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Abstract 

Introduction: Androgenic alopecia (AA) patients usually have high levels of 

dihydrotestosterone on their balding scalp area. Currently, dutasteride (DST) is given 

orally and has systemic adverse effects; diminished sexual desire, increased 

depression and ejaculation disorder. Topical administration of DST is an appropriate 

drug-delivery strategy with the potential to reduce systemic side effect, skin irritation 

and cytotoxicity effects.  

Materials and method: Chitosan oligomer (CSO) conjugated with stearic acid (SA) 

or lauric acid (LA) was synthesised and characterised. Dutasteride-loaded 

nanostructured lipid carriers (DST-NLCs) were prepared using a melt-dispersion 

ultrasonication method. DST-NLCs were optimised using a design of experiments 

approach. DST-NLCs, uncoated and coated with CSO-SA or CSO-LA were 

characterised for particle size distribution, surface charge and morphology. In vitro 

release and permeation studies were performed. Cytotoxicity was investigated using 

human hair follicle dermal papilla cells, and skin irritation was performed using an 

EpiDerm™ RHE model. Cou-6 loaded NLCs were prepared and characterised before 

proceeding with the cell and skin uptake study. 

Results: CSO-SA and CSO-LA were successfully synthesised; confirmed using 
1
H 

NMR and FTIR. The mean size of DST-NLCs was significantly increased (p<0.05) 

when coated with 5% CSO-SA but not with 5% CSO-LA (p>0.05). The zeta 

potential changed from negative to positive charge when coating DST-NLCs with 

CSO-SA or CSO-LA. All formulations were physically stable over six months when 

stored at 4-8°C. However, DST-NLCs coated with CSO showed aggregation. All 

formulations exhibited rapid drug release. No dutasteride permeated through pig ear 

skin after 48
 
h for all formulations. The cytotoxicity (IC50) for DST nanoparticles, 

coated and uncoated, was greater than for DST alone (p<0.05). The in vitro skin 

irritation study indicated no irritation for all nanoparticle preparations. For the cell 

and skin uptake studies, all samples showed time-dependent skin and cell uptake.  

Conclusions: These stable, low cytotoxic and irritant, positively-charged DST-NLCs 

with CSO-SA or CSO-LA, represents a promising strategy for topical/ transfollicular 

delivery of DST. 
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Research Impact Statement 

 Androgenic alopecia is a common disorder affecting almost 50% of men in 

their lifetime due to the androgen effect. Based on the Euromonitor market study 

predicted in 2013, it was expected that the hair loss treatment would attract up to 

US$100 million in sales globally by 2016. Even though hair loss is not a life-

threatening disease, but it has a psychological and emotional effect, especially in 

young people. This study aims to prepare and characterise dutasteride-loaded 

nanostructured lipid carriers (DST-NLCs), coated with chitosan oligomer conjugated 

with stearic acid, and lauric acid to enhance local drug delivery and reduce toxicity.  

This study will help in our understanding of the potential of nanoparticle 

formulations for topical delivery of hair growth molecules, which will benefit society 

especially, androgenic alopecia patients, improving their quality of life. Currently, 

few products are available in the markets which are prescribed for the androgenic 

alopecia patient. Due to their systemic adverse effects, the delivery of dutasteride for 

promoting hair growth using topical route would be a great advance. Phase III 

clinical studies on the use of dutasteride for promoting hair growth have shown 

significant hair growth for the people with hair loss. Unfortunately, no topical 

product based on dutasteride has been approved.  

This research can generate good networks between researchers in the 

academia and people from industries whereby they can exchange the idea, skills and 

knowledge on the research and business areas. Also, this research can be one of the 

platforms for other molecules to be applied for topical or non-topical applications. A 

trained and skilled researcher who has cross-disciplinary generated from this study 

would be one of the main impacts on the academic area. In term of the economic, it 

would generate a knowledge transfer between researchers and industrial people who 

will lead to spin out companies, and the creation of new processes and products.  
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1.1 Skin structure and function 

Skin is the largest, heaviest and most versatile organ of the human body. The 

vital roles of the skin are the protection of the body, regulation of body temperature 

and sensory perception. The skin protects the body from water loss and the 

possibility of access by potentially toxic compounds, allergens, irritants and microbes 

(Bartosova and Bajgar, 2012). To ensure these diverse functions can be fulfilled, 

healthy skin is needed. For an adult, the skin surface area is approximately 1.8 - 2.0 

m
2 

(Uchechi et al., 2014). Figure 1.1 shows the structure of the skin.  

 

 

 

Figure 1.1 Structure of skin (adapted from MacNeil, 2007) 

 

The skin consists of three main layers (Figure 1.2). The outermost layer is the 

epidermis which is made up of stratum corneum, stratum lucidum, stratum 

granulosum, stratum spinosum and stratum basal (Williams, 2018). The barrier 

properties of the skin are due to the stratum corneum. The stratum corneum is a very 

hydrophobic layer, comprising differentiated non-nucleated cells, corneocytes, filled 

with keratins embedded in the lipid domain (Godin and Touitou, 2007). The lipid 

domain is composed of equal proportions of ceramides, cholesterol and free fatty 
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acids (Pappas, 2009). The synthesis of these three components promotes the acidic 

condition of the skin.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Skin structure and layer (redrawn from Bensouilah and Buck, 2006) 

 

The second layer is dermis. The dermis is composed of connective tissues 

such as collagen fibrils and elastic tissues that mostly provide support, mechanical 

strength, elasticity and flexibility of the skin. The dermis is supplied with a reticulate 

network of blood vessels, lymphatic vessels, nerve endings, hair follicles, sebaceous 

glands and eccrine glands (Thakur et al., 2008). 

 

Finally, the inner layer of the skin is subcutaneous tissue or hypodermis 

which contains adipose cells in and between the connective tissue. The primary 

function of subcutaneous tissue is to provide insulation to the body (Williams, 2018).  

1.2 Hair  

The largest appendages, which consist of hair follicles and sebaceous glands, 

can provide ‘short cut’ routes which drugs can pass across the stratum corneum 

barrier (Williams, 2018). The hair follicle is an organ and part of the skin. It starts in 
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the dermis and goes through the outer part of the skin to the epidermis layer (Figure 

1.3). Hair consists of proteins, lipids, water, trace elements and pigments (Robbins, 

2012). The hair protein is called keratin. Hair can be divided into two types. First is 

vellus hair, appearing on the body, or hair that changes to terminal hair at puberty. 

The second is called terminal hair. Terminal hair may be short (eyebrows, ears, nose) 

and long (head hair, beard, underarm, pubic area).  

 

 

 

 

 

 

 

 

 

Figure 1.3 Structure of the hair follicles (adapted from Adolphe and Wainwright, 

2005) 

 

Hair that is visible above the skin is called the hair shaft. It consists of cuticle, 

cortex and medulla. Previous studies have found the hair diameter on the scalp and 

face differ (Tolgyesi et al., 1983). The normal adult hair shaft diameter (Caucasian) 

is approximately 70 µm, whereas in the beard it is 126 µm. These have made skin 

appendages (sweat gland and hair follicle) which is only 0.1% to 1% of the area of 

the skin (Schaefer and Redelmeier, 2001) used as a follicular route for targeted 

delivery of drugs. 
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Hair that is invisible or within the skin is called the hair root. The bulbous end 

of the hair root is called the hair bulb (Williams, 2018). All biological processes 

including cell division happen in this part. The hair bulb is positioned in a tubular 

pocket called the hair follicle. Human hair follicles are one of the organs that are 

affected by hormones such as androgens (Randall et al., 1991). Androgen promotes 

hair growth and also sometimes inhibits scalp hair growth causing androgenetic 

alopecia (AGA). As it is specific to the hair follicle itself, the response to androgens 

varies with the body site. In the case of AGA, androgens cause the miniaturisation of 

the scalp hair follicle (Hibberts et al., 1998). 

1.3 Hair growth cycles 

Hair is produced by the hair follicle and undergoes a cycle with different 

phases. It starts at the anagen phase, then passes through catagen and lastly telogen 

phases. All hair growth phases in the body occur at the same time; one hair might be 

in the anagen phase and others in the catagen or telogen phase. The original lower 

follicle will be destroyed, and the new follicle will regenerate to form a new hair 

(Randall and Botchkareva, 2008).  

Figure 1.4 shows the cycles of hair growth in the normal human body. 

Different areas have different hair growth cycle. Hair is produced in the anagen 

phase or so-called growth phase. Scalp follicles have the longest anagen phases, 

lasting up to several years (Randall, 2008). Once hair reaches its full length in the 

anagen phase, then the catagen phase (regression) will take place, in which cell 

proliferation, differentiation, and pigmentation will stop, and extensive apoptosis 

occurs, and the dermal papilla shrinks (Randall, 2008). The catagen phase normally 

takes 1 to 2 weeks. In the catagen stage, the hair is fully keratinised and a specialised 

structure, the club hair is formed and moves upwards (Randall and Botchkareva, 

2008). After this, the telogen phase takes over, which lasts for several months. 

During the telogen phase, the round-shaped dermal papilla is closely situated near to 

the secondary hair germ keratinocytes containing hair follicle stem cells. In an early-

mid anagen phase, a new lower follicle develops inside the same dermal sheath, and 

the new hair grows into the original upper follicle, and the existing hair ejected 

(Randall and Botchkareva, 2008).  
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Figure 1.4 The hair follicle growth cycle (adapted from Randall and Botchkareva, 

2009) 

1.4 Mechanism of hair loss  

Most problems associated with hair relate to either hirsutism (excessive hair 

growth) or alopecia. Alopecia is a common medical term for hair loss or baldness. 

Baldness which is affected by androgens is called AGA, also known as male pattern 

hair loss (MPHL) or female pattern hair loss (FPHL) (Kaufman, 2002). Testosterone 

and dihydrotestosterone are the major androgens that regulate the hair growth.  

Dihydrotestosterone (DHT) has approximately a five-fold greater affinity for 

the androgen receptor than testosterone (Kaufman, 2002). In hair loss patients, the 

5α-reductase enzyme acts as a catalyst that converts testosterone, which is the 

primary androgen, to the more potent androgen, DHT which makes the hair follicle 

miniaturise and shed hair (Olsen et al., 2006).  

Figure 1.5 shows the hair loss cycle for a patient with hair loss. Due to the 

effect of the potent androgen (DHT), their normal hair starts as long, thick and 

pigmented, then changes to be thin, short and less pigmented at the end of the 

process. The new hair colour becomes less pigmented from one cycle to another, the 

hair shaft becomes thinner, and there is the appearance of baldness. Two isozymes 
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participate in androgen synthesis; namely, Type I 5α-reductase isozyme which is 

present in the skin, hair follicles and sebaceous glands, liver, prostate, and kidney and 

Type II 5α-reductase isozyme which is present in hair follicles, male genitalia and the 

prostate (Russell and Wilson, 1994; Kandavilli et al., 2010). Both these isozymes are 

involved in steroid metabolism and interact with the androgen receptors. In androgen 

synthesis, the 5α-reductase enzyme acts as catalyst converting testosterone to the 

more potent dihydrotestosterone. By introducing a 5α-reductase inhibitor, the 

conversion of testosterone to DHT can be decreased and reduce hair loss.        

 

 

 

 

 

 

 

 

Figure 1.5 Hair loss cycle in patients with male pattern baldness (adapted from 

Randall, 2010) 

1.5 Anti-androgenic activity for treating hair loss 

Hair loss is not a life-threatening disease, but has an emotional impact and 

affects certain individuals, especially young people and they may experience 

psychological distress (Hunt and Mchale, 2005). Androgenic alopecia (male pattern 

baldness) is a common disorder affecting almost 50% of men in their life (Yassa et 

al., 2011) due to effect from androgen. Androgen is one of the prerequisites for male 

pattern baldness (Randall and Botchkareva, 2008). Normally, patients with 

androgenic alopecia have higher levels of DHT (dihydrotestosterone) and 5α-

reductase enzyme activity on their balding scalp area than those with a non-balding 
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scalp area (Hibberts et al., 1998). Figure 1.6 shows the circulation of androgens in 

the hair follicles. Testosterone (T) is mainly secreted by the Leydig cells of the testes 

of males and a lesser amount by the ovaries of female (Brownlee et al., 2005).  

 

 

 

 

 

 

 

 

 

Figure 1.6 The action of androgen in the hair follicle (redrawn from Randall and 

Botchkareva, 2009)  

 

Testosterone will circulate in the blood and enter the hair follicle through the 

dermal papilla’s blood supply and interact with the androgen receptors in the dermal 

papilla cells. Several studies have focussed on the inhibition of the activity of the 5α-

reductase enzyme, either by using natural extracts or drugs. One example of natural 

extract for 5α-reductase inhibitor was the use of fatty acids (Liu et al., 2009); those 

with C12-C16 and C=C double bond which enhanced Type II 5α-reductase inhibition 

activity. Finasteride which has Type II 5α-reductase inhibitor activity is approved by 

the FDA to treat benign prostatic hyperplasia and male pattern baldness. Dutasteride 

is approved for treating benign prostatic hyperplasia (BPH) and has both Types I and 

II 5α-reductase inhibitor. Finasteride and dutasteride are discussed in detail in 

Section 1.8.2 and 1.8.3 respectively. 
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1.6 Market overview of hair loss products 

Figure 1.7 shows the estimated size of the global hair care market in 2013 

from 2006 to 2016 (Euromonitor International, 2013). Hair care products comprise 

products that promote health; hair nourishment, prevention of hair damage and hair 

loss treatment.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 Size of the global hair care market in 2006, 2011 and the estimated 

market in 2016 (in billion U. S. dollars) (adapted from Euromonitor International, 

2013) 

 

From this data, the sales of the hair loss treatments are dominated by 

minoxidil (Regaine®, Johnson and Johnson) which exhibits a significant sales 

growth especially in Western Europe (Euromonitor International, 2013). Minoxidil is 

an over-the-counter drug and has been approved for treating hair loss in both men 

and women. However, some people use cosmetic products to treat hair loss rather 
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than pharmaceutical products due to their adverse effects. In this case, cosmetics are 

defined in Regulation (EC) No. 1223/2009 as: 

"any substance or mixture intended to be placed in contact with the external 

parts of the human body (epidermis, hair system, nails, lips and external genital 

organs) or with the teeth and the mucous membranes of the oral cavity with a view 

exclusively or mainly to cleaning them, perfuming them, changing their appearance, 

protecting them, keeping them in good condition or correcting body odours.” 

(European Commission, 2009). 

Cosmetics or drugs used for treating hair loss are not permanent and their 

activity is reversible, which means when someone uses the product; hair loss will 

decrease or stop, but when they stop using the product, then the hair loss returns. To 

reduce this problem, an effective delivery system for a drug acting as a potential hair 

growth promoter should be designed to have a long-lasting effect such as having 

controlled release properties which is targeted to the hair follicle area and at the same 

time reduce the adverse effects. 

1.7 Delivery of drugs to the skin 

Many studies have been conducted to deliver drugs to the transfollicular 

region (Bhatia et al., 2013; Mittal et al., 2015). Figure 1.8 shows the potential 

penetration pathways of a drug through the skin. The drug can pass either through the 

skin barrier (No. 1 - 3) or to the transfollicular area (A - D). Drug delivery through 

the skin offers convenience to the patient, is pain-free and allows self-administration, 

and may eliminate frequent administration especially when long-term treatment is 

needed (Paudel et al., 2010). 

The transfollicular route has shown promise for delivery; particulate delivery 

would be ideal by allowing deep intrafollicular penetration, sustained release and 

selectively targeted delivery (Patzelt and Lademann, 2013). The size of particulate 

materials is one of the key criteria to deliver the drug to the transfollicular area. Hair 

follicles have a size range from 10 - 70 μm depending on the hair type, location and 

race (Singh et al., 2000) making it a suitable site for delivering nanoparticles to the 

dermal papilla cells for hair growth products.  
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Previous research has found that, applying 320 nm fluorescence dye-

containing nanoparticles, and massaging the area enhanced the penetration for up to 

10 days (Lademann et al., 2007); with nanoparticulates of dye penetrating deeper 

than the dye in solutions. 

 

 

 

 

 

 

 

 

 

Figure 1.8 Schematic illustration of the potential penetration pathways of drugs 

through the skin (redrawn from Patzelt and Lademann, 2013) 

 

Lipophilic vehicles rather than hydrophilic are able to improve the delivery of 

drug to the skin (Motwani et al., 2004), and many  studies have been conducted using 

lipid-based vehicles for dermal delivery (Doktorovova et al., 2011; Wang et al., 

2012; Uprit et al., 2013; Montenegro et al., 2016). Due to the occlusive properties of 

lipid nanoparticles, an increased skin hydration effect is observed (Hommoss, 2008). 

Previous studies found that a lipid film formed on the top of the skin, and the 

subsequent occlusion effect was reported for lipid nanoparticles (Müller et al., 2002; 

Wissing and Müller, 2003; Escobar-Chávez et al., 2012). Particles smaller than 400 

nm containing at least 35% lipid of high crystallinity have been most effective for the 

occlusive properties (Wissing and Müller, 2003).  
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Figure 1.9 shows that the occlusion factor of lipid nanoparticles depends on 

the sizes; reducing the particle size leads to an increase in particle number, the film 

becomes denser (left) and therefore the occlusion factor increases. Other criteria on 

the occlusion factor have been considered, such as identical lipid content; increasing 

the lipid concentration increases particle number and density of the film (right) which 

also leads to a higher occlusion factor (Pardeike et al., 2009). In solid lipid 

nanoparticles (SLN) or nanostructured lipid carriers (NLC) system, the skin 

hydration after applying these nanoparticles leads to a reduction of corneocytes 

packing and an increase in the size of the corneocytes gaps and facilitate the 

percutaneous absorption and drug penetration to the deeper skin layers (Hommoss, 

2008). 

 

 

 

 

 

 

Figure 1.9 The occlusion factor of lipid nanoparticles depends on different sizes 

(redrawn from Escobar-Chávez et al., 2012) 

 

 Campbell et al., (2012) investigated the deposition of nanoparticles in 

mammalian skin and found that nanoparticles (mean size of 20 – 200 nm) cannot 

penetrate beyond the superficial layers of the barrier.  Figure 1.10 shows the intensity 

of fluorescence nanoparticles at different sizes. Even at the smallest mean size of 

nanoparticles (20 nm), there is no penetration of nanoparticles to the deeper layer of 

the skin. This result proved that nanoparticles could not penetrate the skin barrier, but 

it is useful as skin surface reservoirs to control the drug release over time (Campbell 

et al., 2012).  
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Figure 1.10 Fluorescence intensity of different sizes of nanoparticles (without 

removing the stratum corneum) (modified from Campbell et al., 2012) 

 

 Fang et al. (2014) reported the mechanism of skin permeation by drug-loaded 

NLCs (Figure 1.11). As mentioned before, occlusion factor which increases 

hydration of the stratum corneum (SC) become the main factor that can reduce the 

corneocytes packing and increase drug permeation (Fang et al., 2014). These findings 

suggest that nanoparticles could go deep in the skin and systemic circulation through 

transfollicular region as seen in Figure 1.11. 

 

 

 

 

 

 

Figure 1.11 Mechanism of drug permeation by NLCs (redrawn from Fang et al., 

2014) 
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1.8 Drugs used for treating hair loss 

1.8.1 Minoxidil 

For many years, minoxidil has been the first-choice for topically applied drug 

recommended by medical practitioners to treat hair loss for both men and women. 

Currently, Rogaine® (USA) or Regaine® (Europe and UK) is an approved hair-loss 

product based on minoxidil which is available on prescription and as an over-the-

counter medication. Minoxidil (Figure 1.12), a pyridine derivative drug was used in 

the 1970s as a treatment for hypertension in patients where therapy had failed with 

multidrug regimens (Messenger and Rundegren, 2004; Sica, 2004). In 1988, 1% 

minoxidil mixed with an alcohol-based carrier was approved by the FDA to treat 

alopecia in men.  

In a 12-month randomised double-blind trial of 150 men, 82% of the 

minoxidil group increased hair count (Kreindler, 1987). Sato et al., (1999) used 

cultured human dermal papilla cells from the balding scalp and found that minoxidil 

increased 17β-hydroxysteroid dehydrogenase activity by approximately 40% but had 

an insignificant effect on 5α-reductase activity and such as the mechanism of 

minoxidil action remains unknown (Silva et al., 2009). Another study  (Han et al., 

2004) found minoxidil prolonged the anagen phase where the dermal papilla cells 

proliferated and had an anti-apoptotic effect on dermal papilla cells. 

 

 

Figure 1.12 Chemical structure of minoxidil 
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1.8.1.1 Nanocarrier delivery of minoxidil and minoxidil derivatives 

In order to overcome the severe adverse reaction such as scalp dryness, 

irritation from propylene glycol-water-ethanol ingredients in the current minoxidil 

products, several studies have investigated the delivery of minoxidil using 

nanoparticle formulation. Nanostructured Lipid Carrier (NLCs) have been used for 

the delivery of minoxidil (Silva et al., 2009) for promoting hair growth, with a 

particle size of approximately 250 nm before adding to a hydrogel; particles 

remained below 500 nm when incorporated in the hydrogel. These formulations of 

minoxidil-NLCs hydrogel were a promising alternative to the conventional alcoholic 

solutions, as the drug is physically entrapped within the lipid matrix which can be 

useful to increase the bioavailability for skin delivery (Silva et al., 2009). No efficacy 

study on hair growth activity between the minoxidil-NLCs hydrogel and 

conventional minoxidil solutions was conducted. However, this formulation 

approach would help in reducing the risk of occurrence of adverse side effects, such 

as skin dryness and irritation. 

The Globally Harmonized System of Classification and Labeling of 

Chemicals (GHS) defines skin irritation as “the production of reversible damage to 

the skin following the application of a test substance for up to 4 hours” and skin 

corrosion as “the production of irreversible damage to the skin; namely, visible 

necrosis through the epidermis and into the dermis, following the application of a test 

substance for up to 4 hours” (United Nations, 2013). Padois et al., (2011) used solid 

lipid nanoparticles (SLNs) as a carrier for minoxidil and found SLNs suspensions 

which was approximately 190 nm of particle size proved efficient as commercial 

solutions for skin penetration; and were non-corrosive while commercial solutions 

presented a corrosive potential. 

Some examples of minoxidil-loaded nanoparticulate carriers include research 

by Aljuffali et al. (2014), which used squalene-based NLCs for targeted drug 

delivery, known as “squarticles” and delivered minoxidil together with 

diphencyprone. The size was approximately 177 nm for the NLCs-based carrier. The 

encapsulation efficiency and zeta potential for minoxidil-loaded squalene NLCs were 

63.3% and -54.0 mV respectively. They found that compared to the free control 

(drugs in 30% propylene glycol in water), squarticles-NLCs reduced minoxidil 
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penetration through the skin, indicating minimised absorption in the systemic 

circulation. The result also showed an improvement of drug deposition by 2-fold in 

the skin, using an in vitro skin absorption test and good tolerability of squarticles to 

skin based on the in vitro papilla cell viability and in vivo skin irritancy tests in nude 

mice. 

 Matos et al. (2015) formulated minoxidil sulphate-loaded chitosan 

nanoparticles (MXS-NP) which demonstrated sustained drug release (5-fold) 

compared to drugs in solutions. The MXS-NP formulation (chitosan/MXS; 1:1 w/w) 

had mean diameter 236 nm and positive zeta potential. They found that the drug 

permeation studies through the skin in vitro showed that MXS-NP application 

resulted in a 2-fold increase in MXS in uptake hair follicles after 6 h in comparison 

to the control solution.  

1.8.2 Finasteride 

Finasteride, (Figure 1.13) an anti-androgen steroidal drug has been used 

widely to treat patients with benign prostatic hyperplasia. A clinical open, 

randomised, parallel-group study for 12 months on 100 male patients with 

androgenic alopecia to investigate the efficacy of oral finasteride (1 mg per day), 

topical 2% minoxidil solution and topical 2% ketoconazole shampoo alone and in 

combination was conducted (Khandpur et al., 2002). The results demonstrated a 

significant increase in hair growth between a combination group having finasteride 

orally (1 mg) and 2% minoxidil (topically) and finasteride (orally) alone (Khandpur 

et al., 2002).  

 

 

 

 

Figure 1.13 Chemical structure of finasteride 
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1.8.2.1 Nanocarrier delivery of finasteride 

Several studies have been conducted using nanoparticle formulations of 

finasteride for topical delivery. Madheswaran et al., (2013) prepared liquid 

crystalline nanoparticles from monoolein, with size 154 – 170 nm which showed a 

potential for topical delivery of finasteride. The addition of different types of 

additives (glycerol, propylene glycol, and polyethylene glycol 400) had little or no 

influence on the size. The formulations produced slow release profiles and high 

permeation to the dermis. The release profile was significantly altered with the 

addition of different additives. Formulation with monoolein exhibited skin 

permeation which increased significantly with the inclusion of glycerol, propylene 

glycol, and polyethylene glycol 400, while it decreased with the addition of oleic 

acid. The release rate of finasteride increased when glycerol, propylene glycol, or 

polyethylene glycol 400 was added and decreased with the addition oleic acid.  

Gomes et al. (2014) formulated lipid nanoparticles of finasteride with mean 

size around 200 nm and stable up to 28 days. Penetration studies using pig ear skin 

found that only a small amount of finasteride crossed the skin, suggesting the 

suitability of this formulation for dermal delivery of anti-alopecia active compounds. 

Caon et al. (2014) found chitosan coated polymersomes of finasteride 

interacted more strongly with the skin components than non-coated formulations due 

to the positive surface charge. It was observed that the addition of chitosan 

contributed to an increase in the accumulation of finasteride in the epidermis. It was 

proposed that the particles (mean diameter of 180 - 404 nm) were preferentially 

accumulated in the follicular openings and that follicular localization was favoured 

by the smaller particle size, which would be more easily transported via the follicular 

route than the larger size.  

1.8.3 Dutasteride 

Dutasteride, approved for treating benign prostatic hyperplasia also affects 

hair growth. Due to its androgenic activity, dutasteride can only be taken by male 

patients. Dutasteride (MW = 528.5 g/mol) (Figure 1.14) is classified as Class II/IV in 

the Biopharmaceutics Classification System (BCS) (Tiwari et al., 2014). It has very 
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low water solubility (0.038 ng/mL, Log P = 5.09 and pKa = 13.5) and high solubility 

in ethanol (44 mg/ml) and methanol (64 mg/ml) at 25° C and has a half-life of 

approximately 3-5 weeks (GlaxoSmithKline Inc., 2013). 

In 2009, dutasteride (0.5 mg daily orally intake) was approved in Korea for 

treating hair loss in men (Harcha et al., 2014), but until now no dutasteride-based 

product been approved for androgenic alopecia in Europe or USA. However, it is 

commonly prescribed as an off-label for hair loss treatment (oral administration) in 

the USA and Europe. This product is swallowed without chewing, crushing, or 

opening the capsule because it might irritate the lips, mouth, and throat. The 

prescribed dosage for treating benign prostatic hyperplasia (BPH) is 0.5 mg per day 

(GlaxoSmithKline Inc., 2013). 

 

 

Figure 1.14 Chemical structure of dutasteride 

 

Olsen et al. (2006) found dutasteride increased scalp hair growth in men with 

hair loss, at 2.5 mg of dutasteride (orally), it and was superior to finasteride (5 mg) 

(orally) at 12 and 24 weeks. Eun et al. (2010) used dutasteride for treating hair loss in 

male patients at 0.5 mg daily orally and reported that the dutasteride group had 

significant hair growth compared to the placebo group within six months. Another 

study (Stough, 2007) reported evidence that dutasteride significantly reduced hair 

loss progression in men with male pattern hair loss when tested in a randomised 

study in 17 pairs of identical twin males for 1 year period. They found that treatment 

with dutasteride (0.5 mg/day orally) slowed the progression of hair loss and enhanced 

hair growth compared to treatment with placebo. In 2014, a randomised, active- and 
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placebo-controlled study of dutasteride versus placebo and finasteride in the 

treatment of 917 male subjects with androgenetic alopecia was conducted by Harcha 

et al. (2014). They found that dutasteride 0.5 mg significantly increased the hair 

count, width diameter and improved hair growth at week 24 compared with 

finasteride and placebo. 

1.8.3.1 Nanocarrier delivery of dutasteride 

Based on the summary of product characteristics for oral dutasteride 

(Avodart®), the side effects of taking oral dutasteride are: it may increase the risk of 

development of high-grade prostate cancer, decrease libido, and may cause breast 

enlargement and ejaculation disorders (GlaxoSmithKline Inc., 2013). Dutasteride has 

a toxicity effect on the skin, with multiple red areas produced in the skin (animals at 

40 mg/kg) suggesting that dutasteride is a dermal irritant (GlaxoSmithKline Inc., 

2013). In order to reduce these side effects, drug delivery with sustained release 

should preferably target the skin, especially to the hair follicle. Delivery of 

dutasteride using nanocarriers has been studied by the oral route with little research 

of topical delivery (Table 1.1).  

Previous research on topical delivery has used a liposome system (Sharma et 

al., 2011). The liposomes produced significantly higher skin permeation of 

dutasteride through excised abdominal mouse skin compared to a hydro-alcoholic 

solution and conventional gels. Ansari et al. (2013) prepared different ratios of oleic 

acid and eucalyptus oil to prepare nanoemulsion to deliver dutasteride to the skin. 

The mean size range was around 18 - 213 nm, no measurements were undertaken on 

zeta potential, entrapment efficiency, and drug loading. Madheswaran et al. (2015) 

used monoolein to produce dutasteride nanoparticles, with their surface modified 

using different concentrations of chitosan (low molecular weight) to give a positive 

charge.  The particle size was 239 - 259 nm, with mean zeta potential of +19.8 to 

+48.5 mV. The surface modified liquid crystalline nanoparticles enhanced 

transdermal delivery of dutasteride and increased the permeation of dutasteride using 

a porcine skin (700 – 800 µm thickness). Release studies on this formulation 

produced the cumulative amount of dutasteride released only about 5% after 24 h. 

The highly lipophilic nature of dutasteride, which had a stronger interaction with 
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lipid inside the nanoparticles produced slower release compared to finasteride 

(Madheswaran et al., 2015). 

 

Table 1.1 Published studies on the delivery of dutasteride using different types 

of nanocarriers 

Delivery system Particle Size Application Authors 

Liposome 1.82 ± 0.15 μm Topical for 

dermal 

delivery 

Sharma et al. 

(2011) 

Eudragit E® nanoparticles 62.2 – 180.6 nm Oral Park et al. 

(2013) 

Hydroxypropyl- 

β-cyclodextrin nanostructures 

<160 nm Oral Kim, (2013) 

Self-microemulsifying drug 

delivery system (SMEDDS) 

43.9 nm Oral Kim et al. 

(2015) 

Self-microemulsifying drug 

delivery system (SMEDDS) 

35.3 nm Oral Choo et al. 

(2013) 

Nanoemulsion 58.8 – 88.7 nm Topical for 

systemic 

delivery 

Sajid et al. 

(2014) 

Liquid crystalline nanoparticles 197.9 ± 2.5 nm Topical for 

dermal 

delivery 

Madheswaran 

et al. (2015) 

 

1.9 Positively-charged nanoparticles 

Nanoparticles having a positive surface charged have received great interest 

in drug delivery, especially for topical and transfollicular delivery, where hair and the 

lipid layer in the SC contain high ratio of negatively-charged lipids (Bhushan, 2010; 

Madheswaran et al., 2015). For instance, the anionic surfactant is often added in 

shampoos to remove grease from the hair. The surfactant has two different regions; 

one region is soluble in water (hydrophilic) and the other region is soluble in the 

greasy material (lipophilic). The lipophilic/hydrophobic part will encircle the greasy 
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matter, and the other part (negative-charged) will repel the fibres because hair fibres 

are negatively-charged, and remove the greasy material easily. 

On the other hand, cationic surfactants are normally added to hair 

conditioners to neutralise the charge of hair after washing. Based on this, many 

studies on positively-charged nanoparticles have been undertaken in order to promote 

interaction with the negative target site, especially for dermal/transdermal and 

transfollicular delivery (Şenyiǧit et al., 2010; Gelfuso et al., 2011; Ridolfi et al., 

2012; Özcan et al., 2013; Madheswaran et al., 2015). 

1.10 Chitosan 

Chitosan is a natural polymeric material being used increasingly by the 

pharmaceutical industry. It contains free amine groups, and this makes it is insoluble 

in water (water-soluble only at pH<6) (Sogias et al., 2010).  Chitosan oligomers or 

chitosan oligosaccharide (Figure 1.15) are the hydrolysates of chitosan, mainly made 

up of -1,4 linked D-glucosamine and partially of -1,4 linked N-acetyl-D-glucosamine 

(Ibrahim et al., 2016). Chitosan oligomer has been used widely for different 

bioactivity such as antibacterial (No et al., 2002; Merchant et al., 2014; Yildirim-

Aksoy and Beck, 2017), antitumour activity (Jeon and Kim, 2002; Hu et al., 2009; 

Xie et al., 2012), anti-cancer activity (Nam et al., 2007a; 2007b), wound healing 

activity (Kang et al., 2016) and antioxidant activity (Sun et al., 2007). 

 

 

 

 

 

 

Figure 1.15 Structure of chitosan oligomer 
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In this project, chitosan oligomer (Carbosynth Ltd, United Kingdom) with 

molecular weight less than 3 kDa and 85% deacetylation degree was chosen. This 

chitosan is positively charged, which is likely to be advantageous for skin and hair,  

such skin and hair are negatively charged and will be attracted to positively charged 

moieties (Bhushan, 2010). Mittal et al. (2015) demonstrated that a nanoparticle 

formulation of antigen ovalbumin with chitosan increased follicular uptake when 

compared to a nanoparticle formulation without chitosan.  

1.10.1 Hydrophobic derivatives of chitosan  

Table 1.2 shows the potential delivery of drugs by using different types of 

chitosan conjugated with a hydrophobic chain (fatty acid). From Table 1.2, it can be 

seen that chitosan conjugated with fatty acid has been employed in many areas using 

nanoparticles and micellar systems. 

 

Table 1.2 Chitosan conjugation with different type of fatty acids and their 

application 

Delivery system Chitosan and Fatty acid Application Authors 

Micelles Chitosan 18 kDa and 

stearic acid 

Brain targeting Xie et al. (2012) 

Immobilization Chitosan LMW and lauric 

acid 

Osteoblast 

proliferation and 

antibacterial 

Zhao et al. (2014) 

Micelles Chitosan 5 kDa and stearic 

acid 

Oral delivery Li et al. (2010) 

Micelles Chitosan 9.2 kDa and 

stearic acid 

Anti-tumour 

activity 

Hu et al. (2009) 

Nanoparticles Chitosan 9.2 kDa and oleic 

acid 

Optical 

MR/Imaging 

Lee et al. (2011) 

Micelles Glycol chitosan  different 

MWs with palmitic acid 

(GCPQ) 

Oral, ocular, 

parenteral 

Uchegbu et al. 

(2014) 
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The surface activity of chitosan (non-conjugated) is low as it does not possess 

any hydrophobic portions and can be improved by chemical modifications at its 

glucosidic group with a hydrophobic substituent (Cheung et al., 2015). Szymańska 

and Winnicka (2015) reported chemical crosslinking with chitosan as a strategy to 

increase the stability of chitosan, whereby the stability of modified chitosan was 

based on the covalent bonds, and also interactions—hydrogen or hydrophobic bonds.  

 Xie et al. (2012) prepared chitosan oligosaccharide (MW 18 kDa) conjugated 

with stearic acid (CSO-SA) for brain targeting. The blood-brain barrier (BBB), 

makes it difficult for the drug to penetrate, however, the delivery of doxorubicin in a 

CSO-SA micellar system was beneficial. The micellar system (22 nm sizes; zeta 

potential +36 mV) demonstrated high drug loading and a slow release pattern. High 

amounts of doxorubicin were found in the brain and low amounts accumulated in the 

heart. This result was due to the ability of micelles to transport across the blood-brain 

barrier and into the brain (Xie et al., 2012). The lower toxicity of CSO-

SA/doxorubicin micelles than doxorubicin in solutions might be relevant with a slow 

release of doxorubicin from micelles (Xie et al., 2012). 

1.11 Nanoparticulate dermal drug delivery 

Topical application of drugs has many advantages especially reducing 

systemic effects and targeting affected local areas, such as for skin diseases. The 

stratum corneum (SC) provides the main barrier function of skin, limiting the loss of 

essential substances from inside the body and reducing chemically or toxic materials 

entering the body (Trommer and Neubert, 2006). Even though the drug in the 

formulation for hair loss therapy should ideally target the transfollicular region, drugs 

will also likely permeate through the dermal or transdermal regions which represent 

the main permeation pathways. Due to the limited permeability of the SC (the drug 

should be in low molecular weight and moderate lipophilicity), several methods have 

been employed to enhance the delivery of the drugs to the skin. These include 

chemical permeation enhancers such as fatty acids, urea, phospholipids, alcohols, 

amide, and sulfoxides and physical permeation enhancement such as iontophoresis, 

sonophoresis, ultrasound and microneedles (Finnin and Morgan, 1999; Pathan and 

Setty, 2009; Akhtar et al., 2011; Shaji and Varkey, 2012). 
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Other skin penetration enhancers, more recently investigated are micro or 

nanoscale size drug formulations, such as liposomes, polymeric nanoparticles, 

nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers (Müller et 

al., 2002; Sintov and Shapiro, 2004; Guterres et al., 2007; Escobar-Chávez et al., 

2012; Wang et al., 2012; Gomes et al., 2014). Mahe et al., (2009) found the particles 

of approximately 200 nm mean sizes applied to the skin were found around the hair 

follicles. Further studies reported that particles with a size approximately 300 nm 

were found in the transfollicular region (Mittal et al., 2015). These studies suggest to 

deliver the drug into the hair follicle regions, a size of particles in the range of 200-

300 nm is appropriate.  

1.11.1 Liposomes 

Liposomes, sphere-shaped vesicles with mean size 30 nm to several 

micrometres, produced by self-forming enclosed lipid bilayers upon hydration 

consisting of one or more phospholipid bilayers, were first described in the mid-60s 

(Akbarzadeh et al., 2013). Liposome formulations consist of one or more non-toxic 

natural phospholipids such as soy phosphatidylcholine and egg phosphatidylcholine 

or a synthetic phospholipid such as distearoyl-phosphatidylcholine (Figure 1.16).  

 

 

 

 

 

 

Figure 1.16 Schematic representation of a liposome, showing the location of 

entrapped drugs (redrawn from Lembo and Cavalli, 2010) 
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Liposomes differ based on the different type of phospholipid used, lipid 

composition, method of preparation, surface charge, lamellarity and size (Du Plessis 

et al., 1994). Liposomes have a characteristic Tc (phase transition temperature), at 

which the liposome membranes transit from the gel phase to liquid crystalline phase, 

and the encapsulated drugs are released from the vesicles (Li et al., 2015). The Tc 

depends on the nature of the polar head group, the length of the hydrocarbon chains, 

the degree of saturation of the hydrocarbon chains and the purity of phospholipids (Li 

et al., 2015). In liposomes system, hydrophobic drugs will be encapsulated in the 

hydrophobic region of the phospholipid bilayers whereas hydrophilic drugs will be 

entrapped in the aqueous core and between bilayers. The ‘rigidity’ or ‘fluidity’ and 

the charge of the bilayer of the liposome are dependent on the bilayer components 

(Akbarzadeh et al., 2013). 

Liposomes have been widely used for dermal and transfollicular delivery of 

drugs. Du Plessis et al. (1994) found that the particle size influenced the deposition 

of drugs in the skin, for a liposome preparation containing ciclosporin as a model 

drug. They found the intermediate particle size (0.3 µm) studied resulted in the 

highest amount of drug in the deeper skin strata and the receiver chamber for both 

hamster and hairless mouse skin except the pig skin after 24 h using Franz diffusion 

cells. The same was not seen for pig skin because of the lipophilic nature of both 

ciclosporin and the pigskin with the release of ciclosporin to the receiver retarded 

(Du Plessis et al., 1994). 

Esposito et al. (1998) found the permeability of a liposome preparation of 

methyl nicotinate through a synthetic membrane was influenced by the charged 

particles, a higher amount of phosphatidylcholine, the smaller size of particles and 

also the higher viscosity of the samples. In the case of the non-extruded sample, the 

permeability was affected by the vesicle size, where smaller size increased the 

permeability rather than the viscosity. However, for extruded samples, the 

permeability was affected by the viscosity of the formulation. 

Flexible liposomes, which are mixtures of lipids and surfactants have been 

studied in order to penetrate the SC (Cevc et al., 1998; Ogunsola et al., 2012). Cevc 

et al. (1998) prepared flexible liposomes, called as Transferosomes® containing 
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soybean phosphatidylcholine, sodium cholate and biocompatible surfactants 

produced liposome dispersion that passed through a filter of much smaller pore size.  

Another study conducted by Ogunsola et al. (2012) prepared flexible 

liposomes with egg phosphatidylcholine and Tween 80 or sodium cholate or ethanol 

with the mean size range from 74 – 110 nm that passed through the filter with 50 nm 

pore size.  In vitro penetration studies found that fluorescent-tagged lipid to 

liposomes with a higher amount of Tween 80 (60 or 68%) showed penetration of 

fluorescent-tagged lipid flexible liposomes into the epidermis of hairless guinea pig 

and excised human skin.  

Although liposomes have been used for drug delivery to reduce the toxicity of 

drugs, increase efficacy and stability and site-specific drug delivery, there are also 

some disadvantages. Conventional liposomes have poor drug loading capacity, poor 

stability, production costs are high, and the use of volatile solvents are required in 

their preparation. 

1.11.2 Polymer-based carrier for drug delivery 

Figure 1.17 shows different types of the polymer-based carrier for drug 

delivery. Hydrogels are produced by a group of polymeric materials having a 

hydrophilic structure which is capable of holding large amounts of water in their 

three-dimensional networks (Ahmed, 2015). Drugs can be loaded into the gel matrix 

and the drug release rate is dependent on diffusion of the small molecule or 

macromolecule through the gel network (Hoare and Kohane, 2008). Many studies 

have reported incorporation of nanoparticles or microparticles into a hydrogel in 

order to improve dermal delivery. Bhaskar et al. (2009) produced flurbiprofen loaded 

SLNs or NLCs (average particles sizes of less than 300 nm) incorporated with a 

hydrogel and found that sustained drug release over a period of 24 h was higher with 

the SLNs and NLCs hydrogel compared to SLNs and NLCs without hydrogel.  

Biodegradable polymers such as poly(D,L-lactic acid) (PLA), poly(D,L-

lactic-co-glycolic acid) (PLGA), and poly (ε-caprolactone) (PCL) and their 

copolymers diblock or multiblock with poly(ethylene glycol) (PEG) have been 

commonly used to form polymeric nanocarriers (polymeric micelles, capsules, 
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spheres) in order to encapsulate a variety of therapeutic compounds (Chan et al., 

2010). Polymeric nanocarriers such as micelles are formulated by self-assembly of 

block copolymers consisting of two or more polymer chains with different 

hydrophobicities (Chan et al., 2010) such amphiphilic polymers which have both 

hydrophilic blocks and hydrophobic blocks can be used for drug delivery where 

normally the hydrophobic blocks form the core to minimize their exposure to 

aqueous surroundings  (Chan et al., 2010; Trivedi and Kompella, 2010).  

 

 

 

 

 

 

 

 

Figure 1.17 Different structures of nanocarriers (redrawn from Janssen et al., 

2014) 

 

Nanospheres (matrix system) or nanocapsules (reservoir system) are both in 

the polymeric nanoparticle group. Nanocapsules are polymeric nanoparticles 

containing either an oily or aqueous core surrounded by a polymeric shell 

(combination with a mixture of lipophilic and hydrophilic surfactants), whereas 

nanospheres are polymer-only matrix systems (Elmowafy et al., 2017). Nanospheres 

and nanocapsules are able to modify the activity of drugs, sustain and control drug 

release, and increase the drug adhesivity in the skin (Guterres et al., 2007).     

Elmowafy et al. (2017) reported indomethacin loaded into polymeric 

nanocapsules and nanospheres produced a higher cumulative amount of drug in 

human skin compared to a marketed product (indomethacin in gel) at 24 h. They 
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found significantly higher skin permeation from nanocapsules of indomethacin 

compared to nanospheres. Even though nanocapsules had a larger particle size (186 – 

193 nm) than nanospheres (138 - 142 nm), higher permeability was attributed to 

higher nanocapsules deformability than nanospheres (rigid matrix system).  

Biodegradable, natural polymers are the first choice materials for producing 

polymeric nanoparticles, in order to minimise toxicity. In some studies, investigators 

have developed new compounds for nanoparticle production by conjugating the 

polymer with drugs especially for tumour targeting (Dragojevic et al., 2015). 

Ringsdorf (1975) introduced a model for pharmacologically active polymers, 

consisting of a biocompatible polymer backbone bound to three components; 

solubilizer, drug which is bound to the polymeric backbone via a linker, and a 

targeting moiety whose function is to provide transport to a desired physiological 

destination or to bind to a particular biological target (Larson and Ghandeharia, 

2012). Castleberry et al. (2017) prepared all-trans retinoic acid conjugated with 

polyvinyl alcohol and produced sustained controlled delivery of active up to 10 days 

and significantly increased dermal accumulation of the all-trans retinoic acid in the 

pig skin. Polymer-conjugated drugs generally exhibit prolonged half-life, higher 

stability, water solubility, lower immunogenicity and antigenicity and often also 

specific targeting to tissues or cells (Pasut and Veronese, 2007).  

The disadvantages of polymeric nanoparticles are the need for the approval 

by regulatory authorities on the safety issues, and also their high production costs 

(Bala et al., 2004). 

1.11.3 Lipid nanocarriers 

There are different types of lipid nanocarriers used for drug delivery system. 

Nanoemulsions comprise liquid mixtures of oil, water, surfactant and sometimes a 

co-surfactant having a droplet size in the range of 50 - 200 nm (Kong et al., 2011).  

In terms of production, the concentration of surfactant used is much lower (3-10%) 

compared to microemulsion preparation (more than 20%) (Bouchemal et al., 2004). 

Borges et al. (2013) found a dapsone-loaded nanoemulsion with isopropyl myristate 

as the oil phase promoted high in vitro epidermal permeation using Franz cells on 
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porcine ear epidermis. Hussain et al. (2016) formulated an amphotericin B-loaded 

nanoemulsion (mean droplet size 76 nm) and found a higher skin percutaneous 

permeation flux rate through rat skin as compared to drug solution using Franz 

diffusion cell. Amphotericin B in solution showed the highest release at 2 h, while 

amphotericin B-loaded nanoemulsion gel showed slower release compared to 

amphotericin B loaded-nanoemulsion alone. However, there are some disadvantages 

of nanoemulsions such as limited controlled release properties due to the liquid state 

of the carrier (Martins et al., 2007).  

A second type of lipid-based nanocarriers is solid lipid nanoparticles (SLNs).  

In the 1990s, these were introduced as drug carrier system (Müller et al., 2002), and 

produced by replacing the liquid lipid (oil) of an emulsion by solid lipids or a blend 

of solid lipids (Müller et al., 2007). SLNs have a mean particle size of between 50 

and 1000 nm (nanoparticles) (Müller et al., 2000). SLNs have been produced for 

pharmaceutical, traditional Chinese medicine and cosmetic applications. SLNs have 

been used to deliver bioactive ingredients such as vitamin A (Jenning et al., 2000), 

rifampicin, isoniazid and pyrazinamide (Pandey and Khuller, 2005), oridonin  (Zhang 

et al., 2006), isotretinoin (Liu et al., 2007), Artemisia arborescens essential oil (Lai et 

al., 2007), repaglinide (Vijayan et al., 2010), virgin coconut oil (Noor et al., 2013), 

docetaxel (Naguib et al., 2014) and olanzapine (Iqbal et al., 2017). Different methods 

have been proposed in order to produce SLNs including high-pressure homogeniser, 

solvent evaporation, ultrasonication or melt dispersion techniques (Gasco, 1993; 

Müller et al., 2000; Trotta et al., 2003).   

The second generation of SLNs is called as nanostructured lipid carriers 

(NLCs). NLCs are produced by incorporating blends of solid lipids and liquid lipids 

(oils) (Pardeike et al., 2009). Some examples of liquid lipid used in NLCs production 

are medium chain triglyceride such as oleic acid. Figure 1.18 shows the structural 

differences between SLNs and NLCs. Due to the main ingredients in SLNs being 

solid lipid (at room temperature), SLNs are in a highly crystalline form, limiting drug 

loading, whereas NLCs (combination of solid and liquid lipid) have a less crystalline 

structure, increasing drug loading. NLCs were introduced in order to overcome some 

of the problems associated with SLNs by increasing drug loading and reducing the 

burst release of drugs (Wissing and Müller, 2002; Hommoss, 2008; Silva et al., 

2009). The mean particle size for NLCs is usually less than 1000 nm. 
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Figure 1.18 Schematic illustration of SLN and NLC structures (modified from 

Beloqui et al., 2016)  

 

Several different types of solid lipid can be used in the production of SLNs 

and NLCs. The term ‘solid lipid’ includes fatty acids (e.g. myristic, stearic and 

palmitic acid), triglyceride (e.g. tripalmitin and tristearin), diglyceride (e.g. glyceryl 

behenate), monoglyceride (e.g. glyceryl monostearate), steroid (e.g. cholesterol) and 

waxes (e.g. cetyl palmitate and beeswax). Lipids used in SLNs or NLCs are generally 

regarded as safe (GRAS) (Attama et al., 2012). Different types of solid lipid have 

various degrees of crystallisation that may impact the drug entrapment efficiency and 

loading, size and charge of the resulted carriers. The lipid particle matrix is solid at 

both room and body temperatures (Müller et al., 2014).  

Low drug load High drug load 

Drug expulsion during 

storage 

Long term drug 

stability 

“Brick wall” structure Unstructured matrix 

SLNs NLCs 

drug 

molecules 



Chapter 1  Introduction 

 55   

 

WATER 

Negative charge (DST-NLCs) 

Positive charge (CSO-SA or CSO-LA) 

- Stearic acid + 

dutasteride + MCT 

(from Phosal® 53 

MCT) 

- Surfactant (Lutrol® micro 

F68 and 

phosphatidycholine (from 

Phosal® 53 MCT) 

- Chitosan oligomer-

stearic or lauric acid 

(CSO-SA or CSO-

LA)  
  

- 

- 

 
- 
- 

 

- 

- 

- 
- 
- 

- 
- 

+ 

+ 

+ 
+ 

+ 

+ 

+ 

+ 

- 

- 

- 
- 
- 

- 
+ 

+ 

+ + 

+ 

+ 

+ 

+ 

Electrostatic interaction 

between positively-charged 

chitosan and negatively-

charged NLCs causes 

association of nanoparticles 

coated chitosan 

1.12 Aim of the study 

The aim of this project is to prepare and characterise dutasteride-loaded 

nanostructured lipid carriers (DST-NLCs), coated with chitosan oligomer conjugated 

with stearic acid, and lauric acid to enhance local drug delivery and reduce toxicity 

(Figure 1.19).  

 

 

 

 

 

 

 

 

  

 

 

Figure 1.19 Schematic representation of DST-NLCs coated with CSO-SA or 

CSO-LA to be prepared and characterised in this project 

 

Figure 1.20 shows the flow of the project outlined in this thesis. The project 

began with the conjugation and characterisation of CSO-SA and CSO-LA (Chapter 

2). This was followed by optimisation of the formulation and manufacture of 

nanoparticles containing dutasteride and their characterisation (Chapter 3) and the in 

vitro studies (Chapter 4). Dutasteride was chosen as a drug having anti-androgenic 

activity, exhibiting Type I and Type II 5α-reductase inhibitions.  
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Figure 1.20 Schematic diagram of overall preparation, characterisation and in 

vitro study of dutasteride-loaded nanostructured lipid carrier coated with 

chitosan oligomer-stearic or lauric acid 
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