ 1.3/docs/api/in-
dex.html (2004)

[8] Mandry, T., Pernul, G. and Rohm, A.: Mobile Agents in Electronic Markets: Opportunities, Risks,
Agent Protection. International Journal of Electronic Commerce. M.E. Sharpe (2001) 47–60

[9] Ng, S. K. and Cheung, K. W.: Protecting Mobile Agents against Malicious Hosts by Intention
Spreading. In H. Arabnia (ed.), Proc. International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’99). CSREA (1999) 725–729

[10] Ng, S. K. and Cheung, K. W.: Intention Spreading: An extensible theme to protect mobile agents
from read attack hoisted by malicious hosts. In Jimming Liu, Ning Zhong(ed.), Intelligent Agent
Technology: Systems, Methodologies and Tools. World Scientific (1999) 406–415

[11] Sander, T. and Tschudin, C.: Protecting Mobile Agent Against Malicious Hosts. In: G. Vigna
(Ed.). Mobile Agent and Security. Lecture Notes in Computer Science, Vol. 1419. Springer-Verlag,
Berlin(1998) 44–60

[12] Yeh, W. H. and Hwang, J. J.: Hiding Digital Information Using a Novel System Scheme. Computers
and Security, Vol. 20, No. 6. Elsevier Science (2001) 533–538

Kamalrulnizam Abu Bakar
Faculty of Computer Science and Information System

Universiti Teknologi Malaysia
81310 UTM Skudai

Johor D. T.
Malaysia

E-mail: kamarul@fsksm.utm.my

Bernard S. Doherty
School of Engineering and Applied Science

Aston University
Aston Triangle, Birmingham B4 7ET

United Kingdom
E-mail: b.s.doherty@aston.ac.uk

Received: July 22, 2006

Kamalrulnizam Abu Bakar is a lecturer at Universiti Teknologi
Malaysia, Malaysia. He received the diploma and degree of
Computer Science in 1994 and 1996 respectively from Univer-
siti Teknologi Malaysia, Malaysia. He then received Masters
in Computer Communication and Networks degree from Leeds
Metropolitan University, United Kingdom in 1998 and PhD in
Network Security from Aston University, United Kingdom in
2004. His current research interests include computer and net-
work security, distributed systems and parallel processing, grid
computing, wireless and cellular network.

An Enhancement of the Random Sequence 3-Level Obfuscated Algorithm for Protecting Agents
Against Malicious Hosts 173

Bernard S. Doherty (born October 2nd, 1945) obtained the de-
grees of Bachelor of Engineering (Electrical), Bachelor of Arts
and Master of Engineering Science from the University of Mel-
bourne in 1967, 1971 and 1981 respectively. He has held po-
sitions with the State Electricicity Commission of Victoria, LM
Ericsson Pty Ltd, Swinburne College of Technology (all in Mel-
bourne) and, since 1980, at Aston University (Birmingham, UK),
where is presently Lecturer in Computer Science. His main fields
of teaching and research are Distributed and Networked appli-
cations and Information Security. In addition to supervising a
number of Doctoral students, he has developed computer-based
administration and teaching software, written a number of papers
and presented papers at international conferences.

