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ABSTRACT 

 
 
 
 

The current demand for accurate coastal altimetry data, particularly for the sea 
level has increased since human activities have become increasingly concentrated 
along coastal areas. Over coastal region, particularly within 10 km from the coastline, 
the altimeter footprint is severely contaminated by land and rough coastal sea states. 
The contamination leads to the low quality observations, thus creating a significant 
gap in data availability over the coast. The aim of this study is to evaluate the quality 
of coastal retracked sea level data from AltiKa satellite altimetry over the Southeast 
Asia region. In this study, high resolution (40 Hz) sea levels derived from the advanced 
AltiKa satellite altimetry are validated over the Southeast Asia coastal regions. The 
parameter of sea level is derived based on three standard retracking algorithms which 
are MLE-4, Ice-1 and Ice-2. The assessments of quantity and quality of the retracked 
sea levels data are conducted to identify the optimum retracker over the study regions, 
which are Andaman Sea, Strait of Malacca, South China Sea, Gulf of Thailand and 
Sulu Sea. The quantitative analysis involves the comparison between AltiKa and 
Jason-2 waveforms, the computation of percentage of data availability, and the 
minimum distance of Sea Level Anomaly (SLA) to the coastline. The qualitative 
analysis involves the relative validation with geoid height and absolute validation with 
tide gauge. In general, AltiKa measurement can obtain as close as 1 km to the coastline 
with ≥85% data availability. The Ice-1 retracker has shown an excellent performance 
with percentage of data availability at ≥90% and minimum distance as close as 0.9 km 
to the coastline. In term of quality, Ice-1 retracker shows the highest improvement of 
percentage (IMP) values over Andaman Sea, Sulu Sea and Strait of Malacca with IMPs 
of 19%, 16% and 43%, respectively. The Ice-1 retracker also shows the highest 
temporal correlation (up to 0.95) and the lowest root mean square (RMS) error up to 8 
cm over distance less than 10 km for those three regions. Contrary, over the South 
China Sea, Ice-2 retracker has better performance when compared to other retrackers 
with IMP values of 43%. Over distance less than 10 km to the shore, the temporal 
correlation and RMS error reach up to 0.88 and 7 cm respectively. Over the Gulf of 
Thailand, the optimum retracker cannot be concluded due to unavailable tide gauge 
data. The Ice-1 is the optimum retracker over three out of four regions. Therefore, it is 
used to study the seasonal variability of sea levels over the Southeast Asia. The 
seasonal variability shows that the mean amplitude is up to 25 cm during the Northeast 
Monsoon and decreased by 9 cm during the Southwest Monsoon and between 2 to 9 
cm during inter-monsoon seasons. In conclusion, the research has significantly 
contributed in defining the quantity and quality of the AltiKa SLAs in the coastal 
region of Southeast Asia. The results from comprehensive validation obtained in this 
research present a significant improvement in identifying the reliability and 
applicability of the AltiKa datasets and retracking algorithms over the coastal area of 
the study region.  

 
  



v 

 
 
 
 

ABSTRAK 

 
 
 
 

Permintaan semasa untuk data altimetri pesisir yang tepat, terutamanya untuk 
paras laut telah meningkat sejak aktiviti manusia menjadi semakin tertumpu di 
sepanjang kawasan pantai. Di kawasan persisir, terutamanya dalam lingkungan 10 km 
dari garis pantai, jejak altimeter dicemari dengan teruk oleh tanah dan keadaan laut 
yang bergelora. Pencemaran membawa kepada cerapan yang berkualiti rendah, sekali 
gus mewujudkan jurang yang ketara dalam ketersediaan data di pantai. Tujuan kajian 
ini adalah untuk menilai kualiti data paras laut pesisir dari satelit AltiKa di rantau Asia 
Tenggara.  Dalam kajian ini, aras laut beresolusi tinggi (40 Hz) yang diterbitkan 
daripada satelit altimetri termaju AltiKa disahkan di kawasan pantai Asia Tenggara. 
Parameter aras laut diterbitkan berdasarkan kepada tiga algoritma penjejak piawai iaitu 
MLE-4, Ice-1 dan Ice-2. Penilaian kuantiti dan kualiti data aras laut yang telah 
menjalani pembetulan dijalankan untuk mengenal pasti penjejak yang optimum di 
kawasan kajian iaitu Laut Andaman, Selat Melaka, Laut China Selatan, Teluk Thailand 
dan Laut Sulu. Analisis kuantitatif melibatkan perbandingan antara bentuk gelombang 
AltiKa dan Jason-2, pengiraan peratusan ketersediaan data, dan jarak minimum aras 
anomali laut (SLA) ke garis pantai. Analisa kualitatif melibatkan pengesahan relatif 
dengan ketinggian geoid dan pengesahan mutlak dengan pengukur tolok pasang surut. 
Secara umumnya, pengukuran AltiKa dapat mencapai sehingga 1 km ke garis pantai 
dengan ketersediaan data ≥85%. Penjejak Ice-1 telah menunjukkan prestasi cemerlang 
dengan peratusan ketersediaan data pada ≥90% dan jarak minimum sehingga 0.9 km 
ke garis pantai. Dari segi kualiti data, penjejak Ice-1 menunjukkan nilai-nilai peratusan 
peningkatan (IMP) tertinggi di Laut Andaman, Laut Sulu dan Selat Melaka dengan 
IMP masing-masing sebanyak 19%, 16% dan 43%. Penjejak Ice-1 juga menunjukkan 
korelasi temporal tertinggi (sehingga 0.95) dan ralat punca kuasa min (RMS) yang 
terendah sehingga 8 cm pada jarak kurang daripada 10 km untuk ketiga-tiga kawasan 
tersebut.  Sebaliknya, di Laut China Selatan, penjejak Ice-2 mempunyai prestasi yang 
lebih baik berbanding penjejak yang lain dengan nilai IMP 43%. Bagi jarak kurang 
daripada 10 km ke garis pantai, korelasi temporal dan ralat RMS masing-masing 
mencapai sehingga 0.88 dan 7 cm. Di Teluk Thailand, penjejak yang optimum tidak 
dapat disimpulkan disebabkan oleh ketiadaan data tolok pasang surut. Ice-1 adalah 
penjejak yang optimum di tiga daripada empat kawasan. Oleh itu, ianya digunakan 
untuk kajian variasi bermusim bagi aras laut di rantau Asia Tenggara. Variasi 
bermusim menunjukkan min amplitud adalah sehingga 25 cm semasa musim Monsun 
Timur Laut dan menurun sebanyak 9 cm semasa musim Monsun Barat Daya dan 
diantara 2 hingga 9 cm semasa musim peralihan monsoon. Kesimpulannya, 
penyelidikan ini telah menyumbang secara ketara dalam menentukan kuantiti dan 
kualiti data SLA AltiKa di rantau pantai Asia Tenggara. Hasil daripada pengesahan 
komprehensif yang diperolehi dalam kajian ini menunjukkan peningkatan yang ketara 
dalam mengenal pasti kebolehpercayaan dan kebolehgunaan data AltiKa dan 
algoritma penjejak di pesisir pantai dalam kawasan kajian.    
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INTRODUCTION 

1.1 Background of the Study 

Satellite altimeter is a nadir pointing microwave instrument that measures the 

distance between the satellite and the target surface. It is a matured discipline that 

provides accurate measurements of ocean geophysical information of significant wave 

heights (SWHs), sea surface height (SSHs), and wind speed over the open ocean 

(Gommenginger et al., 2011). Satellite altimeter also one of the most important 

techniques for operational oceanography, particularly in providing a continuity of the 

data record (Le Traon et al., 2015). Moreover, satellite altimeter can provide high 

quality data in global scale with a sufficiently dense space and time sampling (Le 

Traon, 2011; Le Traon et al., 2015). 

 
 
The concept of altimeter measurements is to measure two-ways travel time of 

pulse. The satellite altimeter emits pulses and analyses the returned signals reflected 

by the Earth’s surface. Satellite position is referred to the ellipsoid (e.g., WGS84) and 

is precisely measured through orbit determination by using Doppler Orbitography and 

Radiopositioning Integrated by Satellite (DORIS), or Global Positioning System 

(GPS) receivers, or both (Benveniste, 2011).  

 
 
Waveform is the altimetry radar-returned signal that represents the time 

evolution of the reflected power as the pulse hits the surface. Waveforms over the open 

ocean (without land contamination) can be described by Brown (1977) model (Figure 



2 

1.1). A Brown-like or ocean-like waveform features a leading edge which has a sharp 

rise up to a maximum value, followed by a trailing edge, which is a gently sloping 

plateau. The parameters of the mid-point of the leading edge are associated with 

altimeter range (referred to as epoch) which can be used to estimate the SSH. The slope 

of the leading edge is associated with the SWH. The wind speed can be derived from 

the amplitude of the waveform. 

 
 

 

Figure 1.1: Schematic altimeter waveform with the geophysical parameters that 

correspond to different parts of the waveform over homogenous ocean surface 

(adapted from Idris, 2014). 

 
 
Altimeter instruments can only measure returned signals in a narrow range 

window (typically 60 mm in vertical), called the ‘analysis window’. In order to keep 

the reflected signals from the surface within the altimeter analysis window, an on-

board tracker is used (Gommenginger et al., 2011). Closed-loop regulators are used to 

measure the time delay between transmitted pulse and return pulse by using an α-β 

tracker and to keep the reflected signal within the altimeter analysis window 

(Gommenginger et al., 2011). It holds the waveform’s nominal position at a fixed point 

and amplitude with the intention of keeping the leading edge of the return pulse in the 
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middle position of the sample at a corresponding time interval. The Maximum 

Likelihood Estimator (MLE) algorithm is applied to waveforms to fit the Brown 

(1977) model for retrieving ocean parameters (Idris, 2014). This is applied on-board 

the satellite. In order to gain the maximum accuracy of ocean parameters and to 

retrieve the final geophysical parameters, waveform retracking is performed on the 

ground. Waveform retracking is the procedure of post-processing to fit a functional 

form or model to the measured waveform. In order to improve parameter estimates 

(i.e., the power amplitude, epoch, and slopes of leading edge and trailing edge) over 

those estimated by the satellite on-board tracker, the retracking method is applied 

(Gommenginger et al., 2011). 

 
 
Over the last 30 years, numerous satellite altimeter missions have been 

launched such as Topex/Poseidon, ERS-1, ERS-2, Envisat, Jason-1, Jason-2, Jason-3, 

Cryosat-2, and the SARAL/AltiKa (hereafter referred as AltiKa). The Envisat and 

Jason-1 altimeter missions were officially retired in April 2012 and June 2013, 

respectively. In July 2008, Jason-2 was launched and flew on almost identical orbits 

with Jason-1, ~1 minute apart during the calibration phase (Idris, 2014). Then, in May 

2012, the Jason-1 satellite was shifted to a lower orbit to begin its geodetic mission 

until it was decommissioned in July 2013. The Jason-3 was launched in February 2016 

with a mission to extend the time series of ocean surface topography measurements of 

Topex/Poseidon, Jason-1, and Jason-2. The Cryosat-2 was launched in 2010 and 

equipped with an advanced microwave delay-Doppler/Synthetic Aperture Radar. It 

produces a footprint that is beam-limited in the along-track direction, which is in 

contract with the conventional ocean-viewing radar altimeter (such as Jason-1) that 

produces pulse limited footprint. The advancement in the accuracy, repeatability, and 

stability of satellite altimeters over the open ocean make them an irreplaceable tool for 

various ocean applications, including mapping ocean dynamics and circulations at 

high temporal and spatial scales.. 

 
 
However, in the vicinity of land near the coast, a number of issues arise when 

satellite altimetry attempts to monitor the sea level. The main issues are related to 

poorer geophysical corrections and artefacts in the altimeter return signals due to the 

existence of land within the altimeter footprint. In order to fulfil the increasing demand 
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for satellite altimetry observation in coastal zones, where a diversity of human 

activities occur, the new generation of the AltiKa satellite altimetry mission was 

launched on 25th February 2013 by the Indian Space Research Organization 

(ISRO)/Centre National d’Etudes Spatiales (Vincent et al., 2006; CNES, ). The 

satellite mission provides opportunity from a space-borne Ka-band radar altimetry for 

nearly global (within +81.5o latitude bounds) synoptic mapping of ocean surfaces at 

monthly sampling (35-day repeat sun-synchronous orbit), and with higher spatial 

resolution (up to 40 Hz) than the present Ku-band (up to 20 Hz) altimetry such as 

Jason-1 and Jason-2. With the high rate along-track observations, the spatial resolution 

near the coast can be increased, thus enabling coastal observations much closer to the 

coast (Vincent et al., 2006). 

 
 
The large bandwidth (500 MHz) in Ka-Band provides a better vertical 

resolution (~0.3m) than in Ku-Band (~0.5 m, Vincent et al., 2006). Moreover, the 

AltiKa satellite is equipped with a smaller antenna beam width (0.6°) than its successor 

mission of Envisat (1.29° for Ku-band and 5.5° for S band), thus producing a smaller 

size footprint (~4 km, Valladeau et al., 2014). Smaller footprint size contributes to the 

improvement of the spatial resolution and segregating the type of surface in transition 

zones, such as coastal regions and sea ice boundaries. Nevertheless, Ka-band 

frequency is sensitive to atmospheric conditions, which may cause significant 

atmospheric attenuation (Vincent et al., 2006). However, research by Tournadre et al. 

(2015) has found that the impact of atmospheric attenuation on the Ka-band signal on 

the AltiKa altimetry is not as severe as expected. When using a standard systematic 

flagging, 15% of data are flagged as bad. Of 15%, only 5.5% of data are affected by 

atmospheric attenuation. 

 
 
In March 2015, there was a technical issue on the reaction wheels of AltiKa, 

which made it drift from the original orbit. Due to the situation, ISRO and CNES 

decided to pursue the mission with new phase called “SARAL-DP”, an abbreviation 

for AltiKa – Drifting Phase. Starting from July 2016, the AltiKa satellite flies freely 

and repetitive ground passes are no longer maintained (Bron et al., 2016). Since then, 

the AltiKa is referred to as a geodetic mission. The geodetic mission does not concern 

the repetitive orbit; the requirement of this mission is the high spatial resolution of data 
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collection over at least 95% of all available ocean coverage (Bronner and Dibarboure, 

2012). It means that AltiKa will continue to provide valuable data for mesoscale and 

operational geography.  

 
 
The Prototype for Expertise, an AltiKa for Coastal, Hydrology and Ice 

(PEACHI) project, is specifically conducted for the AltiKa mission. The aim is to 

perform a new retracking algorithm for the 40 Hz AltiKa data in order to improve the 

accuracy of estimates for scientific applications, such as coastal area, surface 

hydrology, ice, and open ocean (Poisson et al., 2013; Valladeau et al., 2014; Valladeau 

et al., 2015). The project utilised along-track Sensor Geophysical Data Record 

(SGDR) and Sensor Interim Geophysical Data Record (SIGDR) in its processing 

scheme.  

 
 
The standard retracking algorithms used in SGDR and SIGDR data products 

are MLE-4, Ice-1 and Ice-2. The MLE-4 algorithm includes the second order Bessel 

function of the Brown (1977) model to account for the antenna mispointing angle 

(Amarouche et al., 2004; Thibaut et al., 2010). It estimates four parameters which are 

the range, slope of leading edge, power amplitude, and antenna off-nadir angle by 

fitting the model to the waveform. It is also capable of improving the range and slope 

of leading edge estimates, especially when the return pulses do not fully conform to 

the Brown model (Thibaut et al., 2010). This contributes to improving the accuracy 

and allows for measurements closer to the coastline. The Ice retrackers are based on 

the statistics of the waveform shapes. It estimates two parameters, which are power 

amplitude and range (Idris and Deng, 2012). More information about retracking 

algorithms is discussed in Chapter 2. 

 
 
This research has been conducted to provide necessary steps in defining the 

quantity and quality of AltiKa sea level in coastal region of Southeast Asia. It is to 

identify the reliability and capability of AltiKa datasets and find the optimal retracking 

algorithms over the coastal area of study region.  



6 

1.2 Issues with Coastal Altimetry Data for Mapping Sea Level 

Conventional satellite altimetry (e.g. Jason-1, Jason-2 and ENVISAT) can 

provide highly accurate sea level measurement (in cm level) over the open ocean due 

to proper modelling of ocean state qualities (e.g. tides) and accurate measurement of 

atmospheric refractions (Bouffard et al., 2008). The satellite altimetry is capable of 

providing accurate information of ocean properties that can achieve an accuracy of up 

to 4 cm in height measurements (Challenor et al., 1996; Fu and Cazenave, 2001) and 

2-3 cm in mean sea level variations (Gómez-Enri et al., 2008). However, in coastal 

regions, altimetry and its applications still face many challenges (e.g. Anzenhofer et 

al., 1999; Bouffard et al., 2010; Gommenginger et al., 2011; Vignudelli et al., 2011; 

Cipollini, 2013). The accuracy of sea level measurements decreases abruptly as the 

altimeter approaches the coast, where the sea conditions can diverge drastically over 

time and space. 

 
 
An accurate sea level observation over the coastal region has been in great 

demand by the local scientific community for various applications. The desired 

accuracy of derived geophysical information varies depending on the applications. For 

example, the accuracy desired for measuring sea level rise is 1 mm/year and a 10 cm 

accuracy is required for detecting eddies in the East Australian Current system (Idris, 

2014). The accuracy desired for measuring sea level rise is 1 mm/year over Malaysia 

seas (Md Din, 2010) and a 7.5 cm accuracy is required for detecting eddies in the South 

China Sea (Yi et al., 2014). With the current altimeter, the accuracy of sea level in the 

open ocean is at 2-3 cm. However, this value is higher towards the coast (Andersen 

and Scharroo, 2011). 

 
 
Two major challenges of using satellite altimetry for monitoring the sea level 

in coastal regions (i.e. less than 10 km from the coastline) are: 1) waveform distortion 

due to non-ocean like reflection (land contamination), and 2) geophysical corrections 

for retrieving sea level.  
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The distortion of altimetric waveforms occurs due to the land contamination 

within the altimeter footprint and rapid changes in sea state. The altimetry data become 

unreliable as the sea floor topography becomes shallow abruptly and there are major 

surface changes rapidly between land and ocean (Brooks et al., 1998; Le Traon and 

Morrow, 2001; Deng et al., 2002; Idris and Deng, 2012). With the previous generation 

of radar altimeters (i.e., Jason-1, Jason-2 and Envisat), the coastal water is poorly 

observed within ~15 km of the shoreline (Deng et al., 2002; Idris and Deng, 2012) 

around the Australian coastal water, and within ~10 km around the South China Sea 

coastal water (Kuo et al., 2012). 

 
 
When an altimeter encounters the transition zone (land-to-ocean or ocean-to-

land), the altimeter footprint is partly over ocean and partly over land, making more 

waveform samples contaminated by non-ocean like reflection, as shown in Figure 1.2. 

The power received at a given gate is correlated with the relative fraction of sea and 

land areas in the corresponding footprint and with the reflective properties of each type 

of surface (Gommenginger et al., 2011). The lower panel of Figure 1.2 indicates the 

top-down view of the pulse-limited footprint corresponding to each waveform gate. It 

shows the relative proportion of ocean and land part in each of annuli away from the 

nadir point. 

 
 
As the satellite approaches the coast, the altimeter waveform does not conform 

to the Brown model, and thus the general satellite on-board tracker system fails to 

precisely retrieve the geophysical parameters (Figure 1.3). As waveform samples are 

contaminated by non-ocean-like reflections, the high peaks show on the trailing edge 

(Gommenginger et al., 2011). This issue leads to erroneous estimates of the 

geophysical information, thus resulting in systematic flagging and rejection of 

altimetric data and leave a ‘data gap’ in the coastal zone (Idris, 2014). 
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Figure 1.2: (Top panel) Schematic representation of pulse-limited altimeter short 

pulse propagation from the altimeter to the sea surface in the case of an ocean-to-

land transition. B is the bandwidth of the altimeter in unit of Hertz; c is the speed of 

light; c/(2B) is the altimeter sampling rate; H is the altimeter height; τ1 and τ2 are the 

epoch of the first and last measurement; and τ0 is the epoch with respect to the 

nominal tracking position. (Lower panel) Top-down view of the pulse limited 

footprint corresponding to each waveform gate (adapted from Gommenginger et al., 

2011). 
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Figure 1.3: Shape of waveform when approaching the coastline. The waveform (in 

red) does not conform to the Brown model when it gets close to the coast due to land 

contamination (adapted from COASTALT, 2015). 

 
 
The retrieval of sea level from the altimeter measurement involves a number 

of corrections for geophysical signals and atmospheric attenuations. The geophysical 

corrections (e.g., tides and atmospheric corrections) and environmental corrections 

(e.g., sea state bias, ionospheric, dry and wet tropospherics) become less reliable as the 

altimeter approaches the coastline (Andersen and Scharroo, 2011). These contribute to 

the degradation of accuracy in SSH measurements.  

 
 
The wet tropospheric refraction is the major source of error in altimeter-derived 

sea level anomalies (SLAs) near the coast. This is because over the coastal region (~50 

km from the coastline) the emissivity of land is much higher than the ocean and the 

presence of warm land corrupts the humidity retrieval methods. This consequently 

degrades the accuracy of the correction (cf. Andersen and Scharroo, 2011). For 

handling this issue, two strategies have been proposed. The first consists of merging 

the data in the coastal zones to update and improve the radiometer-derived wet 

tropospheric correction in the coastal area, and the second consists of the correction of 
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the measured brightness temperatures for removing the contamination from the 

surrounding land (Obligis et al., 2011). Further explanations and the outcomes about 

those approaches can be found in the book Coastal Altimetry by Vignudelli et al., 

(2011), and in particular in the Chapter by Obligis et al., (2011). 

 
 
Another altimetric correction that presents the most significant challenge over 

the coastal region is sea state bias (SSB) correction. The SSB error is due to the bias 

of altimeter range measurement toward the trough of ocean waves (Gommenginger 

and Srokosz, 2006; Andersen and Scharroo, 2011). The SSB correction is inferred 

empirically, based on the wind speed and the SWH is derived from the waveform 

shape itself (AVISO, 2009). The complication of determining SSB correction near the 

coast is due to the wind propagation and the changing shape of the ocean waves, along 

with the interaction between bathymetry and coastal topography. This condition 

creates noisy waveforms and SWH accordingly.  

 
 
Tidal variation is also one of the most significant error sources over the coastal 

region. Large error (>10-20 cm) in tidal models and the model utilised to approximate 

the inverse barometer correction remain a challenge in this area. There are two tidal 

models that are currently available in the SGDR product: the 2D Finite Element 

Solution (FES2012) and the Ocean Tidal Model (GOT4.8). The FES2012 is an 

improvement of FES2004. It is based on an assimilation of satellite altimetry into a 

time-stepping finite element hydrodynamic model (Lyard et al., 2006; Carrère et al., 

2012). The GOT4.8 is based on the sequence of empirical ocean tide models derived 

from altimeter data (Ray, 2008). Previous research suggests that the FES tidal model 

is the best model for the marginal sea area (e.g. Md Din, 2010; Md Din and Omar, 

2012; Md Din et al., 2012; Md Din, 2014, Md Din, 2014). 

 
 
There is also an issue with altimetric signal attenuation due to liquid water, 

such as rains and clouds. Due to wind and air flow, the distribution of rain is much 

higher over the coast than the open ocean. Radar altimetry signal can be strongly 

attenuated by light rain and small clouds, thus distorting the altimeter waveform 

(Tournadre, 1999). This can have a significant impact on geophysical parameter 

estimations and can cause 10-80% data loss (Tournadre et al., 2009). 
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Due to the low quality of altimeter geophysical retrieval, coastal data are 

usually systematically flagged and rejected. This makes the coastal water poorly 

observed, particularly within ~15 km of the shoreline (Deng et al., 2002; Idris and 

Deng, 2012). This flagged data, however, can be potentially recovered through the 

retracking method, and applying the newly developed geophysical corrections and 

processing schemes (e.g. Amarouche et al., 2004; Vignudelli et al., 2005; Lebedev et 

al., 2008; Bao et al., 2009; Idris and Deng, 2012; Idris, 2014) that optimise the 

estimation of geophysical parameters from the waveform on the ground processing. 

Retracking algorithms are developed to reprocess the original altimeter return signal 

by correcting the bias in estimation of geophysical parameters due to corrupted signals. 

A detailed explanation about the retracking algorithms is provided in Section 2.4.  

 
 
The high rate along-track measurement of SSH offered by the AltiKa satellite 

altimetry mission should benefit the studies for understanding the sea level and its 

mesoscale variability. Thus, the exploitation of the AltiKa altimetry is needed for 

accurate mapping of coastal sea levels. This research is conducted to identify how 

much closer the retracked AltiKa sea level measurement can get to the coastline over 

the region of marginal seas in Southeast Asia, as well as to evaluate the precision and 

accuracy of the retracked sea levels over the experimental regions. 

1.3 Research Questions 

The research questions of the study are: 

 
 

i. How much AltiKa sea level data can be recovered through the standard 

retracking algorithms? 

ii. How much closer can the retracked sea level derived from the AltiKa Ka-

band get to the coastline over the marginal seas of the Southeast Asia 

coastal region? 

iii. How accurate is the retracked sea level from the AltiKa Ka-band satellite 

altimetry in the coastal region of Southeast Asia? 
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1.4 Aim and Objectives of the Study 

The research aim is to evaluate the quality of coastal retracked sea level from 

SARAL/AltiKa satellite altimetry over the Southeast Asia region. The aim is 

accomplished through three (3) specific objectives: 

 
 
i. To derive accurate SLAs from the AltiKa Ka-band based on three 

retracking algorithms of MLE-4, Ice-1 and Ice-2 in the SGDR data 

product; 

ii. To assess the quantity and quality of retracked SLAs in identifying the 

optimum retracker for the marginal seas of Southeast Asia; 

iii. To analyse the seasonal variability of SLA in Southeast Asia from the 

optimum retracked SLA in (ii). 

1.5 Research Scope 

In this research, the 40 Hz waveforms of the AltiKa satellite altimetry from 

cycles 1–19 (April 2013–December 2014) are utilised. It is realised that the altimetry 

data utilised in this study is in a short period. This is because, by the time this research 

started, only 19 cycle of AltiKa data are available. The study aims to derive a high 

resolution of sea levels above a reference ellipsoid from the SGDR retracked AltiKa 

data over the Southeast Asia region. The MLE-4, Ice-1, and Ice-2 retracking 

techniques are involved in the processing to derive sea level above a reference 

ellipsoid. These techniques should improve the accuracy of altimetry data sea levels 

near the coastal water.  

 
 
The quantity of AltiKa data over the coastal region is assessed by comparing 

the AltiKa waveform and Jason-2 waveform at near parallel passes and crossover 

point, computing the percentage of data availability and the minimum distance of 

retracked sea level based of the number of valid datasets. This assessment can 

determine the capability of AltiKa in measuring the oceanic mesoscale variability over 
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the coastal region. This also can determine how much data can be recovered through 

those three retracking algorithms (i.e. MLE-4, Ice-1, and Ice-2), and how much closer 

the AltiKa retracked data can get to the coastline compared to Jason-2.  

 
 
The quality of the AltiKa retracked sea level is assessed by comparing the 

retracked sea level with quasi-independent and independent data. The assessments 

involved are: 1) a relative validation of retracked sea level with geoid height, and 2) 

an absolute validation of retracked sea level with independent tide gauge data.  

 
 
The first assessment is to compare the retracked sea level from the retracking 

algorithms (i.e., MLE-4, Ice-1 and Ice-2) with the geoid height based on the Earth 

Gravitational Model (EGM2008). The precision of the sea level is assessed based on 

the standard deviation of difference between the retracked sea level and the geoid, and 

also the improvement of percentage (IMP). The second assessment is to compare the 

retracked sea levels with in-situ tide gauge data. The precision between altimetric and 

in-situ sea level measurement is determined by assessing the value of correlation 

coefficient, and the accuracy of the altimeter sea level is determined by assessing the 

root mean square error. These assessments are conducted to identify the reliability and 

accuracy of the retracked datasets, and to determine which retracker is the optimum 

for the study regions.  

 
 
The derived sea level from the optimum retracker are mapped to analyse the 

seasonal variability of the sea level. This is to understand the spatial and temporal 

variability of sea level and to investigate the impact of Southwest monsoons and 

Northeast monsoons on the amplitude of the sea level over the region. 

1.6 Significance of the Study 

Nowadays, demand for accurate altimetry data over the coastal area, 

particularly the sea level, has risen since human activities are concentrated over this 

region. The increasing demand for coastal altimetry encompasses a wide range of 
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applications such as hydrology, coastal erosion, cryosphere application, and flood risk 

appraisal. This results in much innovative research for improving coastal altimetry 

data. The no-data gap in coastal regions have been reduced from ~50 km to ~10 km 

from the coastline through various research in the last few years (e.g., Brooks et al., 

1997; Amarouche et al., 2004; Deng and Featherstone, 2006; Idris and Deng, 2012, 

Babu et al., 2015; Birol and Niño, 2015; Abdullah et al., 2016). Nonetheless, the 

improvement of altimetry data is still challenging within ~10 km from the coastline 

(Idris, 2014), which is linked to the condition of land topography, rough/calm coastal 

sea state, and land contamination within the altimetry footprint. Therefore, this 

research provides a necessary step to derive accurate SLAs from AltiKa satellite 

altimetry. The framework developed in this research should enable the derivation of 

accurate sea levels over the Southeast Asia regions. 

 
 
Moreover, much information can be retrieved by bringing the altimetry data 

closer to the coastline, exclusively in environmental sustainability for coastal 

management. Since human activities are primarily concentrated in coastal areas, 

studies about sea levels using satellite altimetry would give advantages, especially in 

engineering activities along the shoreline, and will hopefully benefit economic and 

recreational activities.  

 
 
The launch of the AltiKa satellite mission promises a significant refinement of 

coastal altimetry, with advanced instruments, an improved retracking algorithm, and 

geophysical corrections (Cipollini, 2013; Prandi et al., 2015; Ratheesh et al., 2015; 

Schwatke et al., 2015; Verron et al., 2015). The validation and calibration for the 

satellite mission are compulsory to find the level of confidence on the data quality 

before it can be used in any applications. Global calibrations for AltiKa have been 

conducted by CNES, ISRO, and many other researchers (e.g., Gómez-Enri et al., 2008; 

Abdalla, 2015; Prandi et al., 2015; Tournadre et al., 2015; Verron et al., 2015). 

However, limited research focuses on the regional validation over Southeast Asia (e.g. 

Idris et al., 2014b; Idris et al., 2014c; Abdalla, 2015; Abdullah et al., 2015; 

Mohammed et al., 2015). The regional validation is important because the ocean 

characteristics of the region are significantly different than the other oceans, such as 

the Pacific and Atlantic Ocean. It is characterized by marginal and semi-closed oceans 
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that contain many small islands and a broad range of topographic features, thus 

producing complicated waveform patterns when they enter the altimeter footprints. 

Therefore, this research is conducted to quantify the quality of sea levels derived from 

the AltiKa over the Southeast Asia region. 

1.7 Thesis Outline 

The thesis consists of seven chapters. Chapter 1 introduces the background of 

the research. Current issues associated with coastal altimetry are discussed and the 

objectives of the research are addressed. This study is mainly established for the 

marginal seas of Southeast Asia. Five seas are involved, including the Andaman Sea, 

the Gulf of Thailand, the Strait of Malacca, the South China Sea, and the Sulu Sea. 

This study is applied to the five different seas to identify its performance and 

applicability in different coastal regions.  

 
 
Chapter 2 discusses the issues of satellite altimetry for ocean geophysical 

studies. The derivation of sea level from altimetry and the retracking algorithms 

utilised in this study are reviewed and discussed. The chapter also discusses the recent 

research conducted by international organisations and researchers in bringing altimeter 

measurements closer to the coastline.  

 
 
Chapter 3 describes the research framework and methodology. The details 

about data pre-processing, data processing, derivation of sea level from the AltiKa 

satellite, and tide gauge measurements are provided in this chapter. The validation 

protocol and SLAs mapping are also described in detail.  

 
 
In Chapter 4, the quantity of the AltiKa ret-racked sea level over the five 

regions is evaluated. The evaluation is based on:  

i. The comparison of AltiKa Ka-band waveform patterns and Jason-2 Ku-

band over the coastal area. Through this comparison, the impact of land 

contamination in coastal zones on both satellite returned signals can be 
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