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ABSTRACT 

Hydraulic fracturing (HF) has seen a considerable increase in interest for 

the purpose of improved oil recovery. HF creates high conductive conduits 

between wellbores and reservoirs by a pressurized fluid mixed with 

proppants. The problem of most popular fracturing fluid (i.e., slickwater) is 

the high settling rate of common proppants, e.g. sand, which results in small 

effective propped fractures. Ultra-lightweight (ULW) proppants are easily 

transported by slickwater and can cover further fracture area. However, ULW 

proppants cannot provide enough strength at high closure pressure. This study 

developed a moderately high strength, chemically modified and reinforced 

composite proppant (CMRCP) which is composed of chemically modified 

coconut shell, composite material, and epoxy resin. Investigating the 

performance of new ULW proppant was conducted using laboratory and 

simulation works such as characterization, quality and mechanical evaluation, 

simulation mechanical response of particles under compression, fracture 

conductivity, and HF design. Characterization indicated that the coating 

layers of CMRCP provide thermal stability of 297.5 °F. Also, quality tests 

revealed that CMRCP is a neutral buoyant proppant with lower bulk density 

than frac sand, glass beads, ULW-1.75, and ceramic. Desirable strength (i.e., 

8,000 psi) and conductivity (i.e., 791 mDft) from mechanical tests and 

fracture conductivity were observed, respectively. The results showed an 

improved performance than Brady sand and its counterpart (i.e., ULW-1.25). 

The results of strength tolerance and fracture conductivity of CMRCP were 

25% and 77% higher than ULW-1.25. Furthermore, experimental and 

simulation of proppant’s mechanical response with different geometries 

approved that round geometry provides further strength. Finally, HF design 

shows that the new product can realise high cumulative production, net 

present value, and return on investment. This study introduced a new ULW 

proppant that has moderately high strength, resistant to high temperature, 

easy to get, light, and cost effective, and it can be used as proppant for HF of 

subterranean formations. 
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ABSTRAK 

Peretakan hidraulik (HF) telah menarik banyak perhatian bagi tujuan 

pengeluaran minyak tertingkat. HF mewujudkan saluran konduktif yang 

tinggi di antara lubang telaga dengan reservoir menerusi pengaplikasian 

cecair bertekanan tinggi yang dicampurkan dengan penyangga. Masalah yang 

dihadapi bendalir peretak yang paling popular (iaitu air licik) ialah kadar 

pemendapan tinggi yang dialami penyangga biasa, misalnya pasir, yang 

hanya menghasilkan retakan kecil yang kurang berkesan. Penyangga lampau 

ringan (ULW) mudah diangkut oleh air licik dan boleh menyanggah kawasan 

retakan secara menyeluruh. Walau bagaimanapun, penyangga ULW tidak 

mempunyai kekuatan yang cukup untuk menahan tekanan penutupan yang 

tinggi. Kajian ini telah menghasilkan penyangga komposit berkekuatan 

tinggi, terubah suai secara kimia dan diperkukuh (CMRCP). Penyangga itu 

diperbuat daripada tempurung kelapa yang diubah suai secara kimia, bahan 

komposit, dan resin epoksi. Kajian terhadap prestasi penyangga ULW baharu 

melibatkan kerja-kerja di makmal dan penyelakuan misalnya pencirian, 

penilaian kualiti dan mekanikal, penyelakuan respons mekanikal zarah bawah 

mampatan, kekonduksian retakan, dan reka bentuk HF. Pencirian 

menunjukkan bahawa lapisan-lapisan CMRCP menghasilkan kestabilan 

terma setinggi 297.5 °F. Ujian kualiti turut mendedahkan bahawa CMRCP 

ialah penyangga apung neutral yang mempunyai ketumpatan pukal lebih 

rendah daripada pasir peretak, manik kaca, ULW-1.75, dan seramik. 

Kekuatan (iaitu 8000 psi) dan ujian kekonduksian (iaitu 791 mDft) yang 

dikehendaki masing-masing diperoleh daripada ujian mekanikal dan 

kekonduksian retakan. Keputusan kajian telah menunjukkan prestasi yang 

lebih baik daripada pasir Brady dan bahan setaranya (iaitu ULW-1.25). 

Keputusan toleransi kekuatan dan kekonduksian retakan CMRCP ialah 25% 

dan 77% lebih tinggi daripada ULW-1.25. Selanjutnya, kajian di makmal dan 

kajian penyelakuan terhadap respons mekanikal penyangga dengan geometri 

yang berbeza membuktikan bahawa geometri bulat memberikan kekuatan 

tambahan. Akhir sekali, reka bentuk HF menunjukkan bahawa produk baharu 

itu mampu merealisasikan pengeluaran kumulatif, nilai bersih kini, dan 

pulangan ke atas pelaburan yang tinggi. Kajian ini memperkenalkan 

penyangga ULW baharu yang mempunyai kekuatan yang tinggi, kalis suhu 

tinggi, mudah diperoleh, ringan, dan kos efektif. Penyangga itu boleh diguna 

dalam operasi peretakan hidraulik formasi subpermukaan. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Overview 

Due to the decrease in oil discoveries in recent years, Improved Oil Recovery 

(IOR) methods will be capable of playing an essential role in replying to demand in 

the years to come. IOR processes consist of all techniques that are employed to 

enhance hydrocarbon production (Surguchev et al., 2005). Well Stimulation as one 

of these techniques is composed of various operations to maintain or improve 

productivity of wells. It creates new channels or eliminates the obstacles in the pay 

zone to facilitate the flow of oil and gas from the formation to the wellbore 

(Pershikova, 2007). Hydraulic fracturing (HF) is known as the main method to 

stimulate oil and gas wells, and it begins with pumping a  fracturing fluid into a well 

to enhance pressure above fracturing pressure of the subterranean formation that 

contains entrapped oil or gas (Soane et al., 2010). This process results in cracks and 

breaks that disrupt the underlying layer to allow the transfer of hydrocarbon products 

to the wellbore at a significantly higher rate. Once the fracture is created, a slurry 

composed of fracturing fluid and proppant is injected to open and maintain a path 

flow from the fracture to the wellbore (Soane et al., 2010). Fracturing fluids used to 

transport proppant inside the fracture include water based fluids, linear gels, cross-

linked gels, oil based fluids, and foam/ poly emulsions fluids  (Montgomery, 2013). 

Further information about history of the fracturing fluid, composition, economical 

issue, methods of utilization, and cost of the fracturing fluid  can be found in the 

technical literature (Montgomery, 2013).   
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Another part of the slurry is proppant, and it is defined as any non-liquid 

material that is used to provide structural support for created fracture and to keep it 

open (Windebank et al., 2013). Proppant demand for HF treatment of the 

unconventional reservoirs has been increased from 5 billion pounds in 2004s to 60–

70 billion pounds in 2012s (Palisch et al., 2012). In accordance to a report, the oil 

and gas industry supplied over 135 billion pounds of various proppants in 2015s, 

close to 50 percent growth over 2012s (McEwen, 2015).  

The proppant can be frac sand, nut hulls, ceramics, bauxites, glass beads, 

RCP, and combinations thereof (Lesko et al., 2008). These types of proppants are 

known as conventional proppant (CP). In the recent years, a new generation of 

proppants with low specific gravity, high strength, and low settling velocity that are 

known as Lightweight (LW) and Ultra-Lightweight (ULW) proppant have been 

introduced to the market.  One aim of proppant industry has been to reduce proppant 

density without sacrificing strength. Thus, the ULW proppant with specific gravity of 

1.25-1.75 made from a substrate material such as a walnut hull or porous ceramic 

and two layers of polymers as coating was introduced to the market to satisfy this 

aim (Wood et al., 2003).  

Therefore, a chemically modified and reinforced composite proppant 

(hereafter it is called CMRCP) that is comprised of the coconut shells as substrate 

and two layers of polymer (reinforced and coating layers) is introduced in this study. 

The new proppant is produced at three stages. First, substrate surface is modified 

with a solution of sodium hydroxide to improve its capability for reinforcement. 

Then, the modified substrate is reinforced with a composite material to improve its 

strength. Thereafter, coating of the reinforced coconut shell is performed with a thin 

layer of polymer. The epoxy resin is chosen as polymer because the reinforced layer 

contained the poly glycidyl methacrylate (PGMA) polymer, and the epoxy group of 

the PGMA polymer is capable of providing a strong bond with epoxy resin. In this 

study, experimental and computational analysis methods are used to characterize and 

investigate the capability of the new ULW proppant. Narrowing down of the study is 

shown in Figure 1.1. 
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                     Figure 1.1 Narrowing down of the study 
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1.2 Background of the Problem 

Researchers are trying to improve the quality of proppant to remove the 

drawbacks of CP for HF treatment. For example, the widespread use of frac sand as 

propping agent with an average specific gravity of 2.5-2.70 (Luo et al., 2011) is 

common because of the low cost and ready accessibility (O'Brien and Haller, 2014). 

However, frac sand is not capable of providing sufficient strength to resist crushing 

(Li et al., 2014). The high embedment pressure of the formation causes proppant 

embedment, and exceeding the load bearing capacity of the frac sand leads to 

crushing of the frac sand. As a result, fines produced from the crushed frac sand plug 

the fracture leading to proppant flowback. Proppant flowback is the transfer of 

proppants back into the wellbore with the production of formation fluids from 

formation (Nguyen, 2004), and it causes reduction of the fracture conductivity, 

restriction of production, and erosion of tubular and wellhead equipment as well as 

surface facilities. In addition, proppant flowback fills treating vessels that cause 

failure in the treating process (Ellis and Surles, 1998). 

Another main problem of using frac sand proppant for the HF treatment is 

related to enhancement of frac sand mining across the bank river. Frac sand mining 

has created a considerable public health threat in the region possibly due to the 

negative effects of mining, processing and transporting of frac sand.  

By surface coating the frac sand proppant with a thin layer of resin, the brittle 

frac sand proppant becomes resistant to acid and crushing (Droppert et al., 2002). 

Also, the coated sand is capable of consolidating, and it has great potential to 

minimize proppant flowback. This is because coating layers retain the small particles 

that are generated from the frac sand due to the increase of the closure pressure 

(Barmatov et al., 2010). Although coating layers have eliminated some of the 

drawbacks of frac sand but utilization of sand coated proppant is restricted to wells 

with certain closure stress (less than 8,000 psia) (Ellis and Surles, 1997). Also, 

phenolic acid and formaldehyde that are known as dangerous chemical materials are 

used for sand coating that cause health problems for those who are exposed to this 

type of proppant (Malone, 2012).  
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Since application of frac sand and coated sand are restricted to a certain 

closure pressure (less than 8,000 psia), ceramic proppant with a specific gravity of 

3.3-3.6 (Jones and Cutler, 1985) was introduced to stimulate formation with higher 

closure pressure (Smith et al., 2011). Although conventional ceramic proppant has 

shown exceptional crush strength, it has exhibited extreme density that requires 

viscous fluids to carry within the fracture (Smith et al., 2011). When it transfers with 

a low-density fluid (e.g., slickwater), it settles before reaching the end of the fracture. 

Consequently, using viscous fluids creates problems such as damage to the formation 

and surface equipment and increase in the cost of the HF treatment during propped 

fracturing treatment. 

Also, environmental problems that are related to ceramic factories cause a lot 

of damage to human beings. These factories cause emissions that are released into 

air, water and land, and they make noise and undesirable smells during production of 

the ceramic products (IPPC, 2007). All involved parts of the ceramic industry are 

consuming higher amounts of energy, and they consume natural gas, liquefied 

petroleum gas and fuel oil for firing. Utilization of these materials as feed leads to 

the production of high amounts of carbon dioxides and other harmful gases (IPPC, 

2007). 

Other proppants which have been used in proppant industry are agro-based 

materials such as nutshells which were introduced in the proppant industry in the 

1960s. In contrast to frac sand, nutshells cause less damage when exposed to the 

surface equipment because these hard fibrous products are deformable. In addition, 

nutshells are free from the silica that causes inhalation health concerns (Kramer, 

2015). It was found that when agro-based materials are used in proper concentration 

and size, they yield high fracture capacities relative to frac sand (Fast et al., 1961). 

However, utilization of agro-based proppant such as nutshells has reduced fracture 

conductivity, and nutshells that are made naturally have limited application as 

closure pressure increases (Liang et al., 2015). It is due to the high tendency of 

nutshells to deform even in lower closure stress.  
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Accordingly, reinforcing and coating of nutshells with polymers can improve 

their strength to high closure stress, protecting particles from crushing, help resist 

embedment, and prevent the liberation of fines (Rickards et al., 2003, Schein et al., 

2004, Abbott et al., 2008, Brannon et al., 2010). Since specific gravity of these 

coated materials is lower than CP, they are called ULW proppant. ULW proppant is 

defined as a proppant with the specific gravity less than or equal to 2.45 while its 

particle size is ranged in a mesh size of 12/20 to about 40/70 (Brannon et al., 2010). 

ULW Proppants are ideally suited to slickwater fracturing treatments because 

they have light weight, and they do not settle before reaching the end of the fracture 

(Brannon et al., 2009). Slickwater is a cost saving fracturing fluid with low viscosity. 

Most of the slickwater fracturing fluid is water while other additives such as friction 

reducer, acid, surfactant, potassium chloride, scale inhibitor, pH adjusting agent, iron 

control agents, corrosion inhibitors, and biocides are added to the fluid (Barati and 

Liang, 2014).  

Transferring ULW proppants with slickwater have indicated more benefits 

such as reducing proppant settling and creating more effective fracture length  

(Rickards et al., 2003; Schein et al., 2004). The performance of ULW proppants was 

great in reservoirs with closure pressures up to 5,000 psia and bottom hole 

temperatures up to 225 ºF (Posey, 2007). 

Placement of ULW proppant within the fracture is usually performed with 

various arrangements including partial monolayer (PML), full monolayer (FML), and 

multiple layers (MPL) of proppants. As previously mentioned by Economides et al.,  

(2000), the PML is the best arrangement because of providing further fracture 

conductivity related to other arrangements. In a properly engineered fracture 

treatment, ULW proppant could form PML arrangement (Brannon et al., 2009). 

Also, the ULW proppants provide further fracture conductivity compared to 

conventional frac sand proppant. As reported by Brannon et al. (2009), adding small 

amounts of ULW proppant to pad leads to great improvement in the fracture 

conductivity. In addition,  the settling rate of ULW proppants is less than CP 

(Brannon et al., 2004). It means that they are transported easily within the fracture 



7 

     

with lower proppant settling that leads to the provision of further effective propped 

fracture length. As the result of more propped fracture length for low permeability 

reservoirs, the production is improved (Wood et al., 2003). However, the ULW 

proppant cannot provide high strength under closure stress. It seems that using higher 

strength substrate and reinforcing of substrate with composite material before coating 

can improve strength of ULW proppant.   

Since nutshells are always subjected as a good substrate for ULW proppant, 

and coconut shell is classified as a part of nutshells, it is obvious that it has potential 

to convert to a good substrate of ULW proppant. Advantages of coconut shell 

including light weight  with specific gravity of 1.25-1.33 (Reddy et al., 2014) , high 

strength to withstand closure stress with Young modulus of 9.2 GPa, renewable, 

ready accessible with low price, and good capability for coating with a less 

expensive method have qualified it as a good substrate of ULW proppant in tropical 

countries such as Malaysia. Some advantages of coconut shell have qualified it to 

apply in various industries. For example, inherent mechanical properties of coconut 

shell such as high strength and high modulus (Sapuan et al., 2003) enable it to be 

applied as fillers in the composition of new composites. In addition, the excellent 

shock-absorbing capability of coconut shells accounts for its robustness (Martone et 

al., 2010). Also, coconut shell provides low specific gravity which has been used as a 

coarse aggregate for light weight concrete (Reddy et al., 2014)  

Since the ULW proppants must provide appropriate strength to withstand 

high closure pressure (Brannon et al., 2004), are light to buoyant on the fracturing 

fluid (Wood et al., 2003), deform to prevent breaking (Brannon and Starks, 2009), 

inexpensive, and safe to reduce damage to the workers who are exposed to propping 

agent, it is obvious that coconut shell that is reinforced with a composite material 

before coating has all of these requirements, and it can be used as ULW proppant. 
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1.3 Problem Statement 

Using renewable resources, saving cost of HF treatment, improving 

hydrocarbon recovery and pollution preservation are essential needs in today’s oil 

and gas industry. Expense of the propping agent alone could be 67 % of the total 

stimulation costs, and it has converted proppants as an important parameter for 

technological research (Economides et al., 2000).  

Although CPs have wide application in the HF treatment, some of the 

drawbacks that they have shown during the HF operation impose extra cost to HF 

treatment. As indicated by Li et al. (2013), frac sand proppant does not provide 

sufficient strength to resist crushing of the high closure stresses. When frac sand 

proppant is exposed to high closure stress (further than 5,000 psia), it produces fines 

that will plug the formation and fracture path flow (Economides et al., 2000). It also 

causes damage to the surface equipment and adds extra cost to HF treatment (Ellis 

and Surles, 1998).  

In contrast to frac sand, high strength tolerance is the main characteristic of 

ceramic proppants and resin coated proppant (RCP) but their extreme density have 

restricted their utilization in a wide range (Smith et al., 2011). It means that they 

require viscous fracturing fluids and high pumping rates to suspend into fracturing 

fluid. Also, they cause greater than normal wear on fluid carrying and pumping 

equipment (Li et al., 2013).  

Slickwater fracturing treatment has indicated great success for stimulating of 

numerous formations because it does not require viscous fracturing fluid. However, 

higher settling rate of frac sand, RCP, and ceramic proppant have restricted its 

utilization (Liang et al., 2015). In contrast to CPs, ULW proppants were ideally 

suited to slickwater fracturing treatments because they have light weight, and they do 

not settle before reaching the end of the fracture (Brannon et al., 2009). However, 

ULW proppants had indicated low strength, proppant embedment, high price and 

difficult placement within the fracture (Wood et al., 2003). Utilization of common 

ULW proppants are restricted to closure pressure of 5,000-6,000 psia (Wood et al., 
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2003; Brannon et al., 2004). The major advantage of ULW proppants is their low 

specific gravity, not strength. They will deform easily under high closure pressure 

and reduce the fracture conductivity.  

Development of science and technology is beneficial to use new materials 

(e.g., high strength substrate, composite material,…) and techniques (e.g., surface 

modifying, reinforcing, new coating methods,…) for development of a new 

generation of ULW proppants which can tolerate higher closure pressure. Therefore, 

using a substrate that has better properties than walnut hull can improve the strength 

of agro-based ULW proppants. Also, application of surface modification technique 

and composite material show promising results for strength improvement. If the 

surface of coconut shell is modified by sodium hydroxide and reinforced with a 

composite material then coated properly with epoxy resin, it is capable of providing 

higher strength under closure pressure. The new ULW proppant (i.e., CMRCP) that 

is light, strength, safe, inexpensive, easy to get, and reliably delivered can be used 

and developed as an economic proppant to improve the quality of HF treatment 

1.4 Research Objectives  

The main objectives of this study are as follows: 

1. To develop ultra-lightweight and a high strength proppant through 

reinforcing and coating of the coconut shell with a composite material and 

polymer.  

2. To characterize the mechanical response of CMRCP particles under 

compression. 

3. To evaluate the performance of CMRCP for providing fracture 

conductivity, and to simulate its performance in the field using HF design. 
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1.5 Scope of Research  

In this study, CMRCP that is comprised of coconut shells as substrate and 

two coating layers of composite and polymer is produced at three-step process. First 

step includes modifying the surface of the coconut shell for the reinforcement. 

Second step is reinforcing of closely sized coconut shell particles (20/40 US mesh) 

with a composite material composed of the flax fiber and poly glycidyl methacrylate 

polymer (PGMA). The aim of reinforcing coconut shell with the composite material 

is to improve its strength to resist closure pressure. Similar to the procedure that is 

used for most RCP, the third step includes coating of reinforced particles with a thin 

layer of epoxy resin. Scope of the study includes the following procedures: 

1- Preparation of the coconut shell particles to use as a substrate in the 

composition of ULW proppant. The process of preparing coconut shell 

particles includes drying, crushing, grinding, and sieving. 

2- Reinforcement of coconut shell particles with a composite material that is 

comprised of the flax fiber & PGMA polymer by using chemical bath 

deposition method. 

3- Coating of the reinforced coconut shells with epoxy resin by using 

chemical bath deposition method.  

4- Evaluating the quality of the uncoated coconut shell and CMRCP based 

on the standard procedure (API RP 60). 

5- Investigation of physical properties of the uncoated coconut shell and 

CMRCP using crush resistance test.  

6- Evaluation of mechanical behavior of the uncoated coconut shell, 

reinforced coconut shell and CMRCP using single compression test (Dag 

series 4000). In addition, simulation and experimental results of 

mechanical behavior of single particles of the uncoated coconut shell, 



11 

     

reinforced coconut shell and CMRCP under compression are developed 

and compared.  

7- Control quality evaluation of the uncoated coconut shell and CMRCP by 

using commercial proppants. 

8- Characterization of the uncoated coconut shell, reinforced coconut shell 

and CMRCP to find microstructure, compounds and functional groups, 

elements, and thermal stability of particles. Field emission scanning 

electron microscope (FESEM), scanning electron microscope (SEM), 

energy dispersive X-ray spectrometry (EDX) test, Fourier transform 

infrared spectroscopy (FTIR), and thermo gravimetric analysis (TGA) 

tests are used to characterize the uncoated coconut shell, reinforced 

coconut shell and CMRCP.  

9- Simulation of mechanical behavior of the uncoated coconut shell and 

CMRCP under compression using ABAQUS software.  

10- Evaluation of flow capacity of the uncoated coconut shell and CMRCP 

using fracture conductivity test according to the standard procedure 

(ISO13503-5). Sandstone core from Kuala Terengganu were used in the 

fracture conductivity tester.  

11- Performing HF design with using FracproPT (version 10.824-2015) 

simulator to investigate the performance of CMRCP in San Juan basin 

formation. This field is chosen because Brady sand and ULW-1.25 have 

been widely used as proppant to stimulate wells in San Juan basin 

formation.       

1.6 Significant of the Study 

1- Provision of the coconut shell is cost saving, and it is available in tropical 

countries like Malaysia. Thus, more economic benefits can be obtained 
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during utilization of coconut shells as substrate of ULW proppant, and it 

has great capability to convert as an economical product especially for 

tropical countries like Malaysia. 

2- Coconut shells appear to be the best natural role model as proppant agent 

if reinforced and coated in order to increase impact-resistance. As 

presented in this study, CMRCP has high strength compared to the 

current commercial ULW proppants (ULW-1.25) that are introduced into 

the market. 

3- Production process of CMRCP is safe because most of the elements that 

are used in the composition of CMRCP are organic materials which do 

not emit harmful gases, and they are degradable into nature. 

1.7 Thesis Outline 

The present thesis comprised of five chapters that are organized as follows: 

Chapter 1: First chapter includes an overview of the study, background of the 

problem, problem statement, objectives, scopes and significance 

of the study.  

Chapter2: A comprehensive review on the improved oil recovery methods, 

well stimulation, hydraulic fracturing and acid fracturing, HF 

models, HF design, proppant, history of proppant, various types of 

proppant such as CP and ULW proppant, physical properties of 

proppant, and evaluation of the quality of proppant are presented 

in the second chapter. In addition, this chapter is focused on the 

ULW proppant, historical background of ULW proppant, 

applications of ULW proppant, classification of ULW proppant, 

various arrangements of ULW proppant within the fracture, 

characterization of ULW proppant, simulation mechanical 
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response of ULW proppant under compression, quality evaluation 

of ULW proppant, and advantages and disadvantages of ULW 

proppant, coated proppant and various methods of proppant 

coating, diverse types of polymers that are used for coating of 

proppant, and fracturing fluids.  

Chapter 3: Third chapter describes the procedure of performing the study that 

is divided into main parts such as preparation of substrate material 

and evaluation of its quality as well as simulating mechanical 

response of the uncoated coconut shells under compression, the 

procedure of the reinforcing and coating of desirable particle size 

of coconut shells in addition to simulating mechanical response of 

CMRCP under compression, evaluating quality of CMRCP for 

possible use as proppant, the trend of setting up the fracture 

conductivity tester, and the procedure of performing HF design.  

Chapter 4: Implementation, analysis, and discussion of the various parts of 

the study and a comparison with other available proppants are 

presented in this chapter.   

Chapter 5: This chapter covered conclusions and future works. 
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